- adding ORB

This commit is contained in:
Vincent Rabaud 2011-05-20 22:25:53 +00:00
parent 856c717783
commit 4b1f183bcd
8 changed files with 1544 additions and 3 deletions

View File

@ -103,9 +103,10 @@ DescriptorExtractor::create
The current implementation supports the following types of a descriptor extractor:
* ``"SIFT"`` -- :ref:`SiftFeatureDetector`
* ``"SURF"`` -- :ref:`SurfFeatureDetector`
* ``"BRIEF"`` -- :ref:`BriefFeatureDetector`
* ``"SIFT"`` -- :ref:`SiftDescriptorExtractor`
* ``"SURF"`` -- :ref:`SurfDescriptorExtractor`
* ``"ORB"`` -- :ref:`OrbDescriptorExtractor`
* ``"BRIEF"`` -- :ref:`BriefDescriptorExtractor`
A combined format is also supported: descriptor extractor adapter name ( ``"Opponent"`` --
:ref:`OpponentColorDescriptorExtractor` ) + descriptor extractor name (see above),
@ -113,6 +114,8 @@ for example: ``"OpponentSIFT"`` .
.. index:: SiftDescriptorExtractor
.. _SiftDescriptorExtractor:
SiftDescriptorExtractor
-----------------------
.. cpp:class:: SiftDescriptorExtractor
@ -143,6 +146,8 @@ Wrapping class for computing descriptors by using the
.. index:: SurfDescriptorExtractor
.. _SurfDescriptorExtractor:
SurfDescriptorExtractor
-----------------------
.. cpp:class:: SurfDescriptorExtractor
@ -165,6 +170,32 @@ Wrapping class for computing descriptors by using the
}
.. index:: OrbDescriptorExtractor
.. _OrbDescriptorExtractor:
OrbDescriptorExtractor
---------------------------
.. cpp:class:: OrbDescriptorExtractor
Wrapping class for computing descriptors by using the
:ref:`ORB` class ::
template<typename T>
class ORbDescriptorExtractor : public DescriptorExtractor
{
public:
OrbDescriptorExtractor( ORB::PatchSize patch_size );
virtual void read( const FileNode &fn );
virtual void write( FileStorage &fs ) const;
virtual int descriptorSize() const;
virtual int descriptorType() const;
protected:
...
}
.. index:: CalonderDescriptorExtractor
CalonderDescriptorExtractor

View File

@ -159,6 +159,7 @@ The following detector types are supported:
* ``"STAR"`` -- :ref:`StarFeatureDetector`
* ``"SIFT"`` -- :ref:`SiftFeatureDetector`
* ``"SURF"`` -- :ref:`SurfFeatureDetector`
* ``"ORB"`` -- :ref:`OrbFeatureDetector`
* ``"MSER"`` -- :ref:`MserFeatureDetector`
* ``"GFTT"`` -- :ref:`GfttFeatureDetector`
* ``"HARRIS"`` -- :ref:`HarrisFeatureDetector`
@ -335,6 +336,28 @@ Wrapping class for feature detection using the
};
.. index:: OrbFeatureDetector
.. _OrbFeatureDetector:
OrbFeatureDetector
-------------------
.. cpp:class:: OrbFeatureDetector
Wrapping class for feature detection using the
:ref:`ORB` class ::
class OrbFeatureDetector : public FeatureDetector
{
public:
OrbFeatureDetector( size_t n_features );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
.. index:: GridAdaptedFeatureDetector
.. _GridAdaptedFeatureDetector:

