Merge pull request #12243 from dkurt:dnn_tf_mask_rcnn

* Support Mask-RCNN from TensorFlow

* Fix a sample
This commit is contained in:
Dmitry Kurtaev 2018-08-24 14:47:32 +03:00 committed by Alexander Alekhin
parent 4f360f8b1a
commit 472b71ecef
9 changed files with 600 additions and 153 deletions

View File

@ -99,6 +99,13 @@ public:
}
}
}
if (boxes.rows < out.size[0])
{
// left = top = right = bottom = 0
std::vector<cv::Range> dstRanges(4, Range::all());
dstRanges[0] = Range(boxes.rows, out.size[0]);
out(dstRanges).setTo(inp.ptr<float>(0, 0, 0)[0]);
}
}
private:

View File

@ -115,6 +115,7 @@ public:
// It's true whenever predicted bounding boxes and proposals are normalized to [0, 1].
bool _bboxesNormalized;
bool _clip;
bool _groupByClasses;
enum { _numAxes = 4 };
static const std::string _layerName;
@ -183,6 +184,7 @@ public:
_locPredTransposed = getParameter<bool>(params, "loc_pred_transposed", 0, false, false);
_bboxesNormalized = getParameter<bool>(params, "normalized_bbox", 0, false, true);
_clip = getParameter<bool>(params, "clip", 0, false, false);
_groupByClasses = getParameter<bool>(params, "group_by_classes", 0, false, true);
getCodeType(params);
@ -381,7 +383,7 @@ public:
{
count += outputDetections_(i, &outputsData[count * 7],
allDecodedBBoxes[i], allConfidenceScores[i],
allIndices[i]);
allIndices[i], _groupByClasses);
}
CV_Assert(count == numKept);
}
@ -497,7 +499,7 @@ public:
{
count += outputDetections_(i, &outputsData[count * 7],
allDecodedBBoxes[i], allConfidenceScores[i],
allIndices[i]);
allIndices[i], _groupByClasses);
}
CV_Assert(count == numKept);
}
@ -505,9 +507,36 @@ public:
size_t outputDetections_(
const int i, float* outputsData,
const LabelBBox& decodeBBoxes, Mat& confidenceScores,
const std::map<int, std::vector<int> >& indicesMap
const std::map<int, std::vector<int> >& indicesMap,
bool groupByClasses
)
{
std::vector<int> dstIndices;
std::vector<std::pair<float, int> > allScores;
for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
{
int label = it->first;
if (confidenceScores.rows <= label)
CV_Error_(cv::Error::StsError, ("Could not find confidence predictions for label %d", label));
const std::vector<float>& scores = confidenceScores.row(label);
const std::vector<int>& indices = it->second;
const int numAllScores = allScores.size();
allScores.reserve(numAllScores + indices.size());
for (size_t j = 0; j < indices.size(); ++j)
{
allScores.push_back(std::make_pair(scores[indices[j]], numAllScores + j));
}
}
if (!groupByClasses)
std::sort(allScores.begin(), allScores.end(), util::SortScorePairDescend<int>);
dstIndices.resize(allScores.size());
for (size_t j = 0; j < dstIndices.size(); ++j)
{
dstIndices[allScores[j].second] = j;
}
size_t count = 0;
for (std::map<int, std::vector<int> >::const_iterator it = indicesMap.begin(); it != indicesMap.end(); ++it)
{
@ -524,14 +553,15 @@ public:
for (size_t j = 0; j < indices.size(); ++j, ++count)
{
int idx = indices[j];
int dstIdx = dstIndices[count];
const util::NormalizedBBox& decode_bbox = label_bboxes->second[idx];
outputsData[count * 7] = i;
outputsData[count * 7 + 1] = label;
outputsData[count * 7 + 2] = scores[idx];
outputsData[count * 7 + 3] = decode_bbox.xmin;
outputsData[count * 7 + 4] = decode_bbox.ymin;
outputsData[count * 7 + 5] = decode_bbox.xmax;
outputsData[count * 7 + 6] = decode_bbox.ymax;
outputsData[dstIdx * 7] = i;
outputsData[dstIdx * 7 + 1] = label;
outputsData[dstIdx * 7 + 2] = scores[idx];
outputsData[dstIdx * 7 + 3] = decode_bbox.xmin;
outputsData[dstIdx * 7 + 4] = decode_bbox.ymin;
outputsData[dstIdx * 7 + 5] = decode_bbox.xmax;
outputsData[dstIdx * 7 + 6] = decode_bbox.ymax;
}
}
return count;

