mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
pylint: eliminate warnings
This commit is contained in:
parent
469addeca3
commit
48073e6d95
@ -95,8 +95,8 @@ class cuda_test(NewOpenCVTests):
|
||||
def test_cudabgsegm_existence(self):
|
||||
#Test at least the existence of wrapped functions for now
|
||||
|
||||
bgsub = cv.cuda.createBackgroundSubtractorMOG()
|
||||
bgsub = cv.cuda.createBackgroundSubtractorMOG2()
|
||||
_bgsub = cv.cuda.createBackgroundSubtractorMOG()
|
||||
_bgsub = cv.cuda.createBackgroundSubtractorMOG2()
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
@ -104,8 +104,8 @@ class cuda_test(NewOpenCVTests):
|
||||
#Test at least the existence of wrapped functions for now
|
||||
|
||||
try:
|
||||
writer = cv.cudacodec.createVideoWriter("tmp", (128, 128), 30)
|
||||
reader = cv.cudacodec.createVideoReader("tmp")
|
||||
_writer = cv.cudacodec.createVideoWriter("tmp", (128, 128), 30)
|
||||
_reader = cv.cudacodec.createVideoReader("tmp")
|
||||
except cv.error as e:
|
||||
self.assertEqual(e.code, cv.Error.StsNotImplemented)
|
||||
self.skipTest("NVCUVENC is not installed")
|
||||
@ -125,11 +125,11 @@ class cuda_test(NewOpenCVTests):
|
||||
cuMat2 = cv.cuda.cvtColor(cuMat2, cv.COLOR_RGB2GRAY)
|
||||
|
||||
fast = cv.cuda_FastFeatureDetector.create()
|
||||
kps = fast.detectAsync(cuMat1)
|
||||
_kps = fast.detectAsync(cuMat1)
|
||||
|
||||
orb = cv.cuda_ORB.create()
|
||||
kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
|
||||
kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)
|
||||
_kps1, descs1 = orb.detectAndComputeAsync(cuMat1, None)
|
||||
_kps2, descs2 = orb.detectAndComputeAsync(cuMat2, None)
|
||||
|
||||
bf = cv.cuda_DescriptorMatcher.createBFMatcher(cv.NORM_HAMMING)
|
||||
matches = bf.match(descs1, descs2)
|
||||
@ -144,20 +144,20 @@ class cuda_test(NewOpenCVTests):
|
||||
def test_cudafilters_existence(self):
|
||||
#Test at least the existence of wrapped functions for now
|
||||
|
||||
filter = cv.cuda.createBoxFilter(cv.CV_8UC1, -1, (3, 3))
|
||||
filter = cv.cuda.createLinearFilter(cv.CV_8UC4, -1, np.eye(3))
|
||||
filter = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3)
|
||||
filter = cv.cuda.createSeparableLinearFilter(cv.CV_8UC1, -1, np.eye(3), np.eye(3))
|
||||
filter = cv.cuda.createDerivFilter(cv.CV_8UC1, -1, 1, 1, 3)
|
||||
filter = cv.cuda.createSobelFilter(cv.CV_8UC1, -1, 1, 1)
|
||||
filter = cv.cuda.createScharrFilter(cv.CV_8UC1, -1, 1, 0)
|
||||
filter = cv.cuda.createGaussianFilter(cv.CV_8UC1, -1, (3, 3), 16)
|
||||
filter = cv.cuda.createMorphologyFilter(cv.MORPH_DILATE, cv.CV_32FC1, np.eye(3))
|
||||
filter = cv.cuda.createBoxMaxFilter(cv.CV_8UC1, (3, 3))
|
||||
filter = cv.cuda.createBoxMinFilter(cv.CV_8UC1, (3, 3))
|
||||
filter = cv.cuda.createRowSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
||||
filter = cv.cuda.createColumnSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
||||
filter = cv.cuda.createMedianFilter(cv.CV_8UC1, 3)
|
||||
_filter = cv.cuda.createBoxFilter(cv.CV_8UC1, -1, (3, 3))
|
||||
_filter = cv.cuda.createLinearFilter(cv.CV_8UC4, -1, np.eye(3))
|
||||
_filter = cv.cuda.createLaplacianFilter(cv.CV_16UC1, -1, ksize=3)
|
||||
_filter = cv.cuda.createSeparableLinearFilter(cv.CV_8UC1, -1, np.eye(3), np.eye(3))
|
||||
_filter = cv.cuda.createDerivFilter(cv.CV_8UC1, -1, 1, 1, 3)
|