View File

@ -216,6 +216,73 @@ There is a fast multi-scale Hessian keypoint detector that can be used to find k
(default option). But the descriptors can be also computed for the user-specified keypoints.
The algorithm can be used for object tracking and localization, image stitching, and so on. See the ``find_obj.cpp`` demo in OpenCV samples directory.
.. index:: ORB
.. _ORB:
ORB
----
.. cpp:class:: ORB
Class for extracting ORB features and descriptors from an image ::
class ORB
{
public:
/** The patch sizes that can be used (only one right now) */
enum PatchSize
{
PATCH_LEARNED_31 = 31
};
struct CommonParams
{
static const unsigned int DEFAULT_N_LEVELS = 3;
static const float DEFAULT_SCALE_FACTOR = 1.2;
static const unsigned int DEFAULT_FIRST_LEVEL = 0;
static const PatchSize DEFAULT_PATCH_SIZE = PATCH_LEARNED_31;
/** default constructor */
CommonParams(float scale_factor = DEFAULT_SCALE_FACTOR, unsigned int n_levels = DEFAULT_N_LEVELS,
unsigned int first_level = DEFAULT_FIRST_LEVEL, PatchSize patch_size = DEFAULT_PATCH_SIZE);
void read(const FileNode& fn);
void write(FileStorage& fs) const;
/** Coefficient by which we divide the dimensions from one scale pyramid level to the next */
float scale_factor_;
/** The number of levels in the scale pyramid */
unsigned int n_levels_;
/** The level at which the image is given
* if 1, that means we will also look at the image scale_factor_ times bigger
*/
unsigned int first_level_;
/** The size of the patch that will be used for orientation and comparisons */
PatchSize patch_size_;
};
// c:function::default constructor
ORB();
// constructor that initializes all the algorithm parameters
ORB( const CommonParams detector_params );
// returns the number of elements in each descriptor (32 bytes)
int descriptorSize() const;
// detects keypoints using ORB
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints) const;
// detects ORB keypoints and computes the ORB descriptors for them;
// output vector "descriptors" stores elements of descriptors and has size
// equal descriptorSize()*keypoints.size() as each descriptor is
// descriptorSize() elements of this vector.
void operator()(const Mat& img, const Mat& mask,
vector<KeyPoint>& keypoints,
cv::Mat& descriptors,
bool useProvidedKeypoints=false) const;
};
The class implements ORB
.. index:: RandomizedTree
.. _RandomizedTree:

