mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 22:00:25 +08:00
Merge pull request #2065 from ilya-lavrenov:tapi_calcBackProject
This commit is contained in:
commit
4644a864a5
@ -1430,6 +1430,16 @@ Size _InputArray::size(int i) const
|
||||
return vv[i].size();
|
||||
}
|
||||
|
||||
if( k == STD_VECTOR_UMAT )
|
||||
{
|
||||
const std::vector<UMat>& vv = *(const std::vector<UMat>*)obj;
|
||||
if( i < 0 )
|
||||
return vv.empty() ? Size() : Size((int)vv.size(), 1);
|
||||
CV_Assert( i < (int)vv.size() );
|
||||
|
||||
return vv[i].size();
|
||||
}
|
||||
|
||||
if( k == OPENGL_BUFFER )
|
||||
{
|
||||
CV_Assert( i < 0 );
|
||||
@ -2262,6 +2272,12 @@ void _OutputArray::release() const
|
||||
return;
|
||||
}
|
||||
|
||||
if( k == UMAT )
|
||||
{
|
||||
((UMat*)obj)->release();
|
||||
return;
|
||||
}
|
||||
|
||||
if( k == GPU_MAT )
|
||||
{
|
||||
((cuda::GpuMat*)obj)->release();
|
||||
@ -2301,6 +2317,12 @@ void _OutputArray::release() const
|
||||
return;
|
||||
}
|
||||
|
||||
if( k == STD_VECTOR_UMAT )
|
||||
{
|
||||
((std::vector<UMat>*)obj)->clear();
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
|
||||
}
|
||||
|
||||
|
@ -1930,13 +1930,153 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
|
||||
}
|
||||
|
||||
|
||||
namespace cv {
|
||||
|
||||
static void getUMatIndex(const std::vector<UMat> & um, int cn, int & idx, int & cnidx)
|
||||
{
|
||||
int totalChannels = 0;
|
||||
for (size_t i = 0, size = um.size(); i < size; ++i)
|
||||
{
|
||||
int ccn = um[i].channels();
|
||||
totalChannels += ccn;
|
||||
|
||||
if (totalChannels >= cn)
|
||||
{
|
||||
idx = (int)i;
|
||||
cnidx = i == 0 ? cn : cn % (totalChannels - ccn);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
idx = cnidx = -1;
|
||||
}
|
||||
|
||||
static bool ocl_calcBackProject( InputArrayOfArrays _images, std::vector<int> channels,
|
||||
InputArray _hist, OutputArray _dst,
|
||||
const std::vector<float>& ranges,
|
||||
float scale, size_t histdims )
|
||||
{
|
||||
const std::vector<UMat> & images = *(const std::vector<UMat> *)_images.getObj();
|
||||
size_t nimages = images.size(), totalcn = images[0].channels();
|
||||
|
||||
CV_Assert(nimages > 0);
|
||||
Size size = images[0].size();
|
||||
int depth = images[0].depth();
|
||||
|
||||
for (size_t i = 1; i < nimages; ++i)
|
||||
{
|
||||
const UMat & m = images[i];
|
||||
totalcn += m.channels();
|
||||
CV_Assert(size == m.size() && depth == m.depth());
|
||||
}
|
||||
|
||||
std::sort(channels.begin(), channels.end());
|
||||
for (size_t i = 0; i < histdims; ++i)
|
||||
CV_Assert(channels[i] < (int)totalcn);
|
||||
|
||||
if (histdims == 1)
|
||||
{
|
||||
int idx, cnidx;
|
||||
getUMatIndex(images, channels[0], idx, cnidx);
|
||||
CV_Assert(idx >= 0);
|
||||
UMat im = images[idx];
|
||||
|
||||
String opts = format("-D histdims=1 -D scn=%d", im.channels());
|
||||
ocl::Kernel lutk("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts);
|
||||
if (lutk.empty())
|
||||
return false;
|
||||
|
||||
size_t lsize = 256;
|
||||
UMat lut(1, (int)lsize, CV_32SC1), hist = _hist.getUMat(), uranges(ranges, true);
|
||||
|
||||
lutk.args(ocl::KernelArg::ReadOnlyNoSize(hist), hist.rows,
|
||||
ocl::KernelArg::PtrWriteOnly(lut), scale, ocl::KernelArg::PtrReadOnly(uranges));
|
||||
if (!lutk.run(1, &lsize, NULL, false))
|
||||
return false;
|
||||
|
||||
ocl::Kernel mapk("LUT", ocl::imgproc::calc_back_project_oclsrc, opts);
|
||||
if (mapk.empty())
|
||||
return false;
|
||||
|
||||
_dst.create(size, depth);
