Merge pull request #14393 from mehlukas:3.4-meanshift
Extend meanshift tutorial (#14393) * copy original tutorial and python code * add cpp code, fix python code * add camshift cpp code, fix bug in meanshift code * add description to ToC page * fix shadowing previous local declaration * fix grammar: with -> within * docs: remove content of old py_meanshift tutorial, add link * docs: replace meanshift tutorial subpage in Python tutorials * switch to ref to fix wrong breadcrumb navigation * switch to cmdline for path as in #14314 * Apply suggestions from code review * order programming languages alphabetically
@ -1,185 +1,4 @@
|
||||
Meanshift and Camshift {#tutorial_py_meanshift}
|
||||
======================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this chapter,
|
||||
|
||||
- We will learn about Meanshift and Camshift algorithms to find and track objects in videos.
|
||||
|
||||
Meanshift
|
||||
---------
|
||||
|
||||
The intuition behind the meanshift is simple. Consider you have a set of points. (It can be a pixel
|
||||
distribution like histogram backprojection). You are given a small window ( may be a circle) and you
|
||||
have to move that window to the area of maximum pixel density (or maximum number of points). It is
|
||||
illustrated in the simple image given below:
|
||||
|
||||

|
||||
|
||||
The initial window is shown in blue circle with the name "C1". Its original center is marked in blue
|
||||
rectangle, named "C1_o". But if you find the centroid of the points inside that window, you will
|
||||
get the point "C1_r" (marked in small blue circle) which is the real centroid of window. Surely
|
||||
they don't match. So move your window such that circle of the new window matches with previous
|
||||
centroid. Again find the new centroid. Most probably, it won't match. So move it again, and continue
|
||||
the iterations such that center of window and its centroid falls on the same location (or with a
|
||||
small desired error). So finally what you obtain is a window with maximum pixel distribution. It is
|
||||
marked with green circle, named "C2". As you can see in image, it has maximum number of points. The
|
||||
whole process is demonstrated on a static image below:
|
||||
|
||||

|
||||
|
||||
So we normally pass the histogram backprojected image and initial target location. When the object
|
||||
moves, obviously the movement is reflected in histogram backprojected image. As a result, meanshift
|
||||
algorithm moves our window to the new location with maximum density.
|
||||
|
||||
### Meanshift in OpenCV
|
||||
|
||||
To use meanshift in OpenCV, first we need to setup the target, find its histogram so that we can
|
||||
backproject the target on each frame for calculation of meanshift. We also need to provide initial
|
||||
location of window. For histogram, only Hue is considered here. Also, to avoid false values due to
|
||||
low light, low light values are discarded using **cv.inRange()** function.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv.VideoCapture('slow.flv')
|
||||
|
||||
# take first frame of the video
|
||||
ret,frame = cap.read()
|
||||
|
||||
# setup initial location of window
|
||||
r,h,c,w = 250,90,400,125 # simply hardcoded the values
|
||||
track_window = (c,r,w,h)
|
||||
|
||||
# set up the ROI for tracking
|
||||
roi = frame[r:r+h, c:c+w]
|
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
|
||||
while(1):
|
||||
ret ,frame = cap.read()
|
||||
|
||||
if ret == True:
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
|
||||
# apply meanshift to get the new location
|
||||
ret, track_window = cv.meanShift(dst, track_window, term_crit)
|
||||
|
||||
# Draw it on image
|
||||
x,y,w,h = track_window
|
||||
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
|
||||
cv.imshow('img2',img2)
|
||||
|
||||
k = cv.waitKey(60) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
else:
|
||||
cv.imwrite(chr(k)+".jpg",img2)
|
||||
|
||||
else:
|
||||
break
|
||||
|
||||
cv.destroyAllWindows()
|
||||
cap.release()
|
||||
@endcode
|
||||
Three frames in a video I used is given below:
|
||||
|
||||