View File

@ -398,6 +398,161 @@ public:
bool useProvidedKeypoints=false) const;
};
/*!
ORB implementation.
*/
class CV_EXPORTS ORB
{
public:
enum PatchSize
{
PATCH_LEARNED_31 = 31
};
/** the size of the signature in bytes */
static const int kBytes = 32;
struct CommonParams
{
static const unsigned int DEFAULT_N_LEVELS = 3;
static const float DEFAULT_SCALE_FACTOR = 1.2;
static const unsigned int DEFAULT_FIRST_LEVEL = 0;
static const PatchSize DEFAULT_PATCH_SIZE = PATCH_LEARNED_31;
/** default constructor */
CommonParams(float scale_factor = DEFAULT_SCALE_FACTOR, unsigned int n_levels = DEFAULT_N_LEVELS,
unsigned int first_level = DEFAULT_FIRST_LEVEL, PatchSize patch_size = DEFAULT_PATCH_SIZE) :
scale_factor_(scale_factor), n_levels_(n_levels), first_level_(first_level >= n_levels ? 0 : first_level),
patch_size_(patch_size)
{
}
void read(const FileNode& fn);
void write(FileStorage& fs) const;
/** Coefficient by which we divide the dimensions from one scale pyramid level to the next */
float scale_factor_;
/** The number of levels in the scale pyramid */
unsigned int n_levels_;
/** The level at which the image is given
* if 1, that means we will also look at the image scale_factor_ times bigger
*/
unsigned int first_level_;
/** The size of the patch that will be used for orientation and comparisons */
PatchSize patch_size_;
};
/** Default Constructor */
ORB()
{
}
/** Constructor
* @param n_features the number of desired features
* @param detector_params parameters to use
*/
ORB(size_t n_features, const CommonParams & detector_params = CommonParams());
/** returns the descriptor size in bytes */
int descriptorSize() const;
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints);
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param useProvidedKeypoints if true, the keypoints are used as an input
*/
void
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, cv::Mat & descriptors,
bool useProvidedKeypoints = false);
private:
/** The size of the patch used when comparing regions in the patterns */
static const int kKernelWidth = 5;
/** Compute the ORB features and descriptors on an image
* @param image the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void
operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints, cv::Mat & descriptors,
bool do_keypoints, bool do_descriptors);
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
void computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid,
std::vector<std::vector<cv::KeyPoint> >& keypoints) const;
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
void
computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints) const;
/** Compute the ORB descriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
void
computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const;
/** Compute the integral image and upadte the cached values
* @param image the image to compute the features and descriptors on
* @param level the scale at which we compute the orientation
* @param descriptors the resulting descriptors
*/
void computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image);
/** Parameters tuning ORB */
CommonParams params_;
/** size of the half patch used for orientation computation, see Rosin - 1999 - Measuring Corner Properties */
int half_patch_size_;
/** pre-computed offsets used for the Harris verification, one vector per scale */
std::vector<std::vector<int> > orientation_horizontal_offsets_;
std::vector<std::vector<int> > orientation_vertical_offsets_;
/** The steps of the integral images for each scale */
std::vector<size_t> integral_image_steps_;
/** The number of desired features per scale */
std::vector<size_t> n_features_per_level_;
/** The overall number of desired features */
size_t n_features_;
/** the end of a row in a circular patch */
std::vector<int> u_max_;
/** The patterns for each level (the patterns are the same, but not their offset */
class OrbPatterns;
std::vector<OrbPatterns*> patterns_;
};
/*!
Maximal Stable Extremal Regions class.
@ -1365,6 +1520,33 @@ protected:
SURF surf;
};
/** Feature detector for the ORB feature
* Basically fast followed by a Harris check
*/
class CV_EXPORTS OrbFeatureDetector : public cv::FeatureDetector
{
public:
/** Default constructor
* @param n_features the number of desired features
* @param params parameters to use
*/
OrbFeatureDetector(size_t n_features = 700, ORB::CommonParams params = ORB::CommonParams());
virtual void read(const cv::FileNode&);
virtual void write(cv::FileStorage&) const;
protected:
virtual void
detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask = cv::Mat()) const;
private:
/** the ORB object we use for the computations */
mutable ORB orb_;
/** The parameters used */
ORB::CommonParams params_;
/** the number of features that need to be retrieved */
unsigned int n_features_;
};
class CV_EXPORTS SimpleBlobDetector : public cv::FeatureDetector
{
public:
@ -1720,6 +1902,40 @@ protected:
SURF surf;
};
/** The descriptor extractor for the ORB descriptor
* There are two ways to speed up its computation:
* - if you know the step size of the integral image, use setStepSize so that offsets are precomputed and cached
* - if you know the integral image, use setIntegralImage so that it is not recomputed. This calls
* setStepSize automatically
*/
class OrbDescriptorExtractor : public cv::DescriptorExtractor
{
public:
/** default constructor
* @param params parameters to use
*/
OrbDescriptorExtractor(ORB::CommonParams params = ORB::CommonParams());
/** destructor */
~OrbDescriptorExtractor()
{
}
virtual int descriptorSize() const;
virtual int descriptorType() const;
virtual void read(const cv::FileNode&);
virtual void write(cv::FileStorage&) const;
protected:
void computeImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, cv::Mat& descriptors) const;
private:
/** the ORB object we use for the computations */
mutable ORB orb_;
/** The parameters used */
ORB::CommonParams params_;
};
/*
* CalonderDescriptorExtractor
*/

View File

@ -108,6 +108,10 @@ Ptr<DescriptorExtractor> DescriptorExtractor::create(const string& descriptorExt
{
de = new SurfDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("ORB"))
{
de = new OrbDescriptorExtractor();
}
else if (!descriptorExtractorType.compare("BRIEF"))
{
de = new BriefDescriptorExtractor();
@ -237,6 +241,40 @@ int SurfDescriptorExtractor::descriptorType() const
return CV_32FC1;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Default constructor */
OrbDescriptorExtractor::OrbDescriptorExtractor(ORB::CommonParams params) :
params_(params)
{
orb_ = ORB(0, params);
}
void OrbDescriptorExtractor::computeImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints,
cv::Mat& descriptors) const
{
cv::Mat empty_mask;
orb_(image, empty_mask, keypoints, descriptors, true);
}
void OrbDescriptorExtractor::read(const cv::FileNode& fn)
{
params_.read(fn);
}
void OrbDescriptorExtractor::write(cv::FileStorage& fs) const
{
params_.write(fs);
}
int OrbDescriptorExtractor::descriptorSize() const
{
return ORB::kBytes;
}
int OrbDescriptorExtractor::descriptorType() const
{
return CV_8UC1;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/****************************************************************************************\
* OpponentColorDescriptorExtractor *
\****************************************************************************************/