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
im.offset += cnidx;
|
||||
mapk.args(ocl::KernelArg::ReadOnlyNoSize(im), ocl::KernelArg::PtrReadOnly(lut),
|
||||
ocl::KernelArg::WriteOnly(dst));
|
||||
|
||||
size_t globalsize[2] = { size.width, size.height };
|
||||
return mapk.run(2, globalsize, NULL, false);
|
||||
}
|
||||
else if (histdims == 2)
|
||||
{
|
||||
int idx0, idx1, cnidx0, cnidx1;
|
||||
getUMatIndex(images, channels[0], idx0, cnidx0);
|
||||
getUMatIndex(images, channels[1], idx1, cnidx1);
|
||||
CV_Assert(idx0 >= 0 && idx1 >= 0);
|
||||
UMat im0 = images[idx0], im1 = images[idx1];
|
||||
|
||||
// Lut for the first dimension
|
||||
String opts = format("-D histdims=2 -D scn1=%d -D scn2=%d", im0.channels(), im1.channels());
|
||||
ocl::Kernel lutk1("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts);
|
||||
if (lutk1.empty())
|
||||
return false;
|
||||
|
||||
size_t lsize = 256;
|
||||
UMat lut(1, (int)lsize<<1, CV_32SC1), uranges(ranges, true), hist = _hist.getUMat();
|
||||
|
||||
lutk1.args(hist.rows, ocl::KernelArg::PtrWriteOnly(lut), (int)0, ocl::KernelArg::PtrReadOnly(uranges), (int)0);
|
||||
if (!lutk1.run(1, &lsize, NULL, false))
|
||||
return false;
|
||||
|
||||
// lut for the second dimension
|
||||
ocl::Kernel lutk2("calcLUT", ocl::imgproc::calc_back_project_oclsrc, opts);
|
||||
if (lutk2.empty())
|
||||
return false;
|
||||
|
||||
lut.offset += lsize * sizeof(int);
|
||||
lutk2.args(hist.cols, ocl::KernelArg::PtrWriteOnly(lut), (int)256, ocl::KernelArg::PtrReadOnly(uranges), (int)2);
|
||||
if (!lutk2.run(1, &lsize, NULL, false))
|
||||
return false;
|
||||
|
||||
// perform lut
|
||||
ocl::Kernel mapk("LUT", ocl::imgproc::calc_back_project_oclsrc, opts);
|
||||
if (mapk.empty())
|
||||
return false;
|
||||
|
||||
_dst.create(size, depth);
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
im0.offset += cnidx0;
|
||||
im1.offset += cnidx1;
|
||||
mapk.args(ocl::KernelArg::ReadOnlyNoSize(im0), ocl::KernelArg::ReadOnlyNoSize(im1),
|
||||
ocl::KernelArg::ReadOnlyNoSize(hist), ocl::KernelArg::PtrReadOnly(lut), scale, ocl::KernelArg::WriteOnly(dst));
|
||||
|
||||
size_t globalsize[2] = { size.width, size.height };
|
||||
return mapk.run(2, globalsize, NULL, false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::calcBackProject( InputArrayOfArrays images, const std::vector<int>& channels,
|
||||
InputArray hist, OutputArray dst,
|
||||
const std::vector<float>& ranges,
|
||||
double scale )
|
||||
{
|
||||
Size histSize = hist.size();
|
||||
bool _1D = histSize.height == 1 || histSize.width == 1;
|
||||
size_t histdims = _1D ? 1 : hist.dims();
|
||||
|
||||
if (ocl::useOpenCL() && images.isUMatVector() && dst.isUMat() && hist.type() == CV_32FC1 &&
|
||||
histdims <= 2 && ranges.size() == histdims * 2 && histdims == channels.size() &&
|
||||
ocl_calcBackProject(images, channels, hist, dst, ranges, (float)scale, histdims))
|
||||
return;
|
||||
|
||||
Mat H0 = hist.getMat(), H;
|
||||
int hcn = H0.channels();
|
||||
|
||||
if( hcn > 1 )
|
||||
{
|
||||
CV_Assert( H0.isContinuous() );
|
||||
@ -1947,12 +2087,15 @@ void cv::calcBackProject( InputArrayOfArrays images, const std::vector<int>& cha
|
||||
}
|
||||
else
|
||||
H = H0;
|
||||
|
||||
bool _1d = H.rows == 1 || H.cols == 1;
|
||||
int i, dims = H.dims, rsz = (int)ranges.size(), csz = (int)channels.size();
|
||||
int nimages = (int)images.total();
|
||||
|
||||
CV_Assert(nimages > 0);
|
||||
CV_Assert(rsz == dims*2 || (rsz == 2 && _1d) || (rsz == 0 && images.depth(0) == CV_8U));
