mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
Merge pull request #16097 from YashasSamaga:cuda4dnn-optimize-resize-bilinear
cuda4dnn(resize): process multiple channels each iteration * resize bilinear: process multiple chans. per iter. * remove unused headers * correct dispatch logic * resize_nn: process multiple chans. per iter.
This commit is contained in:
parent
544ceedcac
commit
476a02739e
@ -32,7 +32,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, std::size_t N>
|
||||
template <class T, std::size_t N> static
|
||||
void launch_vectorized_fill(const Stream& stream, Span<T> output, T value) {
|
||||
CV_Assert(is_fully_aligned<T>(output, N));
|
||||
|
||||
|
@ -22,7 +22,7 @@ using namespace cv::dnn::cuda4dnn::csl::device;
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
|
||||
namespace raw {
|
||||
template <class T>
|
||||
template <class T, std::size_t CHANNELS_PER_ITER>
|
||||
__global__ void resize_nn(
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width)
|
||||
@ -30,29 +30,55 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
auto in_image_size = in_height * in_width;
|
||||
auto out_image_size = out_height * out_width;
|
||||
|
||||
/* o2i = output to input */
|
||||
auto o2i_fx = static_cast<float>(in_width) / out_width;
|
||||
auto o2i_fy = static_cast<float>(in_height) / out_height;
|
||||
|
||||
/* think of the output and input as a collection of 2d images with the last axis
|
||||
* representing the width and the last but one axis representing the height
|
||||
*
|
||||
* the remaining axis together form a collection of these images
|
||||
* the remaining axis together form a collection of these images/channels
|
||||
*/
|
||||
for (auto idx : grid_stride_range(output.size())) {
|
||||
const index_type n = idx / out_image_size;
|
||||
const index_type x = (idx % out_image_size) % out_width;
|
||||
const index_type y = (idx % out_image_size) / out_width;
|
||||
auto num_effective_channels = output.size() / out_image_size;
|
||||
|
||||
/* we process multiple channels every iteration to reuse the identical computation
|
||||
* involved with the spatial dimensions
|
||||
*
|
||||
* if we are processing `CHANNELS_PER_ITER` channels per iteration, we will need
|
||||
* (num_effective_channels / CHANNELS_PER_ITER) iterations per (x, y) location
|
||||
*/
|
||||
auto num_channel_iters_per_xy = (num_effective_channels / CHANNELS_PER_ITER);
|
||||
|
||||
/* we need `num_channel_iters_per_xy` iterations per (x, y) and there are `out_image_size`
|
||||
* combinations of (x, y); hence, we'll need `num_channel_iters_per_xy * out_image_size`
|
||||
* iterations in total to finish the resize operation
|
||||
*/
|
||||
auto iters_required = num_channel_iters_per_xy * out_image_size;
|
||||
for (auto iter : grid_stride_range(iters_required)) {
|
||||
const index_type c_start = (iter / out_image_size) * CHANNELS_PER_ITER;
|
||||
|
||||
/* note here that consecutive `iter` values will often have consecutive `x` values
|
||||
* => stores into output will be coalesced across threads
|
||||
*/
|
||||
const index_type y = (iter % out_image_size) / out_width;
|
||||
const index_type x = iter % out_width;
|
||||
|
||||
/* o2i = output to input */
|
||||
auto o2i_fy = static_cast<float>(in_height) / out_height;
|
||||
auto o2i_fx = static_cast<float>(in_width) / out_width;
|
||||
|
||||
auto in_x = static_cast<index_type>(x * o2i_fx);
|
||||
auto in_y = static_cast<index_type>(y * o2i_fy);
|
||||
auto in_x = static_cast<index_type>(x * o2i_fx);
|
||||
|
||||
index_type in_idx = n * in_image_size + in_y * in_width + in_x;
|
||||
output[idx] = input[in_idx];
|
||||
index_type in_idx = c_start * in_image_size + in_y * in_width + in_x;
|
||||
index_type out_idx = c_start * out_image_size + y * out_width + x;
|
||||
|
||||
for (int i = 0; i < CHANNELS_PER_ITER; i++) {
|
||||
output[out_idx] = input[in_idx];
|
||||
|
||||
in_idx += in_image_size;
|
||||
out_idx += out_image_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
template <class T, std::size_t CHANNELS_PER_ITER>
|
||||