View File

@ -108,6 +108,10 @@ Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType )
{
fd = new SurfFeatureDetector();
}
else if( !detectorType.compare( "ORB" ) )
{
fd = new OrbFeatureDetector();
}
else if( !detectorType.compare( "MSER" ) )
{
fd = new MserFeatureDetector();
@ -433,6 +437,53 @@ void SurfFeatureDetector::detectImpl( const Mat& image, vector<KeyPoint>& keypoi
surf(grayImage, mask, keypoints);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void ORB::CommonParams::read(const FileNode& fn)
{
scale_factor_ = fn["scaleFactor"];
n_levels_ = int(fn["nLevels"]);
first_level_ = int(fn["firsLevel"]);
int patch_size = fn["patchSize"];
patch_size_ = PatchSize(patch_size);
}
void ORB::CommonParams::write(FileStorage& fs) const
{
fs << "scaleFactor" << scale_factor_;
fs << "nLevels" << int(n_levels_);
fs << "firsLevel" << int(first_level_);
fs << "patchSize" << int(patch_size_);
}
/** Default constructor
* @param n_features the number of desired features
*/
OrbFeatureDetector::OrbFeatureDetector(size_t n_features, ORB::CommonParams params) :
params_(params)
{
orb_ = ORB(n_features, params);
}
void OrbFeatureDetector::read(const FileNode& fn)
{
params_.read(fn);
n_features_ = int(fn["nFeatures"]);
}
void OrbFeatureDetector::write(FileStorage& fs) const
{
params_.write(fs);
fs << "nFeatures" << int(n_features_);
}
void OrbFeatureDetector::detectImpl(const cv::Mat& image, std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask) const
{
orb_(image, mask, keypoints);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* DenseFeatureDetector
*/