View File

@ -33,9 +33,7 @@ public:
interpolation = params.get<String>("interpolation");
CV_Assert(interpolation == "nearest" || interpolation == "bilinear");
bool alignCorners = params.get<bool>("align_corners", false);
if (alignCorners)
CV_Error(Error::StsNotImplemented, "Resize with align_corners=true is not implemented");
alignCorners = params.get<bool>("align_corners", false);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
@ -66,8 +64,15 @@ public:
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
}
scaleHeight = static_cast<float>(inputs[0]->size[2]) / outHeight;
scaleWidth = static_cast<float>(inputs[0]->size[3]) / outWidth;
if (alignCorners && outHeight > 1)
scaleHeight = static_cast<float>(inputs[0]->size[2] - 1) / (outHeight - 1);
else
scaleHeight = static_cast<float>(inputs[0]->size[2]) / outHeight;
if (alignCorners && outWidth > 1)
scaleWidth = static_cast<float>(inputs[0]->size[3] - 1) / (outWidth - 1);
else
scaleWidth = static_cast<float>(inputs[0]->size[3]) / outWidth;
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
@ -166,6 +171,7 @@ protected:
int outWidth, outHeight, zoomFactorWidth, zoomFactorHeight;
String interpolation;
float scaleWidth, scaleHeight;
bool alignCorners;
};

View File

@ -537,4 +537,56 @@ TEST(Test_TensorFlow, two_inputs)
normAssert(out, firstInput + secondInput);
}
TEST(Test_TensorFlow, Mask_RCNN)
{
std::string proto = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pbtxt", false);
std::string model = findDataFile("dnn/mask_rcnn_inception_v2_coco_2018_01_28.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/street.png", false));
Mat refDetections = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_out.npy"));
Mat refMasks = blobFromNPY(path("mask_rcnn_inception_v2_coco_2018_01_28.detection_masks.npy"));
Mat blob = blobFromImage(img, 1.0f, Size(800, 800), Scalar(), true, false);
net.setPreferableBackend(DNN_BACKEND_OPENCV);
net.setInput(blob);
// Mask-RCNN predicts bounding boxes and segmentation masks.
std::vector<String> outNames(2);
outNames[0] = "detection_out_final";
outNames[1] = "detection_masks";
std::vector<Mat> outs;
net.forward(outs, outNames);
Mat outDetections = outs[0];
Mat outMasks = outs[1];
normAssertDetections(refDetections, outDetections, "", /*threshold for zero confidence*/1e-5);
// Output size of masks is NxCxHxW where
// N - number of detected boxes
// C - number of classes (excluding background)
// HxW - segmentation shape
const int numDetections = outDetections.size[2];
int masksSize[] = {1, numDetections, outMasks.size[2], outMasks.size[3]};
Mat masks(4, &masksSize[0], CV_32F);
std::vector<cv::Range> srcRanges(4, cv::Range::all());
std::vector<cv::Range> dstRanges(4, cv::Range::all());
outDetections = outDetections.reshape(1, outDetections.total() / 7);
for (int i = 0; i < numDetections; ++i)
{
// Get a class id for this bounding box and copy mask only for that class.
int classId = static_cast<int>(outDetections.at<float>(i, 1));
srcRanges[0] = dstRanges[1] = cv::Range(i, i + 1);
srcRanges[1] = cv::Range(classId, classId + 1);
outMasks(srcRanges).copyTo(masks(dstRanges));
}
cv::Range topRefMasks[] = {Range::all(), Range(0, numDetections), Range::all(), Range::all()};
normAssert(masks, refMasks(&topRefMasks[0]));
}
}