__global__ void resize_bilinear(
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
@ -64,12 +90,33 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
/* think of the output and input as a collection of 2d images with the last axis
|
||||
* representing the width and the last but one axis representing the height
|
||||
*
|
||||
* the remaining axis together form a collection of these images
|
||||
* the remaining axis together form a collection of these images/channels
|
||||
*/
|
||||
for (auto idx : grid_stride_range(output.size())) {
|
||||
const index_type n = idx / out_image_size;
|
||||
const index_type x = (idx % out_image_size) % out_width;
|
||||
const index_type y = (idx % out_image_size) / out_width;
|
||||
auto num_effective_channels = output.size() / out_image_size;
|
||||
|
||||
/* we process multiple channels every iteration to reuse the identical computation
|
||||
* involved with the spatial dimensions
|
||||
*
|
||||
* if we are processing `CHANNELS_PER_ITER` channels per iteration, we will need
|
||||
* (num_effective_channels / CHANNELS_PER_ITER) iterations per (x, y) location
|
||||
*/
|
||||
auto num_channel_iters_per_xy = (num_effective_channels / CHANNELS_PER_ITER);
|
||||
|
||||
/* we need `num_channel_iters_per_xy` iterations per (x, y) and there are `out_image_size`
|
||||
* combinations of (x, y); hence, we'll need `num_channel_iters_per_xy * out_image_size`
|
||||
* iterations in total to finish the resize operation
|
||||
*/
|
||||
auto iters_required = num_channel_iters_per_xy * out_image_size;
|
||||
|
||||
for (auto iter : grid_stride_range(iters_required)) {
|
||||
const index_type c_start = (iter / out_image_size) * CHANNELS_PER_ITER;
|
||||
const index_type c_end = c_start + CHANNELS_PER_ITER;
|
||||
|
||||
/* note here that consecutive `iter` values will often have consecutive `x` values
|
||||
* => stores into output will be coalesced across threads
|
||||
*/
|
||||
const index_type y = (iter % out_image_size) / out_width;
|
||||
const index_type x = iter % out_width;
|
||||
|
||||
auto in_x = x * o2i_fx;
|
||||
auto in_y = y * o2i_fy;
|
||||
@ -81,50 +128,103 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
auto in_x1 = min<index_type>(in_x0 + 1, in_width - 1);
|
||||
auto in_y1 = min<index_type>(in_y0 + 1, in_height - 1);
|
||||
|
||||
const index_type in_offset_r0 = n * in_image_size + in_y0 * in_width;
|
||||
const index_type in_offset_r1 = n * in_image_size + in_y1 * in_width;
|
||||
index_type in_offset_r0 = c_start * in_image_size + in_y0 * in_width;
|
||||
index_type in_offset_r1 = c_start * in_image_size + in_y1 * in_width;
|
||||
index_type out_idx = c_start * out_image_size + y * out_width + x;
|
||||
|
||||
auto v_00 = input[in_offset_r0 + in_x0],
|
||||
v_01 = input[in_offset_r0 + in_x1],
|
||||
v_10 = input[in_offset_r1 + in_x0],
|
||||
v_11 = input[in_offset_r1 + in_x1];
|
||||
#pragma unroll 1 /* disable unrolling to reduce register pressure; not sure how but it works */
|
||||
for (auto c = c_start; c < c_end; c++) {
|
||||
auto v_00 = input[in_offset_r0 + in_x0],
|
||||
v_01 = input[in_offset_r0 + in_x1],
|
||||
v_10 = input[in_offset_r1 + in_x0],
|
||||
v_11 = input[in_offset_r1 + in_x1];
|
||||
|
||||
output[idx] =
|
||||
v_00 +
|
||||
T(in_y - in_y0) * T(v_10 - v_00) +
|
||||
T(in_x - in_x0) * T(v_01 - v_00) +
|
||||
T(in_y - in_y0) * T(in_x - in_x0) * T(v_11 - v_01 - v_10 + v_00);
|
||||
output[out_idx] =
|
||||
v_00 +
|
||||
T(in_y - in_y0) * T(v_10 - v_00) +
|
||||
T(in_x - in_x0) * T(v_01 - v_00) +
|
||||
T(in_y - in_y0) * T(in_x - in_x0) * T(v_11 - v_01 - v_10 + v_00);
|
||||
|
||||
in_offset_r0 += in_image_size;
|
||||
in_offset_r1 += in_image_size;
|
||||
out_idx += out_image_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, std::size_t CHANNELS_PER_ITER> static
|
||||
void launch_multichannel_resize_nn(const Stream& stream,
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width)
|
||||
{
|
||||
auto kernel = raw::resize_nn<T, CHANNELS_PER_ITER>;
|
||||
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void resize_nn(const Stream& stream, TensorSpan<T> output, TensorView<T> input) {
