mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 14:36:36 +08:00
Merge pull request #7777 from alalek:test_refactor
This commit is contained in:
commit
4a095e4d66
@ -1485,35 +1485,26 @@ INSTANTIATE_TEST_CASE_P(Core_MinMaxLoc, ElemWiseTest, ::testing::Values(ElemWise
|
|||||||
INSTANTIATE_TEST_CASE_P(Core_CartToPolarToCart, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::CartToPolarToCartOp)));
|
INSTANTIATE_TEST_CASE_P(Core_CartToPolarToCart, ElemWiseTest, ::testing::Values(ElemWiseOpPtr(new cvtest::CartToPolarToCartOp)));
|
||||||
|
|
||||||
|
|
||||||
class CV_ArithmMaskTest : public cvtest::BaseTest
|
TEST(Core_ArithmMask, uninitialized)
|
||||||
{
|
{
|
||||||
public:
|
|
||||||
CV_ArithmMaskTest() {}
|
|
||||||
~CV_ArithmMaskTest() {}
|
|
||||||
protected:
|
|
||||||
void run(int)
|
|
||||||
{
|
|
||||||
try
|
|
||||||
{
|
|
||||||
RNG& rng = theRNG();
|
RNG& rng = theRNG();
|
||||||
const int MAX_DIM=3;
|
const int MAX_DIM=3;
|
||||||
int sizes[MAX_DIM];
|
int sizes[MAX_DIM];
|
||||||
for( int iter = 0; iter < 100; iter++ )
|
for( int iter = 0; iter < 100; iter++ )
|
||||||
{
|
{
|
||||||
//ts->printf(cvtest::TS::LOG, ".");
|
int dims = rng.uniform(1, MAX_DIM+1);
|
||||||
|
|
||||||
ts->update_context(this, iter, true);
|
|
||||||
int k, dims = rng.uniform(1, MAX_DIM+1), p = 1;
|
|
||||||
int depth = rng.uniform(CV_8U, CV_64F+1);
|
int depth = rng.uniform(CV_8U, CV_64F+1);
|
||||||
int cn = rng.uniform(1, 6);
|
int cn = rng.uniform(1, 6);
|
||||||
int type = CV_MAKETYPE(depth, cn);
|
int type = CV_MAKETYPE(depth, cn);
|
||||||
int op = rng.uniform(0, 5);
|
int op = rng.uniform(0, 5);
|
||||||
int depth1 = op <= 1 ? CV_64F : depth;
|
int depth1 = op <= 1 ? CV_64F : depth;
|
||||||
for( k = 0; k < dims; k++ )
|
for (int k = 0; k < MAX_DIM; k++)
|
||||||
{
|
{
|
||||||
sizes[k] = rng.uniform(1, 30);
|
sizes[k] = k < dims ? rng.uniform(1, 30) : 0;
|
||||||
p *= sizes[k];
|
|
||||||
}
|
}
|
||||||
|
SCOPED_TRACE(cv::format("iter=%d dims=%d depth=%d cn=%d type=%d op=%d depth1=%d dims=[%d; %d; %d]",
|
||||||
|
iter, dims, depth, cn, type, op, depth1, sizes[0], sizes[1], sizes[2]));
|
||||||
|
|
||||||
Mat a(dims, sizes, type), a1;
|
Mat a(dims, sizes, type), a1;
|
||||||
Mat b(dims, sizes, type), b1;
|
Mat b(dims, sizes, type), b1;
|
||||||
Mat mask(dims, sizes, CV_8U);
|
Mat mask(dims, sizes, CV_8U);
|
||||||
@ -1562,7 +1553,7 @@ protected:
|
|||||||
}
|
}
|
||||||
Mat d1;
|
Mat d1;
|
||||||
d.convertTo(d1, depth);
|
d.convertTo(d1, depth);
|
||||||
CV_Assert( cvtest::norm(c, d1, CV_C) <= DBL_EPSILON );
|
EXPECT_LE(cvtest::norm(c, d1, CV_C), DBL_EPSILON);
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat_<uchar> tmpSrc(100,100);
|
Mat_<uchar> tmpSrc(100,100);
|
||||||
@ -1572,15 +1563,7 @@ protected:
|
|||||||
Mat_<uchar> tmpDst(100,100);
|
Mat_<uchar> tmpDst(100,100);
|
||||||
tmpDst = 2;
|
tmpDst = 2;
|
||||||
tmpSrc.copyTo(tmpDst,tmpMask);
|
tmpSrc.copyTo(tmpDst,tmpMask);
|
||||||
}
|
}
|
||||||
catch(...)
|
|
||||||
{
|
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
TEST(Core_ArithmMask, uninitialized) { CV_ArithmMaskTest test; test.safe_run(); }
|
|
||||||
|
|
||||||
TEST(Multiply, FloatingPointRounding)
|
TEST(Multiply, FloatingPointRounding)
|
||||||
{
|
{
|
||||||
|
Loading…
Reference in New Issue
Block a user