143
samples/dnn/mask_rcnn.py Normal file
View File

@ -0,0 +1,143 @@
import cv2 as cv
import argparse
import numpy as np
parser = argparse.ArgumentParser(description=
'Use this script to run Mask-RCNN object detection and semantic '
'segmentation network from TensorFlow Object Detection API.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--model', required=True, help='Path to a .pb file with weights.')
parser.add_argument('--config', required=True, help='Path to a .pxtxt file contains network configuration.')
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
'An every color is represented with three values from 0 to 255 in BGR channels order.')
parser.add_argument('--width', type=int, default=800,
help='Preprocess input image by resizing to a specific width.')
parser.add_argument('--height', type=int, default=800,
help='Preprocess input image by resizing to a specific height.')
parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold')
args = parser.parse_args()
np.random.seed(324)
# Load names of classes
classes = None
if args.classes:
with open(args.classes, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Load colors
colors = None
if args.colors:
with open(args.colors, 'rt') as f:
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
legend = None
def showLegend(classes):
global legend
if not classes is None and legend is None:
blockHeight = 30
assert(len(classes) == len(colors))
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
for i in range(len(classes)):
block = legend[i * blockHeight:(i + 1) * blockHeight]
block[:,:] = colors[i]
cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
cv.namedWindow('Legend', cv.WINDOW_NORMAL)
cv.imshow('Legend', legend)
classes = None
def drawBox(frame, classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv.rectangle(frame, (left, top), (right, bottom), (0, 255, 0))
label = '%.2f' % conf
# Print a label of class.
if classes:
assert(classId < len(classes))
label = '%s: %s' % (classes[classId], label)
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
cv.rectangle(frame, (left, top - labelSize[1]), (left + labelSize[0], top + baseLine), (255, 255, 255), cv.FILLED)
cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
# Load a network
net = cv.dnn.readNet(args.model, args.config)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
winName = 'Mask-RCNN in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
legend = None
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
frameH = frame.shape[0]
frameW = frame.shape[1]
# Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, size=(args.width, args.height), swapRB=True, crop=False)
# Run a model
net.setInput(blob)
boxes, masks = net.forward(['detection_out_final', 'detection_masks'])
numClasses = masks.shape[1]
numDetections = boxes.shape[2]
# Draw segmentation
if not colors:
# Generate colors
colors = [np.array([0, 0, 0], np.uint8)]
for i in range(1, numClasses + 1):
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
del colors[0]
boxesToDraw = []
for i in range(numDetections):
box = boxes[0, 0, i]
mask = masks[i]
score = box[2]
if score > args.thr:
classId = int(box[1])
left = int(frameW * box[3])
top = int(frameH * box[4])
right = int(frameW * box[5])
bottom = int(frameH * box[6])
left = max(0, min(left, frameW - 1))
top = max(0, min(top, frameH - 1))
right = max(0, min(right, frameW - 1))
bottom = max(0, min(bottom, frameH - 1))
boxesToDraw.append([frame, classId, score, left, top, right, bottom])
classMask = mask[classId]
classMask = cv.resize(classMask, (right - left + 1, bottom - top + 1))
mask = (classMask > 0.5)
roi = frame[top:bottom+1, left:right+1][mask]
frame[top:bottom+1, left:right+1][mask] = (0.7 * colors[classId] + 0.3 * roi).astype(np.uint8)
for box in boxesToDraw:
drawBox(*box)
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
showLegend(classes)
cv.imshow(winName, frame)