|
||||
auto in_height = input.get_axis_size(-2);
|
||||
auto in_width = input.get_axis_size(-1);
|
||||
|
||||
auto out_height = output.get_axis_size(-2);
|
||||
auto out_width = output.get_axis_size(-1);
|
||||
|
||||
auto kernel = raw::resize_nn<T>;
|
||||
auto policy = make_policy(kernel, output.size(), 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width);
|
||||
auto in_height = input.get_axis_size(-2);
|
||||
auto in_width = input.get_axis_size(-1);
|
||||
|
||||
auto num_effective_channels = input.size_range(0, 2);
|
||||
auto num_iters = num_effective_channels * out_height * out_width;
|
||||
|
||||
if (num_effective_channels % 32 == 0 && num_iters > 655360) {
|
||||
launch_multichannel_resize_nn<T, 32>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
} else if (num_effective_channels % 16 == 0 && num_iters > 327680) {
|
||||
launch_multichannel_resize_nn<T, 16>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
} else if (num_effective_channels % 8 == 0 && num_iters > 163840) {
|
||||
launch_multichannel_resize_nn<T, 8>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
} else if (num_effective_channels % 4 == 0 && num_iters > 81920) {
|
||||
launch_multichannel_resize_nn<T, 4>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
} else if (num_effective_channels % 2 == 0) {
|
||||
launch_multichannel_resize_nn<T, 2>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
} else {
|
||||
launch_multichannel_resize_nn<T, 1>(stream, output, out_height, out_width, input, in_height, in_width);
|
||||
}
|
||||
}
|
||||
|
||||
template void resize_nn<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>);
|
||||
template void resize_nn<float>(const Stream&, TensorSpan<float>, TensorView<float>);
|
||||
|
||||
template <class T, std::size_t CHANNELS_PER_ITER> static
|
||||
void launch_multichannel_resize_bilinear(const Stream& stream,
|
||||
Span<T> output, size_type out_height, size_type out_width,
|
||||
View<T> input, size_type in_height, size_type in_width,
|
||||
float scale_y, float scale_x)
|
||||
{
|
||||
auto kernel = raw::resize_bilinear<T, CHANNELS_PER_ITER>;
|
||||
auto policy = make_policy(kernel, output.size() / CHANNELS_PER_ITER, 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void resize_bilinear(const Stream& stream, TensorSpan<T> output, TensorView<T> input, float scale_y, float scale_x) {
|
||||
auto in_height = input.get_axis_size(-2);
|
||||
auto in_width = input.get_axis_size(-1);
|
||||
|
||||
auto out_height = output.get_axis_size(-2);
|
||||
auto out_width = output.get_axis_size(-1);
|
||||
|
||||
auto kernel = raw::resize_bilinear<T>;
|
||||
auto policy = make_policy(kernel, output.size(), 0, stream);
|
||||
launch_kernel(kernel, policy, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
auto in_height = input.get_axis_size(-2);
|
||||
auto in_width = input.get_axis_size(-1);
|
||||
|
||||
auto num_effective_channels = input.size_range(0, 2);
|
||||
auto num_iters = num_effective_channels * out_height * out_width;
|
||||
|
||||
if (num_effective_channels % 16 == 0 && num_iters > 163840) {
|
||||
launch_multichannel_resize_bilinear<T, 16>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
} else if (num_effective_channels % 8 == 0 && num_iters > 81920) {
|
||||
launch_multichannel_resize_bilinear<T, 8>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
} else if (num_effective_channels % 4 == 0 && num_iters > 40960) {
|
||||
launch_multichannel_resize_bilinear<T, 4>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
} else if (num_effective_channels % 2 == 0) {
|
||||
launch_multichannel_resize_bilinear<T, 2>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
} else {
|
||||
launch_multichannel_resize_bilinear<T, 1>(stream, output, out_height, out_width, input, in_height, in_width, scale_y, scale_x);
|
||||
}
|
||||
}
|
||||
|
||||
template void resize_bilinear<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, float, float);
|
||||
|
Loading…
Reference in New Issue
Block a user