View File

@ -0,0 +1,856 @@
/*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Willow Garage nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/** Authors: Ethan Rublee, Vincent Rabaud, Gary Bradski */
#include "precomp.hpp"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace
{
/** Function that computes the Harris response in a 9 x 9 patch at a given point in an image
* @param patch the 9 x 9 patch
* @param k the k in the Harris formula
* @param dX_offsets pre-computed offset to get all the interesting dX values
* @param dY_offsets pre-computed offset to get all the interesting dY values
* @return
*/
template<typename PatchType, typename SumType>
inline float harris(const cv::Mat& patch, float k, const std::vector<int> &dX_offsets,
const std::vector<int> &dY_offsets)
{
float a = 0, b = 0, c = 0;
static cv::Mat_<SumType> dX(9, 7), dY(7, 9);
SumType * dX_data = reinterpret_cast<SumType*> (dX.data), *dY_data = reinterpret_cast<SumType*> (dY.data);
SumType * dX_data_end = dX_data + 9 * 7;
PatchType * patch_data = reinterpret_cast<PatchType*> (patch.data);
int two_row_offset = 2 * patch.step1();
std::vector<int>::const_iterator dX_offset = dX_offsets.begin(), dY_offset = dY_offsets.begin();
// Compute the differences
for (; dX_data != dX_data_end; ++dX_data, ++dY_data, ++dX_offset, ++dY_offset)
{
*dX_data = (SumType)(*(patch_data + *dX_offset)) - (SumType)(*(patch_data + *dX_offset - 2));
*dY_data = (SumType)(*(patch_data + *dY_offset)) - (SumType)(*(patch_data + *dY_offset - two_row_offset));
}
// Compute the Scharr result
dX_data = reinterpret_cast<SumType*> (dX.data);
dY_data = reinterpret_cast<SumType*> (dY.data);
for (size_t v = 0; v <= 6; v++, dY_data += 2)
{
for (size_t u = 0; u <= 6; u++, ++dX_data, ++dY_data)
{
// 1, 2 for Sobel, 3 and 10 for Scharr
float Ix = 1 * (*dX_data + *(dX_data + 14)) + 2 * (*(dX_data + 7));
float Iy = 1 * (*dY_data + *(dY_data + 2)) + 2 * (*(dY_data + 1));
a += Ix * Ix;
b += Iy * Iy;
c += Ix * Iy;
}
}
return ((a * b - c * c) - (k * ((a + b) * (a + b))));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class used to compute the cornerness of specific points in an image */
struct HarrisResponse
{
/** Constructor
* @param image the image on which the cornerness will be computed (only its step is used
* @param k the k in the Harris formula
*/
explicit HarrisResponse(const cv::Mat& image, double k = 0.04);
/** Compute the cornerness for given keypoints
* @param kpts points at which the cornerness is computed and stored
*/
void operator()(std::vector<cv::KeyPoint>& kpts) const;
private:
/** The cached image to analyze */
cv::Mat image_;
/** The k factor in the Harris corner detection */
double k_;
/** The offset in X to compute the differences */
std::vector<int> dX_offsets_;
/** The offset in Y to compute the differences */
std::vector<int> dY_offsets_;
};
/** Constructor
* @param image the image on which the cornerness will be computed (only its step is used
* @param k the k in the Harris formula
*/
HarrisResponse::HarrisResponse(const cv::Mat& image, double k) :
image_(image), k_(k)
{
// Compute the offsets for the Harris corners once and for all
dX_offsets_.resize(7 * 9);
dY_offsets_.resize(7 * 9);
std::vector<int>::iterator dX_offsets = dX_offsets_.begin(), dY_offsets = dY_offsets_.begin();
unsigned int image_step = image.step1();
for (size_t y = 0; y <= 6 * image_step; y += image_step)
{
int dX_offset = y + 2, dY_offset = y + 2 * image_step;
for (size_t x = 0; x <= 6; ++x)
{
*(dX_offsets++) = dX_offset++;
*(dY_offsets++) = dY_offset++;
}
for (size_t x = 7; x <= 8; ++x)
*(dY_offsets++) = dY_offset++;
}
for (size_t y = 7 * image_step; y <= 8 * image_step; y += image_step)
{
int dX_offset = y + 2;
for (size_t x = 0; x <= 6; ++x)
*(dX_offsets++) = dX_offset++;
}
}
/** Compute the cornerness for given keypoints
* @param kpts points at which the cornerness is computed and stored
*/
void HarrisResponse::operator()(std::vector<cv::KeyPoint>& kpts) const
{
// Those parameters are used to match the OpenCV computation of Harris corners
float scale = (1 << 2) * 7.0 * 255.0;
scale = 1.0 / scale;