|
||||
CV_Assert(csz == 0 || csz == dims || (csz == 1 && _1d));
|
||||
|
||||
float* _ranges[CV_MAX_DIM];
|
||||
if( rsz > 0 )
|
||||
{
|
||||
|
135
modules/imgproc/src/opencl/calc_back_project.cl
Normal file
135
modules/imgproc/src/opencl/calc_back_project.cl
Normal file
@ -0,0 +1,135 @@
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Xu Pang, pangxu010@163.com
|
||||
// Wenju He, wenju@multicorewareinc.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//
|
||||
|
||||
#define OUT_OF_RANGE -1
|
||||
|
||||
#if histdims == 1
|
||||
|
||||
__kernel void calcLUT(__global const uchar * histptr, int hist_step, int hist_offset, int hist_bins,
|
||||
__global int * lut, float scale, __constant float * ranges)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
float value = convert_float(x);
|
||||
|
||||
if (value > ranges[1] || value < ranges[0])
|
||||
lut[x] = OUT_OF_RANGE;
|
||||
else
|
||||
{
|
||||
float lb = ranges[0], ub = ranges[1], gap = (ub - lb) / hist_bins;
|
||||
value -= lb;
|
||||
int bin = convert_int_sat_rtn(value / gap);
|
||||
|
||||
if (bin >= hist_bins)
|
||||
lut[x] = OUT_OF_RANGE;
|
||||
else
|
||||
{
|
||||
int hist_index = mad24(hist_step, bin, hist_offset);
|
||||
__global const float * hist = (__global const float *)(histptr + hist_index);
|
||||
|
||||
lut[x] = (int)convert_uchar_sat_rte(hist[0] * scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void LUT(__global const uchar * src, int src_step, int src_offset,
|
||||
__constant int * lut,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int src_index = mad24(y, src_step, src_offset + x * scn);
|
||||
int dst_index = mad24(y, dst_step, dst_offset + x);
|
||||
|
||||
int value = lut[src[src_index]];
|
||||
dst[dst_index] = value == OUT_OF_RANGE ? 0 : convert_uchar(value);
|
||||
}
|
||||
}
|
||||
|
||||
#elif histdims == 2
|
||||
|
||||
__kernel void calcLUT(int hist_bins, __global int * lut, int lut_offset,
|
||||
__constant float * ranges, int roffset)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
float value = convert_float(x);
|
||||
|
||||
ranges += roffset;
|
||||
lut += lut_offset;
|
||||
|
||||
if (value > ranges[1] || value < ranges[0])
|
||||
lut[x] = OUT_OF_RANGE;
|
||||
else
|
||||
{
|
||||
float lb = ranges[0], ub = ranges[1], gap = (ub - lb) / hist_bins;
|
||||
value -= lb;
|
||||
int bin = convert_int_sat_rtn(value / gap);
|
||||
|
||||
lut[x] = bin >= hist_bins ? OUT_OF_RANGE : bin;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void LUT(__global const uchar * src1, int src1_step, int src1_offset,
|
||||
__global const uchar * src2, int src2_step, int src2_offset,
|
||||
__global const uchar * histptr, int hist_step, int hist_offset,
|
||||
__constant int * lut, float scale,
|
||||
__global uchar * dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
int src1_index = mad24(y, src1_step, src1_offset + x * scn1);
|
||||
int src2_index = mad24(y, src2_step, src2_offset + x * scn2);
|
||||
int dst_index = mad24(y, dst_step, dst_offset + x);
|
||||
|
||||
int bin1 = lut[src1[src1_index]];
|
||||
int bin2 = lut[src2[src2_index] + 256];
|
||||
dst[dst_index] = bin1 == OUT_OF_RANGE || bin2 == OUT_OF_RANGE ? 0 :
|
||||
convert_uchar_sat_rte(*(__global const float *)(histptr +
|
||||
mad24(hist_step, bin1, hist_offset + bin2 * (int)sizeof(float))) * scale);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
#error "(nimages <= 2) should be true"
|
||||
#endif
|
175
modules/imgproc/test/ocl/test_histogram.cpp