View File

@ -23,3 +23,98 @@ def addConstNode(name, values, graph_def):
node.op = 'Const'
text_format.Merge(tensorMsg(values), node.attr["value"])
graph_def.node.extend([node])
def addSlice(inp, out, begins, sizes, graph_def):
beginsNode = NodeDef()
beginsNode.name = out + '/begins'
beginsNode.op = 'Const'
text_format.Merge(tensorMsg(begins), beginsNode.attr["value"])
graph_def.node.extend([beginsNode])
sizesNode = NodeDef()
sizesNode.name = out + '/sizes'
sizesNode.op = 'Const'
text_format.Merge(tensorMsg(sizes), sizesNode.attr["value"])
graph_def.node.extend([sizesNode])
sliced = NodeDef()
sliced.name = out
sliced.op = 'Slice'
sliced.input.append(inp)
sliced.input.append(beginsNode.name)
sliced.input.append(sizesNode.name)
graph_def.node.extend([sliced])
def addReshape(inp, out, shape, graph_def):
shapeNode = NodeDef()
shapeNode.name = out + '/shape'
shapeNode.op = 'Const'
text_format.Merge(tensorMsg(shape), shapeNode.attr["value"])
graph_def.node.extend([shapeNode])
reshape = NodeDef()
reshape.name = out
reshape.op = 'Reshape'
reshape.input.append(inp)
reshape.input.append(shapeNode.name)
graph_def.node.extend([reshape])
def addSoftMax(inp, out, graph_def):
softmax = NodeDef()
softmax.name = out
softmax.op = 'Softmax'
text_format.Merge('i: -1', softmax.attr['axis'])
softmax.input.append(inp)
graph_def.node.extend([softmax])
def addFlatten(inp, out, graph_def):
flatten = NodeDef()
flatten.name = out
flatten.op = 'Flatten'
flatten.input.append(inp)
graph_def.node.extend([flatten])
# Removes Identity nodes
def removeIdentity(graph_def):
identities = {}
for node in graph_def.node:
if node.op == 'Identity':
identities[node.name] = node.input[0]
graph_def.node.remove(node)
for node in graph_def.node:
for i in range(len(node.input)):
if node.input[i] in identities:
node.input[i] = identities[node.input[i]]
def removeUnusedNodesAndAttrs(to_remove, graph_def):
unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
'Index', 'Tperm', 'is_training', 'Tpaddings']
removedNodes = []
for i in reversed(range(len(graph_def.node))):
op = graph_def.node[i].op
name = graph_def.node[i].name
if op == 'Const' or to_remove(name, op):
if op != 'Const':
removedNodes.append(name)
del graph_def.node[i]
else:
for attr in unusedAttrs:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Remove references to removed nodes except Const nodes.
for node in graph_def.node:
for i in reversed(range(len(node.input))):
if node.input[i] in removedNodes:
del node.input[i]