||||
_filter = cv.cuda.createSobelFilter(cv.CV_8UC1, -1, 1, 1)
|
||||
_filter = cv.cuda.createScharrFilter(cv.CV_8UC1, -1, 1, 0)
|
||||
_filter = cv.cuda.createGaussianFilter(cv.CV_8UC1, -1, (3, 3), 16)
|
||||
_filter = cv.cuda.createMorphologyFilter(cv.MORPH_DILATE, cv.CV_32FC1, np.eye(3))
|
||||
_filter = cv.cuda.createBoxMaxFilter(cv.CV_8UC1, (3, 3))
|
||||
_filter = cv.cuda.createBoxMinFilter(cv.CV_8UC1, (3, 3))
|
||||
_filter = cv.cuda.createRowSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
||||
_filter = cv.cuda.createColumnSumFilter(cv.CV_8UC1, cv.CV_32FC1, 3)
|
||||
_filter = cv.cuda.createMedianFilter(cv.CV_8UC1, 3)
|
||||
|
||||
self.assertTrue(True) #It is sufficient that no exceptions have been there
|
||||
|
||||
@ -195,7 +195,7 @@ class cuda_test(NewOpenCVTests):
|
||||
cv.cuda.meanShiftSegmentation(cuC4, 10, 5, 5).download()
|
||||
|
||||
clahe = cv.cuda.createCLAHE()
|
||||
clahe.apply(cuC1, cv.cuda_Stream.Null());
|
||||
clahe.apply(cuC1, cv.cuda_Stream.Null())
|
||||
|
||||
histLevels = cv.cuda.histEven(cuC3, 20, 0, 255)
|
||||
cv.cuda.histRange(cuC1, histLevels)
|
||||
|
@ -30,7 +30,7 @@ def draw_flow(img, flow, step=16):
|
||||
lines = np.int32(lines + 0.5)
|
||||
vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
|
||||
cv.polylines(vis, lines, 0, (0, 255, 0))
|
||||
for (x1, y1), (x2, y2) in lines:
|
||||
for (x1, y1), (_x2, _y2) in lines:
|
||||
cv.circle(vis, (x1, y1), 1, (0, 255, 0), -1)
|
||||
return vis
|
||||
|
||||
@ -66,7 +66,7 @@ def main():
|
||||
fn = 0
|
||||
|
||||
cam = video.create_capture(fn)
|
||||
ret, prev = cam.read()
|
||||
_ret, prev = cam.read()
|
||||
prevgray = cv.cvtColor(prev, cv.COLOR_BGR2GRAY)
|
||||
show_hsv = False
|
||||
show_glitch = False
|
||||
@ -78,7 +78,7 @@ def main():
|
||||
|
||||
flow = None
|
||||
while True:
|
||||
ret, img = cam.read()
|
||||
_ret, img = cam.read()
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
if flow is not None and use_temporal_propagation:
|
||||
#warp previous flow to get an initial approximation for the current flow:
|
||||
|
@ -50,7 +50,7 @@ def main():
|
||||
print("Can't stitch images, error code = %d" % status)
|
||||
sys.exit(-1)
|
||||
|
||||
cv.imwrite(args.output, pano);
|
||||
cv.imwrite(args.output, pano)
|
||||
print("stitching completed successfully. %s saved!" % args.output)
|
||||
|
||||
print('Done')
|
||||
|
@ -48,7 +48,7 @@ def main():
|
||||
args = parser.parse_args()
|
||||
img_names=args.img_names
|
||||
print(img_names)
|
||||
preview = args.preview
|
||||
_preview = args.preview
|
||||
try_cuda = args.try_cuda
|
||||
work_megapix = args.work_megapix
|
||||
seam_megapix = args.seam_megapix
|
||||
@ -84,7 +84,7 @@ def main():
|
||||
print("Bad exposure compensation method")
|
||||
exit()
|
||||
expos_comp_nr_feeds = args.expos_comp_nr_feeds
|
||||
expos_comp_nr_filtering = args.expos_comp_nr_filtering
|
||||
_expos_comp_nr_filtering = args.expos_comp_nr_filtering
|
||||
expos_comp_block_size = args.expos_comp_block_size
|
||||
match_conf = args.match_conf
|
||||
seam_find_type = args.seam
|
||||
@ -118,7 +118,7 @@ def main():
|
||||
images=[]
|
||||
is_work_scale_set = False
|
||||
is_seam_scale_set = False
|
||||
is_compose_scale_set = False;
|
||||
is_compose_scale_set = False
|
||||
for name in img_names:
|
||||
full_img = cv.imread(cv.samples.findFile(name))