Normal file
175
modules/imgproc/test/ocl/test_histogram.cpp
Normal file
@ -0,0 +1,175 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Shengen Yan, yanshengen@gmail.com
|
||||
// Jiang Liyuan, lyuan001.good@163.com
|
||||
// Rock Li, Rock.Li@amd.com
|
||||
// Wu Zailong, bullet@yeah.net
|
||||
// Xu Pang, pangxu010@163.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "cvconfig.h"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
PARAM_TEST_CASE(CalcBackProject, MatDepth, int, bool)
|
||||
{
|
||||
int depth, N;
|
||||
bool useRoi;
|
||||
|
||||
std::vector<float> ranges;
|
||||
std::vector<int> channels;
|
||||
double scale;
|
||||
|
||||
std::vector<Mat> images;
|
||||
std::vector<Mat> images_roi;
|
||||
std::vector<UMat> uimages;
|
||||
std::vector<UMat> uimages_roi;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(hist)
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst)
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
depth = GET_PARAM(0);
|
||||
N = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
|
||||
ASSERT_GE(2, N);
|
||||
|
||||
images.resize(N);
|
||||
images_roi.resize(N);
|
||||
uimages.resize(N);
|
||||
uimages_roi.resize(N);
|
||||
}
|
||||
|
||||
virtual void random_roi()
|
||||
{
|
||||
Size roiSize = randomSize(1, MAX_VALUE);
|
||||
|
||||
int totalChannels = 0;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
int cn = randomInt(1, 5);
|
||||
randomSubMat(images[i], images_roi[i], roiSize, srcBorder, CV_MAKE_TYPE(depth, cn), 0, 125);
|
||||
|
||||
ranges.push_back(10);
|
||||
ranges.push_back(100);
|
||||
|
||||
channels.push_back(randomInt(0, cn) + totalChannels);
|
||||
totalChannels += cn;
|
||||
}
|
||||
|
||||
Mat tmpHist;
|
||||
{
|
||||
std::vector<int> hist_size(N);
|
||||
for (int i = 0 ; i < N; ++i)
|
||||
hist_size[i] = randomInt(10, 50);
|
||||
|
||||
cv::calcHist(images_roi, channels, noArray(), tmpHist, hist_size, ranges);
|
||||
ASSERT_EQ(CV_32FC1, tmpHist.type());
|
||||
}
|
||||
|
||||
Border histBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(hist, hist_roi, tmpHist.size(), histBorder, tmpHist.type(), 0, MAX_VALUE);
|
||||
tmpHist.copyTo(hist_roi);
|
||||
|
||||
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, roiSize, dstBorder, CV_MAKE_TYPE(depth, 1), 5, 16);
|
||||
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
images[i].copyTo(uimages[i]);
|
||||
|
||||
Size _wholeSize;
|
||||
Point ofs;
|
||||
images_roi[i].locateROI(_wholeSize, ofs);
|
||||
|
||||
uimages_roi[i] = uimages[i](Rect(ofs.x, ofs.y, images_roi[i].cols, images_roi[i].rows));
|
||||
}
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(hist)
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
|
||||
|
||||
scale = randomDouble(0.1, 1);
|
||||
}
|
||||
|
||||
void Near()
|
||||
{
|
||||
OCL_EXPECT_MATS_NEAR(dst, 0.0)
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////// CalcBackProject //////////////////////////////////////////////
|
||||
|
||||
OCL_TEST_P(CalcBackProject, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
random_roi();
|
||||
|
||||
OCL_OFF(cv::calcBackProject(images_roi, channels, hist_roi, dst_roi, ranges, scale));
|
||||
OCL_ON(cv::calcBackProject(uimages_roi, channels, uhist_roi, udst_roi, ranges, scale));
|
||||
|
||||
Near();
|
||||
}
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Imgproc, CalcBackProject, Combine(Values((MatDepth)CV_8U), Values(1, 2), Bool()));
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
Loading…
Reference in New Issue
Block a user