|
||||
|
||||
Camshift
|
||||
--------
|
||||
|
||||
Did you closely watch the last result? There is a problem. Our window always has the same size when
|
||||
car is farther away and it is very close to camera. That is not good. We need to adapt the window
|
||||
size with size and rotation of the target. Once again, the solution came from "OpenCV Labs" and it
|
||||
is called CAMshift (Continuously Adaptive Meanshift) published by Gary Bradsky in his paper
|
||||
"Computer Vision Face Tracking for Use in a Perceptual User Interface" in 1998.
|
||||
|
||||
It applies meanshift first. Once meanshift converges, it updates the size of the window as,
|
||||
\f$s = 2 \times \sqrt{\frac{M_{00}}{256}}\f$. It also calculates the orientation of best fitting ellipse
|
||||
to it. Again it applies the meanshift with new scaled search window and previous window location.
|
||||
The process is continued until required accuracy is met.
|
||||
|
||||

|
||||
|
||||
### Camshift in OpenCV
|
||||
|
||||
It is almost same as meanshift, but it returns a rotated rectangle (that is our result) and box
|
||||
parameters (used to be passed as search window in next iteration). See the code below:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv.VideoCapture('slow.flv')
|
||||
|
||||
# take first frame of the video
|
||||
ret,frame = cap.read()
|
||||
|
||||
# setup initial location of window
|
||||
r,h,c,w = 250,90,400,125 # simply hardcoded the values
|
||||
track_window = (c,r,w,h)
|
||||
|
||||
# set up the ROI for tracking
|
||||
roi = frame[r:r+h, c:c+w]
|
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
|
||||
while(1):
|
||||
ret ,frame = cap.read()
|
||||
|
||||
if ret == True:
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
|
||||
# apply meanshift to get the new location
|
||||
ret, track_window = cv.CamShift(dst, track_window, term_crit)
|
||||
|
||||
# Draw it on image
|
||||
pts = cv.boxPoints(ret)
|
||||
pts = np.int0(pts)
|
||||
img2 = cv.polylines(frame,[pts],True, 255,2)
|
||||
cv.imshow('img2',img2)
|
||||
|
||||
k = cv.waitKey(60) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
else:
|
||||
cv.imwrite(chr(k)+".jpg",img2)
|
||||
|
||||
else:
|
||||
break
|
||||
|
||||
cv.destroyAllWindows()
|
||||
cap.release()
|
||||
@endcode
|
||||
Three frames of the result is shown below:
|
||||
|
||||

|
||||
|
||||
Additional Resources
|
||||
--------------------
|
||||
|
||||
-# French Wikipedia page on [Camshift](http://fr.wikipedia.org/wiki/Camshift). (The two animations
|
||||
are taken from here)
|
||||
2. Bradski, G.R., "Real time face and object tracking as a component of a perceptual user
|
||||
interface," Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop
|
||||
on , vol., no., pp.214,219, 19-21 Oct 1998
|
||||
|
||||
Exercises
|
||||
---------
|
||||
|
||||
-# OpenCV comes with a Python sample on interactive demo of camshift. Use it, hack it, understand
|
||||
it.
|
||||
Tutorial content has been moved: @ref tutorial_meanshift
|
||||
|
@ -1,7 +1,7 @@
|
||||
Video Analysis {#tutorial_py_table_of_contents_video}
|
||||
==============
|
||||
|
||||
- @subpage tutorial_py_meanshift
|
||||
- @ref tutorial_meanshift
|
||||
|
||||
We have already seen
|
||||
an example of color-based tracking. It is simpler. This time, we see significantly better
|
||||
|
Before Width: | Height: | Size: 247 KiB After Width: | Height: | Size: 247 KiB |
Before Width: | Height: | Size: 34 KiB After Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 176 KiB After Width: | Height: | Size: 176 KiB |
Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 27 KiB |
118
doc/tutorials/video/meanshift/meanshift.markdown
Normal file
@ -0,0 +1,118 @@
|
||||
Meanshift and Camshift {#tutorial_meanshift}
|
||||
======================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this chapter,
|
||||
|
||||
- We will learn about the Meanshift and Camshift algorithms to track objects in videos.
|
||||
|
||||
Meanshift
|
||||
---------
|
||||
|
||||
The intuition behind the meanshift is simple. Consider you have a set of points. (It can be a pixel
|
||||
distribution like histogram backprojection). You are given a small window (may be a circle) and you
|
||||
have to move that window to the area of maximum pixel density (or maximum number of points). It is
|
||||
illustrated in the simple image given below:
|
||||
|
||||