View File

@ -6,7 +6,7 @@ from tensorflow.core.framework.node_def_pb2 import NodeDef
from tensorflow.tools.graph_transforms import TransformGraph
from google.protobuf import text_format
from tf_text_graph_common import tensorMsg, addConstNode
from tf_text_graph_common import *
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
'SSD model from TensorFlow Object Detection API. '
@ -37,50 +37,17 @@ scopesToIgnore = ('FirstStageFeatureExtractor/Assert',
'FirstStageFeatureExtractor/GreaterEqual',
'FirstStageFeatureExtractor/LogicalAnd')
unusedAttrs = ['T', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
'Index', 'Tperm', 'is_training', 'Tpaddings']
# Read the graph.
with tf.gfile.FastGFile(args.input, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# Removes Identity nodes
def removeIdentity():
identities = {}
for node in graph_def.node:
if node.op == 'Identity':
identities[node.name] = node.input[0]
graph_def.node.remove(node)
removeIdentity(graph_def)
for node in graph_def.node:
for i in range(len(node.input)):
if node.input[i] in identities:
node.input[i] = identities[node.input[i]]
def to_remove(name, op):
return name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep)
removeIdentity()
removedNodes = []
for i in reversed(range(len(graph_def.node))):
op = graph_def.node[i].op
name = graph_def.node[i].name
if op == 'Const' or name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep):
if op != 'Const':
removedNodes.append(name)
del graph_def.node[i]
else:
for attr in unusedAttrs:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Remove references to removed nodes except Const nodes.
for node in graph_def.node:
for i in reversed(range(len(node.input))):
if node.input[i] in removedNodes:
del node.input[i]
removeUnusedNodesAndAttrs(to_remove, graph_def)
# Connect input node to the first layer
@ -95,68 +62,18 @@ while True:
if node.op == 'CropAndResize':
break
def addSlice(inp, out, begins, sizes):
beginsNode = NodeDef()
beginsNode.name = out + '/begins'
beginsNode.op = 'Const'
text_format.Merge(tensorMsg(begins), beginsNode.attr["value"])
graph_def.node.extend([beginsNode])
sizesNode = NodeDef()
sizesNode.name = out + '/sizes'
sizesNode.op = 'Const'
text_format.Merge(tensorMsg(sizes), sizesNode.attr["value"])
graph_def.node.extend([sizesNode])
sliced = NodeDef()
sliced.name = out
sliced.op = 'Slice'
sliced.input.append(inp)
sliced.input.append(beginsNode.name)
sliced.input.append(sizesNode.name)
graph_def.node.extend([sliced])
def addReshape(inp, out, shape):
shapeNode = NodeDef()
shapeNode.name = out + '/shape'
shapeNode.op = 'Const'
text_format.Merge(tensorMsg(shape), shapeNode.attr["value"])
graph_def.node.extend([shapeNode])
reshape = NodeDef()
reshape.name = out
reshape.op = 'Reshape'
reshape.input.append(inp)
reshape.input.append(shapeNode.name)
graph_def.node.extend([reshape])
def addSoftMax(inp, out):
softmax = NodeDef()
softmax.name = out
softmax.op = 'Softmax'
text_format.Merge('i: -1', softmax.attr['axis'])
softmax.input.append(inp)
graph_def.node.extend([softmax])
def addFlatten(inp, out):
flatten = NodeDef()
flatten.name = out
flatten.op = 'Flatten'
flatten.input.append(inp)
graph_def.node.extend([flatten])
addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd',
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2])
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2], graph_def)
addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1',
'FirstStageBoxPredictor/ClassPredictor/softmax') # Compare with Reshape_4
'FirstStageBoxPredictor/ClassPredictor/softmax', graph_def) # Compare with Reshape_4
addFlatten('FirstStageBoxPredictor/ClassPredictor/softmax',
'FirstStageBoxPredictor/ClassPredictor/softmax/flatten')
'FirstStageBoxPredictor/ClassPredictor/softmax/flatten', graph_def)
# Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
addFlatten('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd',
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten')
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten', graph_def)
proposals = NodeDef()
proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized)
@ -218,14 +135,14 @@ graph_def.node.extend([clipByValueNode])
for node in reversed(topNodes):
graph_def.node.extend([node])
addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax')
addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax', graph_def)
addSlice('SecondStageBoxPredictor/Reshape_1/softmax',
'SecondStageBoxPredictor/Reshape_1/slice',
[0, 0, 1], [-1, -1, -1])
[0, 0, 1], [-1, -1, -1], graph_def)
addReshape('SecondStageBoxPredictor/Reshape_1/slice',
'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1])
'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1], graph_def)
# Replace Flatten subgraph onto a single node.
for i in reversed(range(len(graph_def.node))):
@ -255,7 +172,7 @@ for node in graph_def.node:
################################################################################
### Postprocessing
################################################################################
addSlice('detection_out/clip_by_value', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4])
addSlice('detection_out/clip_by_value', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4], graph_def)
variance = NodeDef()
variance.name = 'proposals/variance'
@ -271,8 +188,8 @@ varianceEncoder.input.append(variance.name)
text_format.Merge('i: 2', varianceEncoder.attr["axis"])
graph_def.node.extend([varianceEncoder])
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1])
addFlatten('variance_encoded', 'variance_encoded/flatten')
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1], graph_def)
addFlatten('variance_encoded', 'variance_encoded/flatten', graph_def)
detectionOut = NodeDef()
detectionOut.name = 'detection_out_final'