float scale_sq_sq = scale * scale * scale * scale;
// define it to 1 if you want to compare to what OpenCV computes
#define HARRIS_TEST 0
#if HARRIS_TEST
cv::Mat_<float> dst;
cv::cornerHarris(image_, dst, 7, 3, k_);
#endif
for (std::vector<cv::KeyPoint>::iterator kpt = kpts.begin(), kpt_end = kpts.end(); kpt != kpt_end; ++kpt)
{
cv::Mat patch = image_(cv::Rect(kpt->pt.x - 4, kpt->pt.y - 4, 9, 9));
// Compute the response
kpt->response = harris<uchar, int> (patch, k_, dX_offsets_, dY_offsets_) * scale_sq_sq;
#if HARRIS_TEST
cv::Mat_<float> Ix(9, 9), Iy(9, 9);
cv::Sobel(patch, Ix, CV_32F, 1, 0, 3, scale);
cv::Sobel(patch, Iy, CV_32F, 0, 1, 3, scale);
float a = 0, b = 0, c = 0;
for (unsigned int y = 1; y <= 7; ++y)
{
for (unsigned int x = 1; x <= 7; ++x)
{
a += Ix(y, x) * Ix(y, x);
b += Iy(y, x) * Iy(y, x);
c += Ix(y, x) * Iy(y, x);
}
}
//[ a c ]
//[ c b ]
float response = (float)((a * b - c * c) - k_ * ((a + b) * (a + b)));
std::cout << kpt->response << " " << response << " " << dst(kpt->pt.y,kpt->pt.x) << std::endl;
#endif
}
}
namespace
{
struct RoiPredicate
{
RoiPredicate(const cv::Rect& r) :
r(r)
{
}
bool operator()(const cv::KeyPoint& keyPt) const
{
return !r.contains(keyPt.pt);
}
cv::Rect r;
};
void runByImageBorder(std::vector<cv::KeyPoint>& keypoints, cv::Size imageSize, int borderSize)
{
if (borderSize > 0)
{
keypoints.erase(
std::remove_if(
keypoints.begin(),
keypoints.end(),
RoiPredicate(
cv::Rect(
cv::Point(borderSize, borderSize),
cv::Point(imageSize.width - borderSize,
imageSize.height - borderSize)))), keypoints.end());
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
inline bool keypointResponseGreater(const cv::KeyPoint& lhs, const cv::KeyPoint& rhs)
{
return lhs.response > rhs.response;
}
/** Simple function that returns the area in the rectangle x1<=x<=x2, y1<=y<=y2 given an integral image
* @param integral_image
* @param x1
* @param y1
* @param x2
* @param y2
* @return
*/
template<typename SumType>
inline SumType integral_rectangle(const SumType * val_ptr, std::vector<int>::const_iterator offset)
{
return *(val_ptr + *offset) - *(val_ptr + *(offset + 1)) - *(val_ptr + *(offset + 2)) + *(val_ptr + *(offset + 3));
}
template<typename SumType>
void IC_Angle_Integral(const cv::Mat& integral_image, const int half_k, cv::KeyPoint& kpt,
const std::vector<int> &horizontal_offsets, const std::vector<int> &vertical_offsets)
{
SumType m_01 = 0, m_10 = 0;
// Go line by line in the circular patch
std::vector<int>::const_iterator horizontal_iterator = horizontal_offsets.begin(), vertical_iterator =
vertical_offsets.begin();
const SumType* val_ptr = &(integral_image.at<SumType> (kpt.pt.y, kpt.pt.x));
for (int uv = 1; uv <= half_k; ++uv)
{
// Do the horizontal lines
m_01 += uv * (-integral_rectangle(val_ptr, horizontal_iterator) + integral_rectangle(val_ptr,
horizontal_iterator + 4));
horizontal_iterator += 8;
// Do the vertical lines
m_10 += uv * (-integral_rectangle(val_ptr, vertical_iterator)
+ integral_rectangle(val_ptr, vertical_iterator + 4));
vertical_iterator += 8;
}
float x = m_10;
float y = m_01;
kpt.angle = cv::fastAtan2(y, x);
}
template<typename PatchType, typename SumType>
void IC_Angle(const cv::Mat& image, const int half_k, cv::KeyPoint& kpt, const std::vector<int> & u_max)
{
SumType m_01 = 0, m_10 = 0/*, m_00 = 0*/;
const PatchType* val_center_ptr_plus = &(image.at<PatchType> (kpt.pt.y, kpt.pt.x)), *val_center_ptr_minus;
// Treat the center line differently, v=0
{
const PatchType* val = val_center_ptr_plus - half_k;
for (int u = -half_k; u <= half_k; ++u, ++val)
m_10 += u * (SumType)(*val);
}
// Go line by line in the circular patch
val_center_ptr_minus = val_center_ptr_plus - image.step1();
val_center_ptr_plus += image.step1();
for (int v = 1; v <= half_k; ++v, val_center_ptr_plus += image.step1(), val_center_ptr_minus -= image.step1())
{
// The beginning of the two lines
const PatchType* val_ptr_plus = val_center_ptr_plus - u_max[v];
const PatchType* val_ptr_minus = val_center_ptr_minus - u_max[v];
// Proceed over the two lines
SumType v_sum = 0;
for (int u = -u_max[v]; u <= u_max[v]; ++u, ++val_ptr_plus, ++val_ptr_minus)
