principal point is always set even though the intrinsic parameters are not given (center of window), fixed computation mistakes in setWindowSize in camera class

This commit is contained in:
ozantonkal 2013-08-09 10:39:30 +02:00
parent bb057491ea
commit 4a1573de9b
2 changed files with 38 additions and 69 deletions

View File

@ -155,10 +155,11 @@ cv::viz::Camera::Camera(const Vec2f &fov, const Size &window_size)
{
CV_Assert(window_size.width > 0 && window_size.height > 0);
setClip(Vec2d(0.01, 1000.01)); // Default clipping
principal_point_ = Vec2f(-1.0f, -1.0f); // Default symmetric lens
focal_ = Vec2f(-1.0f, -1.0f);
setFov(fov);
setWindowSize(window_size);
window_size_ = window_size;
// Principal point at the center
principal_point_ = Vec2f(static_cast<float>(window_size.width)*0.5f, static_cast<float>(window_size.height)*0.5f);
focal_ = Vec2f(principal_point_[0] / tan(fov_[0]*0.5f), principal_point_[1] / tan(fov_[1]*0.5f));
}
cv::viz::Camera::Camera(const cv::Matx33f & K, const Size &window_size)
@ -172,6 +173,8 @@ cv::viz::Camera::Camera(const cv::Matx33f & K, const Size &window_size)
cv::viz::Camera::Camera(const Matx44f &proj, const Size &window_size)
{
CV_Assert(window_size.width > 0 && window_size.height > 0);
double near = proj(2,3) / (proj(2,2) - 1.0);
double far = near * (proj(2,2) - 1.0) / (proj(2,2) + 1.0);
double left = near * (proj(0,2)-1) / proj(0,0);
@ -179,32 +182,19 @@ cv::viz::Camera::Camera(const Matx44f &proj, const Size &window_size)
double bottom = near * (proj(1,2)-1) / proj(1,1);
double top = 2.0 * near / proj(1,1) + bottom;
if (fabs(left-right) < std::numeric_limits<double>::epsilon())
{
principal_point_[0] = -1.0f;
focal_[0] = -1.0f;
}
else
{
principal_point_[0] = (left * static_cast<float>(window_size.width)) / (left - right);
focal_[0] = - near * principal_point_[0] / left;
}
if (fabs(left-right) < std::numeric_limits<double>::epsilon()) principal_point_[0] = static_cast<float>(window_size.width) * 0.5f;
else principal_point_[0] = (left * static_cast<float>(window_size.width)) / (left - right);
focal_[0] = -near * principal_point_[0] / left;
if (fabs(top-bottom) < std::numeric_limits<double>::epsilon())
{
principal_point_[1] = -1.0f;
focal_[1] = -1.0f;
}
else
{
principal_point_[1] = (top * static_cast<float>(window_size.height)) / (top - bottom);
focal_[1] = near * principal_point_[1] / top;
}
if (fabs(top-bottom) < std::numeric_limits<double>::epsilon()) principal_point_[1] = static_cast<float>(window_size.height) * 0.5f;
else principal_point_[1] = (top * static_cast<float>(window_size.height)) / (top - bottom);
focal_[1] = near * principal_point_[1] / top;
setClip(Vec2d(near, far));
// Set the vertical field of view
fov_[0] = (atan2(principal_point_[0],focal_[0]) + atan2(window_size.width-principal_point_[0],focal_[0]));
fov_[1] = (atan2(principal_point_[1],focal_[1]) + atan2(window_size.height-principal_point_[1],focal_[1]));
setWindowSize(window_size);
window_size_ = window_size;
}
void cv::viz::Camera::init(float f_x, float f_y, float c_x, float c_y, const Size &window_size)
@ -221,50 +211,32 @@ void cv::viz::Camera::init(float f_x, float f_y, float c_x, float c_y, const Siz
focal_[0] = f_x;
focal_[1] = f_y;
setWindowSize(window_size);
window_size_ = window_size;
}
void cv::viz::Camera::setWindowSize(const Size &window_size)
{
CV_Assert(window_size.width > 0 && window_size.height > 0);
// Vertical field of view is fixed!
// Horizontal field of view is expandable based on the aspect ratio
float aspect_ratio_new = static_cast<float>(window_size.width) / static_cast<float>(window_size.height);
// Get the scale factor and update the principal points
if (window_size_.height != 0)
{
float aspect_ratio_old = window_size_.width / window_size_.height;
float expected_width = aspect_ratio_old * window_size.height;
float scale = window_size_.width / expected_width;
principal_point_[0] *= scale;
principal_point_[1] *= static_cast<float>(window_size.height) / static_cast<float>(window_size_.height);
}
if (principal_point_[0] < 0.0f)
fov_[0] = 2.f * atan(tan(fov_[1] * 0.5f) * aspect_ratio_new); // This assumes that the lens is symmetric!
else
fov_[0] = (atan2(principal_point_[0],focal_[0]) + atan2(window_size.width-principal_point_[0],focal_[0]));
float scalex = static_cast<float>(window_size.width) / static_cast<float>(window_size_.width);
float scaley = static_cast<float>(window_size.height) / static_cast<float>(window_size_.height);
principal_point_[0] *= scalex;
principal_point_[1] *= scaley;
focal_ *= scaley;
// Vertical field of view is fixed! Update horizontal field of view
fov_[0] = (atan2(principal_point_[0],focal_[0]) + atan2(window_size.width-principal_point_[0],focal_[0]));
window_size_ = window_size;
}
void cv::viz::Camera::computeProjectionMatrix(Matx44f &proj) const
{
// Symmetric case
double top = clip_[0] * tan (0.5 * fov_[1]);
double left = -(top * window_size_.width) / window_size_.height;
double right = -left;
double bottom = -top;
// If principal point is defined (i.e intrinsic parameters are known)
if (principal_point_[0] > 0.0f)
{
top = clip_[0] * principal_point_[1] / focal_[1];
left = -clip_[0] * principal_point_[0] / focal_[0];
right = clip_[0] * (window_size_.width - principal_point_[0]) / focal_[0];
bottom = -clip_[0] * (window_size_.height - principal_point_[1]) / focal_[1];
}
double top = clip_[0] * principal_point_[1] / focal_[1];
double left = -clip_[0] * principal_point_[0] / focal_[0];
double right = clip_[0] * (window_size_.width - principal_point_[0]) / focal_[0];
double bottom = -clip_[0] * (window_size_.height - principal_point_[1]) / focal_[1];
double temp1 = 2.0 * clip_[0];
double temp2 = 1.0 / (right - left);

