mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
Add ShuffleChannel layer
This commit is contained in:
parent
86c1114463
commit
4626246087
@ -361,6 +361,23 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
static Ptr<PermuteLayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
/**
|
||||
* Permute channels of 4-dimensional input blob.
|
||||
* @param group Number of groups to split input channels and pick in turns
|
||||
* into output blob.
|
||||
*
|
||||
* \f[ groupSize = \frac{number\ of\ channels}{group} \f]
|
||||
* \f[ output(n, c, h, w) = input(n, groupSize \times (c \% group) + \lfloor \frac{c}{group} \rfloor, h, w) \f]
|
||||
* Read more at https://arxiv.org/pdf/1707.01083.pdf
|
||||
*/
|
||||
class CV_EXPORTS ShuffleChannelLayer : public Layer
|
||||
{
|
||||
public:
|
||||
static Ptr<Layer> create(const LayerParams& params);
|
||||
|
||||
int group;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Adds extra values for specific axes.
|
||||
* @param paddings Vector of paddings in format
|
||||
|
@ -115,6 +115,7 @@ void initializeLayerFactory()
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Crop, CropLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Eltwise, EltwiseLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Permute, PermuteLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(ShuffleChannel, ShuffleChannelLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(PriorBox, PriorBoxLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(PriorBoxClustered, PriorBoxLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Reorg, ReorgLayer);
|
||||
|
@ -1,3 +1,9 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
|
||||
|
104
modules/dnn/src/layers/shuffle_channel_layer.cpp
Normal file
104
modules/dnn/src/layers/shuffle_channel_layer.cpp
Normal file
@ -0,0 +1,104 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
#include "../precomp.hpp"
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
class ShuffleChannelLayerImpl CV_FINAL : public ShuffleChannelLayer
|
||||
{
|
||||
public:
|
||||
ShuffleChannelLayerImpl(const LayerParams& params)
|
||||
{
|
||||
group = params.get<int>("group", 1);
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inputs.size() == 1 && inputs[0].size() == 4);
|
||||
CV_Assert(inputs[0][1] % group == 0);
|
||||
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
||||
return group == 1;
|
||||
}
|
||||
|
||||
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||
{
|
||||
if (group != 1)
|
||||
{
|
||||
LayerParams lp;
|
||||
float order[] = {0, 2, 1, 3};
|
||||
lp.set("order", DictValue::arrayInt(&order[0], 4));
|
||||
permute = PermuteLayer::create(lp);
|
||||
|
||||
Mat inp = *inputs[0];
|
||||
Mat out = outputs[0];
|
||||
|
||||
permuteInpShape.resize(4);
|
||||
permuteInpShape[0] = inp.size[0];
|
||||
permuteInpShape[1] = group;
|
||||
permuteInpShape[2] = inp.size[1] / group;
|
||||
permuteInpShape[3] = inp.size[2]*inp.size[3];
|
||||
|
||||
permuteOutShape.resize(4);
|
||||
permuteOutShape[0] = permuteInpShape[0];
|
||||
permuteOutShape[1] = permuteInpShape[2];
|
||||
permuteOutShape[2] = permuteInpShape[1];
|
||||
permuteOutShape[3] = permuteInpShape[3];
|
||||
|
||||
inp = inp.reshape(1, permuteInpShape);
|
||||
out = out.reshape(1, permuteOutShape);
|
||||
|
||||
std::vector<Mat*> permuteInputs(1, &inp);
|
||||
std::vector<Mat> permuteOutputs(1, out);
|
||||
permute->finalize(permuteInputs, permuteOutputs);
|
||||
}
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
||||
}
|
||||
|
||||
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
||||
|
||||
Mat inp = *inputs[0];
|
||||
Mat out = outputs[0];
|
||||
if (inp.data != out.data)
|
||||
{
|
||||
if (!permute.empty())
|
||||
{
|
||||
inp = inp.reshape(1, permuteInpShape);
|
||||
out = out.reshape(1, permuteOutShape);
|
||||
std::vector<Mat*> permuteInputs(1, &inp);
|
||||
std::vector<Mat> permuteOutputs(1, out);
|
||||
permute->forward(permuteInputs, permuteOutputs, internals);
|
||||
}
|
||||
else
|
||||
inp.copyTo(out);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
Ptr<PermuteLayer> permute;
|
||||
std::vector<int> permuteInpShape, permuteOutShape;
|
||||
};
|
||||
|
||||
Ptr<Layer> ShuffleChannelLayer::create(const LayerParams& params)
|
||||
{
|
||||
return Ptr<Layer>(new ShuffleChannelLayerImpl(params));
|
||||
}
|
||||
|
||||
} // namespace dnn
|
||||
} // namespace cv
|
@ -1186,4 +1186,41 @@ TEST(Layer_Test_PoolingIndices, Accuracy)
|
||||
normAssert(indices, outputs[1].reshape(1, 5));
|
||||
}
|
||||
|
||||
typedef testing::TestWithParam<tuple<Vec4i, int> > Layer_Test_ShuffleChannel;
|
||||
TEST_P(Layer_Test_ShuffleChannel, Accuracy)
|
||||
{
|
||||
Vec4i inpShapeVec = get<0>(GetParam());
|
||||
int group = get<1>(GetParam());
|
||||
ASSERT_EQ(inpShapeVec[1] % group, 0);
|
||||
const int groupSize = inpShapeVec[1] / group;
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.set("group", group);
|
||||
lp.type = "ShuffleChannel";
|
||||
lp.name = "testLayer";
|
||||
net.addLayerToPrev(lp.name, lp.type, lp);
|
||||
|
||||
const int inpShape[] = {inpShapeVec[0], inpShapeVec[1], inpShapeVec[2], inpShapeVec[3]};
|
||||
Mat inp(4, inpShape, CV_32F);
|
||||
randu(inp, 0, 255);
|
||||
|
||||
net.setInput(inp);
|
||||
Mat out = net.forward();
|
||||
|
||||
for (int n = 0; n < inpShapeVec[0]; ++n)
|
||||
{
|
||||
for (int c = 0; c < inpShapeVec[1]; ++c)
|
||||
{
|
||||
Mat outChannel = getPlane(out, n, c);
|
||||
Mat inpChannel = getPlane(inp, n, groupSize * (c % group) + c / group);
|
||||
normAssert(outChannel, inpChannel);
|
||||
}
|
||||
}
|
||||
}
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Test_ShuffleChannel, Combine(
|
||||
/*input shape*/ Values(Vec4i(1, 6, 5, 7), Vec4i(3, 12, 1, 4)),
|
||||
/*group*/ Values(1, 2, 3, 6)
|
||||
));
|
||||
|
||||
}} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user