View File

@ -0,0 +1,230 @@
import argparse
import numpy as np
import tensorflow as tf
from tensorflow.core.framework.node_def_pb2 import NodeDef
from tensorflow.tools.graph_transforms import TransformGraph
from google.protobuf import text_format
from tf_text_graph_common import *
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
'Mask-RCNN model from TensorFlow Object Detection API. '
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
parser.add_argument('--output', required=True, help='Path to output text graph.')
parser.add_argument('--num_classes', default=90, type=int, help='Number of trained classes.')
parser.add_argument('--scales', default=[0.25, 0.5, 1.0, 2.0], type=float, nargs='+',
help='Hyper-parameter of grid_anchor_generator from a config file.')
parser.add_argument('--aspect_ratios', default=[0.5, 1.0, 2.0], type=float, nargs='+',
help='Hyper-parameter of grid_anchor_generator from a config file.')
parser.add_argument('--features_stride', default=16, type=float, nargs='+',
help='Hyper-parameter from a config file.')
args = parser.parse_args()
scopesToKeep = ('FirstStageFeatureExtractor', 'Conv',
'FirstStageBoxPredictor/BoxEncodingPredictor',
'FirstStageBoxPredictor/ClassPredictor',
'CropAndResize',
'MaxPool2D',
'SecondStageFeatureExtractor',
'SecondStageBoxPredictor',
'Preprocessor/sub',
'Preprocessor/mul',
'image_tensor')
scopesToIgnore = ('FirstStageFeatureExtractor/Assert',
'FirstStageFeatureExtractor/Shape',
'FirstStageFeatureExtractor/strided_slice',
'FirstStageFeatureExtractor/GreaterEqual',
'FirstStageFeatureExtractor/LogicalAnd')
# Read the graph.
with tf.gfile.FastGFile(args.input, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
removeIdentity(graph_def)
def to_remove(name, op):
return name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep)
removeUnusedNodesAndAttrs(to_remove, graph_def)
# Connect input node to the first layer
assert(graph_def.node[0].op == 'Placeholder')
graph_def.node[1].input.insert(0, graph_def.node[0].name)
# Temporarily remove top nodes.
topNodes = []
numCropAndResize = 0
while True:
node = graph_def.node.pop()
topNodes.append(node)
if node.op == 'CropAndResize':
numCropAndResize += 1
if numCropAndResize == 2:
break
addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd',
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2], graph_def)
addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1',
'FirstStageBoxPredictor/ClassPredictor/softmax', graph_def) # Compare with Reshape_4
addFlatten('FirstStageBoxPredictor/ClassPredictor/softmax',
'FirstStageBoxPredictor/ClassPredictor/softmax/flatten', graph_def)
# Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
addFlatten('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd',
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten', graph_def)
proposals = NodeDef()
proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized)
proposals.op = 'PriorBox'
proposals.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd')
proposals.input.append(graph_def.node[0].name) # image_tensor
text_format.Merge('b: false', proposals.attr["flip"])
text_format.Merge('b: true', proposals.attr["clip"])
text_format.Merge('f: %f' % args.features_stride, proposals.attr["step"])
text_format.Merge('f: 0.0', proposals.attr["offset"])
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), proposals.attr["variance"])
widths = []
heights = []
for a in args.aspect_ratios:
for s in args.scales:
ar = np.sqrt(a)
heights.append((args.features_stride**2) * s / ar)
widths.append((args.features_stride**2) * s * ar)
text_format.Merge(tensorMsg(widths), proposals.attr["width"])
text_format.Merge(tensorMsg(heights), proposals.attr["height"])
graph_def.node.extend([proposals])
# Compare with Reshape_5
detectionOut = NodeDef()
detectionOut.name = 'detection_out'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/flatten')
detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax/flatten')
detectionOut.input.append('proposals')
text_format.Merge('i: 2', detectionOut.attr['num_classes'])
text_format.Merge('b: true', detectionOut.attr['share_location'])
text_format.Merge('i: 0', detectionOut.attr['background_label_id'])