{
SumType val_plus = *val_ptr_plus, val_minus = *val_ptr_minus;
v_sum += (val_plus - val_minus);
m_10 += u * (val_plus + val_minus);
}
m_01 += v * v_sum;
}
float x = m_10;// / float(m_00);// / m_00;
float y = m_01;// / float(m_00);// / m_00;
kpt.angle = cv::fastAtan2(y, x);
}
inline int smoothedSum(const int *center, const int* int_diff)
{
// Points in order 01
// 32
return *(center + int_diff[2]) - *(center + int_diff[3]) - *(center + int_diff[1]) + *(center + int_diff[0]);
}
inline char smoothed_comparison(const int * center, const int* diff, int l, int m)
{
static const char score[] = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
return (smoothedSum(center, diff + l) < smoothedSum(center, diff + l + 4)) ? score[m] : 0;
}
}
namespace cv
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
class ORB::OrbPatterns
{
public:
// We divide in 30 wedges
static const int kNumAngles = 30;
/** Constructor
* Add +1 to the step as this is the step of the integral image, not image
* @param sz
* @param normalized_step
* @return
*/
OrbPatterns(int sz, unsigned int normalized_step_size) :
normalized_step_(normalized_step_size)
{
relative_patterns_.resize(kNumAngles);
for (int i = 0; i < kNumAngles; i++)
generateRelativePattern(i, sz, relative_patterns_[i]);
}
/** Generate the patterns and relative patterns
* @param sz
* @param normalized_step
* @return
*/
static std::vector<cv::Mat> generateRotatedPatterns()
{
std::vector<cv::Mat> rotated_patterns(kNumAngles);
cv::Mat_<cv::Vec2i> pattern = cv::Mat(512, 1, CV_32SC2, bit_pattern_31_);
for (int i = 0; i < kNumAngles; i++)
{
const cv::Mat rotation_matrix = getRotationMat(i);
transform(pattern, rotated_patterns[i], rotation_matrix);
// Make sure the pattern is now one channel, and 512*2
rotated_patterns[i] = rotated_patterns[i].reshape(1, 512);
}
return rotated_patterns;
}
/** Compute the brief pattern for a given keypoint
* @param angle the orientation of the keypoint
* @param sum the integral image
* @param pt the keypoint
* @param descriptor the descriptor
*/
void compute(const cv::KeyPoint& kpt, const cv::Mat& sum, unsigned char * desc) const
{
float angle = kpt.angle;
// Compute the pointer to the center of the feature
int img_y = (int)(kpt.pt.y + 0.5);
int img_x = (int)(kpt.pt.x + 0.5);
const int * center = reinterpret_cast<const int *> (sum.ptr(img_y)) + img_x;
// Compute the pointer to the absolute pattern row
const int * diff = relative_patterns_[angle2Wedge(angle)].ptr<int> (0);
for (int i = 0, j = 0; i < 32; ++i, j += 64)
{
desc[i] = smoothed_comparison(center, diff, j, 7) | smoothed_comparison(center, diff, j + 8, 6)
| smoothed_comparison(center, diff, j + 16, 5) | smoothed_comparison(center, diff, j + 24, 4)
| smoothed_comparison(center, diff, j + 32, 3) | smoothed_comparison(center, diff, j + 40, 2)
| smoothed_comparison(center, diff, j + 48, 1) | smoothed_comparison(center, diff, j + 56, 0);
}
}
/** Compare the currently used normalized step of the integral image to a new one
* @param integral_image the integral we want to use the pattern on
* @return true if the two steps are equal
*/
bool compareNormalizedStep(const cv::Mat & integral_image) const
{
return (normalized_step_ == integral_image.step1());
}
/** Compare the currently used normalized step of the integral image to a new one
* @param step_size the normalized step size to compare to
* @return true if the two steps are equal
*/
bool compareNormalizedStep(unsigned int normalized_step_size) const
{
return (normalized_step_ == normalized_step_size);
}
private:
static inline int angle2Wedge(float angle)
{
return (angle / 360) * kNumAngles;
}
void generateRelativePattern(int angle_idx, int sz, cv::Mat & relative_pattern)
{
// Create the relative pattern
relative_pattern.create(512, 4, CV_32SC1);
int * relative_pattern_data = reinterpret_cast<int*> (relative_pattern.data);
// Get the original rotated pattern
const int * pattern_data;
switch (sz)
{
default:
pattern_data = reinterpret_cast<int*> (rotated_patterns_[angle_idx].data);
break;
}
int half_kernel = ORB::kKernelWidth / 2;