|
||||
if full_img is None:
|
||||
@ -163,9 +163,9 @@ def main():
|
||||
img_names_subset.append(img_names[indices[i,0]])
|
||||
img_subset.append(images[indices[i,0]])
|
||||
full_img_sizes_subset.append(full_img_sizes[indices[i,0]])
|
||||
images = img_subset;
|
||||
img_names = img_names_subset;
|
||||
full_img_sizes = full_img_sizes_subset;
|
||||
images = img_subset
|
||||
img_names = img_names_subset
|
||||
full_img_sizes = full_img_sizes_subset
|
||||
num_images = len(img_names)
|
||||
if num_images < 2:
|
||||
print("Need more images")
|
||||
@ -266,7 +266,7 @@ def main():
|
||||
if seam_find_type == "no":
|
||||
seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO)
|
||||
elif seam_find_type == "voronoi":
|
||||
seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM);
|
||||
seam_finder = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM)
|
||||
elif seam_find_type == "gc_color":
|
||||
seam_finder = cv.detail_GraphCutSeamFinder("COST_COLOR")
|
||||
elif seam_find_type == "gc_colorgrad":
|
||||
@ -279,7 +279,7 @@ def main():
|
||||
print("Can't create the following seam finder ",seam_find_type)
|
||||
exit()
|
||||
seam_finder.find(images_warped_f, corners,masks_warped )
|
||||
imgListe=[]
|
||||
_imgListe=[]
|
||||
compose_scale=1
|
||||
corners=[]
|
||||
sizes=[]
|
||||
@ -294,8 +294,8 @@ def main():
|
||||
if not is_compose_scale_set:
|
||||
if compose_megapix > 0:
|
||||
compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0]*full_img.shape[1])))
|
||||
is_compose_scale_set = True;
|
||||
compose_work_aspect = compose_scale / work_scale;
|
||||
is_compose_scale_set = True
|
||||
compose_work_aspect = compose_scale / work_scale
|
||||
warped_image_scale *= compose_work_aspect
|
||||
warper = cv.PyRotationWarper(warp_type,warped_image_scale)
|
||||
for i in range(0,len(img_names)):
|
||||
@ -304,14 +304,14 @@ def main():
|
||||
cameras[i].ppy *= compose_work_aspect
|
||||
sz = (full_img_sizes[i][0] * compose_scale,full_img_sizes[i][1]* compose_scale)
|
||||
K = cameras[i].K().astype(np.float32)
|
||||
roi = warper.warpRoi(sz, K, cameras[i].R);
|
||||
roi = warper.warpRoi(sz, K, cameras[i].R)
|
||||
corners.append(roi[0:2])
|
||||
sizes.append(roi[2:4])
|
||||
if abs(compose_scale - 1) > 1e-1:
|
||||
img =cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, interpolation=cv.INTER_LINEAR_EXACT)
|
||||
else:
|
||||
img = full_img;
|
||||
img_size = (img.shape[1],img.shape[0]);
|
||||
img = full_img
|
||||
_img_size = (img.shape[1],img.shape[0])
|
||||
K=cameras[idx].K().astype(np.float32)
|
||||
corner,image_warped =warper.warp(img,K,cameras[idx].R,cv.INTER_LINEAR, cv.BORDER_REFLECT)
|
||||
mask =255*np.ones((img.shape[0],img.shape[1]),np.uint8)
|
||||
@ -341,9 +341,9 @@ def main():
|
||||
if timelapse:
|
||||
matones=np.ones((image_warped_s.shape[0],image_warped_s.shape[1]), np.uint8)
|
||||
timelapser.process(image_warped_s, matones, corners[idx])
|
||||
pos_s = img_names[idx].rfind("/");
|
||||
pos_s = img_names[idx].rfind("/")
|
||||
if pos_s == -1:
|
||||
fixedFileName = "fixed_" + img_names[idx];
|
||||
fixedFileName = "fixed_" + img_names[idx]
|
||||
else:
|
||||
fixedFileName = img_names[idx][:pos_s + 1 ]+"fixed_" + img_names[idx][pos_s + 1: ]
|
||||
cv.imwrite(fixedFileName, timelapser.getDst())
|
||||
|
Loading…
Reference in New Issue
Block a user