mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Updated logistic regression example
- Extracted common operations to separate functions. - Activated first parameters set. - Some output formatting. - Fixed loop break condition in mini_batch_gradient function.
This commit is contained in:
parent
3e26086f82
commit
4667e18831
@ -446,7 +446,7 @@ cv::Mat LogisticRegressionImpl::compute_mini_batch_gradient(const cv::Mat& _data
|
||||
lambda_l = 1;
|
||||
}
|
||||
|
||||
for(int i = 0;this->params.term_crit.maxCount;i++)
|
||||
for(int i = 0;i<this->params.term_crit.maxCount;i++)
|
||||
{
|
||||
if(j+size_b<=_data.rows)
|
||||
{
|
||||
|
@ -66,6 +66,21 @@ using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
static void showImage(const Mat &data, int columns, const String &name)
|
||||
{
|
||||
Mat bigImage;
|
||||
for(int i = 0; i < data.rows; ++i)
|
||||
{
|
||||
bigImage.push_back(data.row(i).reshape(0, columns));
|
||||
}
|
||||
imshow(name, bigImage.t());
|
||||
}
|
||||
|
||||
static float calculateAccuracyPercent(const Mat &original, const Mat &predicted)
|
||||
{
|
||||
return 100 * (float)cv::countNonZero(original == predicted) / predicted.rows;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
const String filename = "data01.xml";
|
||||
@ -78,7 +93,7 @@ int main()
|
||||
|
||||
Mat data, labels;
|
||||
{
|
||||
cout << "loading the dataset" << endl;
|
||||
cout << "loading the dataset...";
|
||||
FileStorage f;
|
||||
if(f.open(filename, FileStorage::READ))
|
||||
{
|
||||
@ -88,7 +103,7 @@ int main()
|
||||
}
|
||||
else
|
||||
{
|
||||
cerr << "File can not be opened: " << filename << endl;
|
||||
cerr << "file can not be opened: " << filename << endl;
|
||||
return 1;
|
||||
}
|
||||
data.convertTo(data, CV_32F);
|
||||
@ -114,27 +129,20 @@ int main()
|
||||
cout << "training/testing samples count: " << data_train.rows << "/" << data_test.rows << endl;
|
||||
|
||||
// display sample image
|
||||
// Mat bigImage;
|
||||
// for(int i = 0; i < data_train.rows; ++i)
|
||||
// {
|
||||
// bigImage.push_back(data_train.row(i).reshape(0, 28));
|
||||
// }
|
||||
// imshow("digits", bigImage.t());
|
||||
showImage(data_train, 28, "train data");
|
||||
showImage(data_test, 28, "test data");
|
||||
|
||||
Mat responses, result;
|
||||
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// params1 (above) with batch gradient performs better than mini batch
|
||||
// gradient below with same parameters
|
||||
// simple case with batch gradient
|
||||
LogisticRegression::Params params = LogisticRegression::Params(
|
||||
0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// simple case with mini-batch gradient
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
// however mini batch gradient descent parameters with slower learning
|
||||
// rate(below) can be used to get higher accuracy than with parameters
|
||||
// mentioned above
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
// mini-batch gradient with higher accuracy
|
||||
// LogisticRegression::Params params = LogisticRegression::Params(
|
||||
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
|
||||
|
||||
cout << "training...";
|
||||
Ptr<StatModel> lr1 = LogisticRegression::create(params);
|
||||
@ -142,6 +150,7 @@ int main()
|
||||
cout << "done!" << endl;
|
||||
|
||||
cout << "predicting...";
|
||||
Mat responses;
|
||||
lr1->predict(data_test, responses);
|
||||
cout << "done!" << endl;
|
||||
|
||||
@ -150,26 +159,27 @@ int main()
|
||||
labels_test.convertTo(labels_test, CV_32S);
|
||||
cout << labels_test.t() << endl;
|
||||
cout << responses.t() << endl;
|
||||
result = (labels_test == responses) / 255;
|
||||
cout << "accuracy: " << ((double)cv::sum(result)[0] / result.rows) * 100 << "%\n";
|
||||
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses) << "%" << endl;
|
||||
|
||||
// save the classfier
|
||||
cout << "saving the classifier" << endl;
|
||||
const String saveFilename = "NewLR_Trained.xml";
|
||||
cout << "saving the classifier to " << saveFilename << endl;
|
||||
lr1->save(saveFilename);
|
||||
|
||||
// load the classifier onto new object
|
||||
cout << "loading a new classifier" << endl;
|
||||
cout << "loading a new classifier from " << saveFilename << endl;
|
||||
Ptr<LogisticRegression> lr2 = StatModel::load<LogisticRegression>(saveFilename);
|
||||
|
||||
// predict using loaded classifier
|
||||
cout << "predicting the dataset using the loaded classfier" << endl;
|
||||
cout << "predicting the dataset using the loaded classfier...";
|
||||
Mat responses2;
|
||||
lr2->predict(data_test, responses2);
|
||||
cout << "done!" << endl;
|
||||
|
||||
// calculate accuracy
|
||||
cout << "accuracy using loaded classifier: "
|
||||
<< 100 * (float)cv::countNonZero(labels_test == responses2) / responses2.rows << "%"
|
||||
<< endl;
|
||||
cout << labels_test.t() << endl;
|
||||
cout << responses2.t() << endl;
|
||||
cout << "accuracy: " << calculateAccuracyPercent(labels_test, responses2) << "%" << endl;
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
|
Loading…
Reference in New Issue
Block a user