|
||||
|
||||
The initial window is shown in blue circle with the name "C1". Its original center is marked in blue
|
||||
rectangle, named "C1_o". But if you find the centroid of the points inside that window, you will
|
||||
get the point "C1_r" (marked in small blue circle) which is the real centroid of the window. Surely
|
||||
they don't match. So move your window such that the circle of the new window matches with the previous
|
||||
centroid. Again find the new centroid. Most probably, it won't match. So move it again, and continue
|
||||
the iterations such that the center of window and its centroid falls on the same location (or within a
|
||||
small desired error). So finally what you obtain is a window with maximum pixel distribution. It is
|
||||
marked with a green circle, named "C2". As you can see in the image, it has maximum number of points. The
|
||||
whole process is demonstrated on a static image below:
|
||||
|
||||

|
||||
|
||||
So we normally pass the histogram backprojected image and initial target location. When the object
|
||||
moves, obviously the movement is reflected in the histogram backprojected image. As a result, the meanshift
|
||||
algorithm moves our window to the new location with maximum density.
|
||||
|
||||
### Meanshift in OpenCV
|
||||
|
||||
To use meanshift in OpenCV, first we need to setup the target, find its histogram so that we can
|
||||
backproject the target on each frame for calculation of meanshift. We also need to provide an initial
|
||||
location of window. For histogram, only Hue is considered here. Also, to avoid false values due to
|
||||
low light, low light values are discarded using **cv.inRange()** function.
|
||||
|
||||
@add_toggle_cpp
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/video/meanshift/meanshift.cpp)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/cpp/tutorial_code/video/meanshift/meanshift.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/3.4/samples/python/tutorial_code/video/meanshift/meanshift.py)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/python/tutorial_code/video/meanshift/meanshift.py
|
||||
@end_toggle
|
||||
|
||||
Three frames in a video I used is given below:
|
||||
|
||||

|
||||
|
||||
Camshift
|
||||
--------
|
||||
|
||||
Did you closely watch the last result? There is a problem. Our window always has the same size whether
|
||||
the car is very far or very close to the camera. That is not good. We need to adapt the window
|
||||
size with size and rotation of the target. Once again, the solution came from "OpenCV Labs" and it
|
||||
is called CAMshift (Continuously Adaptive Meanshift) published by Gary Bradsky in his paper
|
||||
"Computer Vision Face Tracking for Use in a Perceptual User Interface" in 1998 @cite Bradski98 .
|
||||
|
||||
It applies meanshift first. Once meanshift converges, it updates the size of the window as,
|
||||
\f$s = 2 \times \sqrt{\frac{M_{00}}{256}}\f$. It also calculates the orientation of the best fitting ellipse
|
||||
to it. Again it applies the meanshift with new scaled search window and previous window location.
|
||||
The process continues until the required accuracy is met.
|
||||
|
||||

|
||||
|
||||
### Camshift in OpenCV
|
||||
|
||||
It is similar to meanshift, but returns a rotated rectangle (that is our result) and box
|
||||
parameters (used to be passed as search window in next iteration). See the code below:
|
||||
|
||||
@add_toggle_cpp
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/3.4/samples/cpp/tutorial_code/video/meanshift/camshift.cpp)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/cpp/tutorial_code/video/meanshift/camshift.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
- **Downloadable code**: Click
|
||||
[here](https://github.com/opencv/opencv/tree/3.4/samples/python/tutorial_code/video/meanshift/camshift.py)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/python/tutorial_code/video/meanshift/camshift.py
|
||||
@end_toggle
|
||||
|
||||
Three frames of the result is shown below:
|
||||
|
||||