text_format.Merge('f: 0.7', detectionOut.attr['nms_threshold'])
text_format.Merge('i: 6000', detectionOut.attr['top_k'])
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
text_format.Merge('i: 100', detectionOut.attr['keep_top_k'])
text_format.Merge('b: true', detectionOut.attr['clip'])
graph_def.node.extend([detectionOut])
# Save as text.
for node in reversed(topNodes):
if node.op != 'CropAndResize':
graph_def.node.extend([node])
topNodes.pop()
else:
if numCropAndResize == 1:
break
else:
graph_def.node.extend([node])
topNodes.pop()
numCropAndResize -= 1
addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax', graph_def)
addSlice('SecondStageBoxPredictor/Reshape_1/softmax',
'SecondStageBoxPredictor/Reshape_1/slice',
[0, 0, 1], [-1, -1, -1], graph_def)
addReshape('SecondStageBoxPredictor/Reshape_1/slice',
'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1], graph_def)
# Replace Flatten subgraph onto a single node.
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op == 'CropAndResize':
graph_def.node[i].input.insert(1, 'detection_out')
if graph_def.node[i].name == 'SecondStageBoxPredictor/Reshape':
addConstNode('SecondStageBoxPredictor/Reshape/shape2', [1, -1, 4], graph_def)
graph_def.node[i].input.pop()
graph_def.node[i].input.append('SecondStageBoxPredictor/Reshape/shape2')
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape',
'SecondStageBoxPredictor/Flatten/flatten/strided_slice',
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape']:
del graph_def.node[i]
for node in graph_def.node:
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape':
node.op = 'Flatten'
node.input.pop()
if node.name in ['FirstStageBoxPredictor/BoxEncodingPredictor/Conv2D',
'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']:
text_format.Merge('b: true', node.attr["loc_pred_transposed"])
################################################################################
### Postprocessing
################################################################################
addSlice('detection_out', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4], graph_def)
variance = NodeDef()
variance.name = 'proposals/variance'
variance.op = 'Const'
text_format.Merge(tensorMsg([0.1, 0.1, 0.2, 0.2]), variance.attr["value"])
graph_def.node.extend([variance])
varianceEncoder = NodeDef()
varianceEncoder.name = 'variance_encoded'
varianceEncoder.op = 'Mul'
varianceEncoder.input.append('SecondStageBoxPredictor/Reshape')
varianceEncoder.input.append(variance.name)
text_format.Merge('i: 2', varianceEncoder.attr["axis"])
graph_def.node.extend([varianceEncoder])
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1], graph_def)
addFlatten('variance_encoded', 'variance_encoded/flatten', graph_def)
detectionOut = NodeDef()
detectionOut.name = 'detection_out_final'
detectionOut.op = 'DetectionOutput'
detectionOut.input.append('variance_encoded/flatten')
detectionOut.input.append('SecondStageBoxPredictor/Reshape_1/Reshape')
detectionOut.input.append('detection_out/slice/reshape')
text_format.Merge('i: %d' % args.num_classes, detectionOut.attr['num_classes'])
text_format.Merge('b: false', detectionOut.attr['share_location'])
text_format.Merge('i: %d' % (args.num_classes + 1), detectionOut.attr['background_label_id'])
text_format.Merge('f: 0.6', detectionOut.attr['nms_threshold'])
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
text_format.Merge('i: 100', detectionOut.attr['keep_top_k'])
text_format.Merge('b: true', detectionOut.attr['clip'])
text_format.Merge('b: true', detectionOut.attr['variance_encoded_in_target'])
text_format.Merge('f: 0.3', detectionOut.attr['confidence_threshold'])
text_format.Merge('b: false', detectionOut.attr['group_by_classes'])
graph_def.node.extend([detectionOut])
for node in reversed(topNodes):
graph_def.node.extend([node])
for i in reversed(range(len(graph_def.node))):
if graph_def.node[i].op == 'CropAndResize':
graph_def.node[i].input.insert(1, 'detection_out_final')
break
graph_def.node[-1].name = 'detection_masks'
graph_def.node[-1].op = 'Sigmoid'
graph_def.node[-1].input.pop()
tf.train.write_graph(graph_def, "", args.output, as_text=True)