View File

@ -569,18 +569,16 @@ void cv::viz::Viz3d::VizImpl::setCamera(const Camera &camera)
vtkCamera& active_camera = *renderer_->GetActiveCamera();
// Set the intrinsic parameters of the camera
active_camera.SetUseHorizontalViewAngle (0); // Horizontal view angle is set based on the window size
active_camera.SetViewAngle (camera.getFov()[1] * 180.0f / CV_PI);
active_camera.SetClippingRange (camera.getClip()[0], camera.getClip()[1]);
window_->SetSize (camera.getWindowSize().width, camera.getWindowSize().height);
double aspect_ratio = static_cast<double>(camera.getWindowSize().width)/static_cast<double>(camera.getWindowSize().height);
Matx44f proj_mat;
camera.computeProjectionMatrix(proj_mat);
// Use the intrinsic parameters of the camera to simulate more realistically
Matx44f proj_matrix;
camera.computeProjectionMatrix(proj_matrix);
Matx44f old_proj_matrix = convertToMatx(active_camera.GetProjectionTransformMatrix(static_cast<float>(camera.getWindowSize().width) / static_cast<float>(camera.getWindowSize().height), -1.0f, 1.0f));
vtkTransform * transform = vtkTransform::New();
Matx44f old_proj_mat = convertToMatx(active_camera.GetProjectionTransformMatrix(aspect_ratio, -1.0, 1.0));
vtkTransform *transform = vtkTransform::New();
// This is a hack around not being able to set Projection Matrix
transform->SetMatrix(convertToVtkMatrix(proj_matrix * old_proj_matrix.inv()));
transform->SetMatrix(convertToVtkMatrix(proj_mat * old_proj_mat.inv()));
active_camera.SetUserTransform(transform);
transform->Delete();
}
@ -590,13 +588,12 @@ cv::viz::Camera cv::viz::Viz3d::VizImpl::getCamera() const
{
vtkCamera& active_camera = *renderer_->GetActiveCamera();
Vec2f fov(0.0, active_camera.GetViewAngle() * CV_PI / 180.0f);
Vec2d clip(active_camera.GetClippingRange());
Size window_size(renderer_->GetRenderWindow()->GetSize()[0],
renderer_->GetRenderWindow()->GetSize()[1]);
Matx44f old_proj_matrix = convertToMatx(active_camera.GetProjectionTransformMatrix(((float)window_size.width) / window_size.height, -1.0f, 1.0f));
Camera camera(old_proj_matrix, window_size);
// camera.setClip(clip);
double aspect_ratio = static_cast<double>(window_size.width) / static_cast<double>(window_size.height);
Matx44f proj_matrix = convertToMatx(active_camera.GetProjectionTransformMatrix(aspect_ratio, -1.0f, 1.0f));
Camera camera(proj_matrix, window_size);
return camera;
}