|
||||
|
||||
Additional Resources
|
||||
--------------------
|
||||
|
||||
-# French Wikipedia page on [Camshift](http://fr.wikipedia.org/wiki/Camshift). (The two animations
|
||||
are taken from there)
|
||||
2. Bradski, G.R., "Real time face and object tracking as a component of a perceptual user
|
||||
interface," Applications of Computer Vision, 1998. WACV '98. Proceedings., Fourth IEEE Workshop
|
||||
on , vol., no., pp.214,219, 19-21 Oct 1998
|
||||
|
||||
Exercises
|
||||
---------
|
||||
|
||||
-# OpenCV comes with a Python [sample](https://github.com/opencv/opencv/blob/3.4/samples/python/camshift.py) for an interactive demo of camshift. Use it, hack it, understand
|
||||
it.
|
@ -14,3 +14,9 @@ tracking and foreground extractions.
|
||||
|
||||
We will learn how to extract foreground masks from both videos and sequences of images and
|
||||
to show them.
|
||||
|
||||
- @subpage tutorial_meanshift
|
||||
|
||||
*Languages:* C++, Python
|
||||
|
||||
Learn how to use the Meanshift and Camshift algorithms to track objects in videos.
|
||||
|
86
samples/cpp/tutorial_code/video/meanshift/camshift.cpp
Normal file
@ -0,0 +1,86 @@
|
||||
#include <iostream>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/video.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
const string about =
|
||||
"This sample demonstrates the camshift algorithm.\n"
|
||||
"The example file can be downloaded from:\n"
|
||||
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
|
||||
const string keys =
|
||||
"{ h help | | print this help message }"
|
||||
"{ @image |<none>| path to image file }";
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
parser.about(about);
|
||||
if (parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
string filename = parser.get<string>("@image");
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 0;
|
||||
}
|
||||
|
||||
VideoCapture capture(filename);
|
||||
if (!capture.isOpened()){
|
||||
//error in opening the video input
|
||||
cerr << "Unable to open file!" << endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
Mat frame, roi, hsv_roi, mask;
|
||||
// take first frame of the video
|
||||
capture >> frame;
|
||||
|
||||
// setup initial location of window
|
||||
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
|
||||
|
||||
// set up the ROI for tracking
|
||||
roi = frame(track_window);
|
||||
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
|
||||
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
|
||||
|
||||
float range_[] = {0, 180};
|
||||
const float* range[] = {range_};
|
||||
Mat roi_hist;
|
||||
int histSize[] = {180};
|
||||
int channels[] = {0};
|
||||
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
|
||||
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
|
||||
|
||||
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
|
||||
|
||||
while(true){
|
||||
Mat hsv, dst;
|
||||
capture >> frame;
|
||||
if (frame.empty())
|
||||
break;
|
||||
cvtColor(frame, hsv, COLOR_BGR2HSV);
|
||||
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
|
||||
|
||||
// apply camshift to get the new location
|
||||
RotatedRect rot_rect = CamShift(dst, track_window, term_crit);
|
||||
|
||||
// Draw it on image
|
||||
Point2f points[4];
|
||||
rot_rect.points(points);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(frame, points[i], points[(i+1)%4], 255, 2);
|
||||
imshow("img2", frame);
|
||||
|
||||
int keyboard = waitKey(30);
|
||||
if (keyboard == 'q' || keyboard == 27)
|
||||
break;
|
||||
}
|
||||
}
|
83
samples/cpp/tutorial_code/video/meanshift/meanshift.cpp
Normal file
@ -0,0 +1,83 @@
|
||||
#include <iostream>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/videoio.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/video.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
const string about =
|
||||
"This sample demonstrates the meanshift algorithm.\n"
|
||||
"The example file can be downloaded from:\n"
|
||||
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
|
||||
const string keys =
|
||||
"{ h help | | print this help message }"
|
||||
"{ @image |<none>| path to image file }";
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
parser.about(about);
|
||||
if (parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