View File

@ -15,7 +15,7 @@ from math import sqrt
from tensorflow.core.framework.node_def_pb2 import NodeDef
from tensorflow.tools.graph_transforms import TransformGraph
from google.protobuf import text_format
from tf_text_graph_common import tensorMsg, addConstNode
from tf_text_graph_common import *
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
'SSD model from TensorFlow Object Detection API. '
@ -41,10 +41,6 @@ args = parser.parse_args()
keepOps = ['Conv2D', 'BiasAdd', 'Add', 'Relu6', 'Placeholder', 'FusedBatchNorm',
'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity']
# Nodes attributes that could be removed because they are not used during import.
unusedAttrs = ['T', 'data_format', 'Tshape', 'N', 'Tidx', 'Tdim', 'use_cudnn_on_gpu',
'Index', 'Tperm', 'is_training', 'Tpaddings']
# Node with which prefixes should be removed
prefixesToRemove = ('MultipleGridAnchorGenerator/', 'Postprocessor/', 'Preprocessor/')
@ -66,7 +62,6 @@ def getUnconnectedNodes():
unconnected.remove(inp)
return unconnected
removedNodes = []
# Detect unfused batch normalization nodes and fuse them.
def fuse_batch_normalization():
@ -118,41 +113,13 @@ def fuse_batch_normalization():
fuse_batch_normalization()
# Removes Identity nodes
def removeIdentity():
identities = {}
for node in graph_def.node:
if node.op == 'Identity':
identities[node.name] = node.input[0]
graph_def.node.remove(node)
removeIdentity(graph_def)
for node in graph_def.node:
for i in range(len(node.input)):
if node.input[i] in identities:
node.input[i] = identities[node.input[i]]
def to_remove(name, op):
return (not op in keepOps) or name.startswith(prefixesToRemove)
removeIdentity()
removeUnusedNodesAndAttrs(to_remove, graph_def)
# Remove extra nodes and attributes.
for i in reversed(range(len(graph_def.node))):
op = graph_def.node[i].op
name = graph_def.node[i].name
if (not op in keepOps) or name.startswith(prefixesToRemove):
if op != 'Const':
removedNodes.append(name)
del graph_def.node[i]
else:
for attr in unusedAttrs:
if attr in graph_def.node[i].attr:
del graph_def.node[i].attr[attr]
# Remove references to removed nodes except Const nodes.
for node in graph_def.node:
for i in reversed(range(len(node.input))):
if node.input[i] in removedNodes:
del node.input[i]
# Connect input node to the first layer
assert(graph_def.node[0].op == 'Placeholder')
@ -175,8 +142,8 @@ def addConcatNode(name, inputs, axisNodeName):
concat.input.append(axisNodeName)
graph_def.node.extend([concat])
addConstNode('concat/axis_flatten', [-1])
addConstNode('PriorBox/concat/axis', [-2])
addConstNode('concat/axis_flatten', [-1], graph_def)
addConstNode('PriorBox/concat/axis', [-2], graph_def)
for label in ['ClassPredictor', 'BoxEncodingPredictor' if args.box_predictor is 'convolutional' else 'BoxPredictor']:
concatInputs = []