string filename = parser.get<string>("@image");
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 0;
|
||||
}
|
||||
|
||||
VideoCapture capture(filename);
|
||||
if (!capture.isOpened()){
|
||||
//error in opening the video input
|
||||
cerr << "Unable to open file!" << endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
Mat frame, roi, hsv_roi, mask;
|
||||
// take first frame of the video
|
||||
capture >> frame;
|
||||
|
||||
// setup initial location of window
|
||||
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
|
||||
|
||||
// set up the ROI for tracking
|
||||
roi = frame(track_window);
|
||||
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
|
||||
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
|
||||
|
||||
float range_[] = {0, 180};
|
||||
const float* range[] = {range_};
|
||||
Mat roi_hist;
|
||||
int histSize[] = {180};
|
||||
int channels[] = {0};
|
||||
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
|
||||
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
|
||||
|
||||
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
|
||||
|
||||
while(true){
|
||||
Mat hsv, dst;
|
||||
capture >> frame;
|
||||
if (frame.empty())
|
||||
break;
|
||||
cvtColor(frame, hsv, COLOR_BGR2HSV);
|
||||
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
|
||||
|
||||
// apply meanshift to get the new location
|
||||
meanShift(dst, track_window, term_crit);
|
||||
|
||||
// Draw it on image
|
||||
rectangle(frame, track_window, 255, 2);
|
||||
imshow("img2", frame);
|
||||
|
||||
int keyboard = waitKey(30);
|
||||
if (keyboard == 'q' || keyboard == 27)
|
||||
break;
|
||||
}
|
||||
}
|
50
samples/python/tutorial_code/video/meanshift/camshift.py
Normal file
@ -0,0 +1,50 @@
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='This sample demonstrates the camshift algorithm. \
|
||||
The example file can be downloaded from: \
|
||||
https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4')
|
||||
parser.add_argument('image', type=str, help='path to image file')
|
||||
args = parser.parse_args()
|
||||
|
||||
cap = cv.VideoCapture(args.image)
|
||||
|
||||
# take first frame of the video
|
||||
ret,frame = cap.read()
|
||||
|
||||
# setup initial location of window
|
||||
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
|
||||
track_window = (x, y, w, h)
|
||||
|
||||
# set up the ROI for tracking
|
||||
roi = frame[y:y+h, x:x+w]
|
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
|
||||
while(1):
|
||||
ret, frame = cap.read()
|
||||
|
||||
if ret == True:
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
|
||||
# apply camshift to get the new location
|
||||
ret, track_window = cv.CamShift(dst, track_window, term_crit)
|
||||
|
||||
# Draw it on image
|
||||
pts = cv.boxPoints(ret)
|
||||
pts = np.int0(pts)
|
||||
img2 = cv.polylines(frame,[pts],True, 255,2)
|
||||
cv.imshow('img2',img2)
|
||||
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
else:
|
||||
break
|
49
samples/python/tutorial_code/video/meanshift/meanshift.py
Normal file
@ -0,0 +1,49 @@
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description='This sample demonstrates the meanshift algorithm. \
|
||||
The example file can be downloaded from: \
|
||||
https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4')
|
||||
parser.add_argument('image', type=str, help='path to image file')
|
||||
args = parser.parse_args()
|
||||
|
||||
cap = cv.VideoCapture(args.image)
|
||||
|
||||
# take first frame of the video
|
||||
ret,frame = cap.read()
|
||||
|
||||
# setup initial location of window
|
||||
x, y, w, h = 300, 200, 100, 50 # simply hardcoded the values
|
||||
track_window = (x, y, w, h)
|
||||
|
||||
# set up the ROI for tracking
|
||||
roi = frame[y:y+h, x:x+w]
|
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
|
||||
while(1):
|
||||
ret, frame = cap.read()
|
||||
|
||||
if ret == True:
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
|
||||
# apply meanshift to get the new location
|
||||
ret, track_window = cv.meanShift(dst, track_window, term_crit)
|
||||
|
||||
# Draw it on image
|
||||
x,y,w,h = track_window
|
||||
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
|
||||
cv.imshow('img2',img2)
|
||||
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
else:
|
||||
break
|