for (unsigned int i = 0; i < 512; ++i)
{
int center = *(pattern_data + 2 * i) + normalized_step_ * (*(pattern_data + 2 * i + 1));
// Points in order 01
// 32
// +1 is added for certain coordinates for the integral image
*(relative_pattern_data++) = center - half_kernel - half_kernel * normalized_step_;
*(relative_pattern_data++) = center + (half_kernel + 1) - half_kernel * normalized_step_;
*(relative_pattern_data++) = center + (half_kernel + 1) + (half_kernel + 1) * normalized_step_;
*(relative_pattern_data++) = center - half_kernel + (half_kernel + 1) * normalized_step_;
}
}
static cv::Mat getRotationMat(int angle_idx)
{
float a = float(angle_idx) / kNumAngles * CV_PI * 2;
return (cv::Mat_<float>(2, 2) << cos(a), -sin(a), sin(a), cos(a));
}
/** Contains the relative patterns (rotated ones in relative coordinates)
*/
std::vector<cv::Mat_<int> > relative_patterns_;
/** The step of the integral image
*/
size_t normalized_step_;
/** Pattern loaded from the include files
*/
static std::vector<cv::Mat> rotated_patterns_;
static int bit_pattern_31_[256 * 4]; //number of tests * 4 (x1,y1,x2,y2)
};
std::vector<cv::Mat> ORB::OrbPatterns::rotated_patterns_ = OrbPatterns::generateRotatedPatterns();
//this is the definition for BIT_PATTERN
#include "orb_pattern.i"
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Constructor
* @param detector_params parameters to use
*/
ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
int n_desired_features_per_scale = n_features / ((1.0 / std::pow(params_.scale_factor_, 2 * params_.n_levels_) - 1)
/ (1.0 / std::pow(params_.scale_factor_, 2) - 1));
n_features_per_level_.resize(detector_params.n_levels_);
for (unsigned int level = 0; level < detector_params.n_levels_; level++)
{
n_desired_features_per_scale /= std::pow(params_.scale_factor_, 2);
n_features_per_level_[level] = n_desired_features_per_scale;
}
// pre-compute the end of a row in a circular patch
half_patch_size_ = params_.patch_size_ / 2;
u_max_.resize(half_patch_size_ + 1);
for (int v = 0; v <= half_patch_size_ * sqrt(2) / 2 + 1; ++v)
u_max_[v] = std::floor(sqrt(half_patch_size_ * half_patch_size_ - v * v) + 0.5);
// Make sure we are symmetric
for (int v = half_patch_size_, v_0 = 0; v >= half_patch_size_ * sqrt(2) / 2; --v)
{
while (u_max_[v_0] == u_max_[v_0 + 1])
++v_0;
u_max_[v] = v_0;
++v_0;
}
}
/** returns the descriptor size in bytes */
int ORB::descriptorSize() const {
return kBytes;
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints)
{
cv::Mat empty_descriptors;
this->operator ()(image, mask, keypoints, empty_descriptors, true, false);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param useProvidedKeypoints if true, the keypoints are used as an input
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints,
cv::Mat & descriptors, bool useProvidedKeypoints)
{
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true);
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
* @param keypoints the resulting keypoints
* @param descriptors the resulting descriptors
* @param do_keypoints if true, the keypoints are computed, otherwise used as an input
* @param do_descriptors if true, also computes the descriptors
*/
void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv::KeyPoint> & keypoints_in_out,
cv::Mat & descriptors, bool do_keypoints, bool do_descriptors)
{
if ((!do_keypoints) && (!do_descriptors))
return;
if (do_keypoints)
keypoints_in_out.clear();
if (do_descriptors)
descriptors.release();
// Pre-compute the scale pyramids
std::vector<cv::Mat> image_pyramid(params_.n_levels_), mask_pyramid(params_.n_levels_);
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
// Compute the resized image
if (level != params_.first_level_)
{
float scale = 1 / std::pow(params_.scale_factor_, level - params_.first_level_);
cv::resize(image, image_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
if (!mask.empty())
cv::resize(mask, mask_pyramid[level], cv::Size(), scale, scale, cv::INTER_AREA);
}
else
{
image_pyramid[level] = image;
mask_pyramid[level] = mask;
}
}
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
std::vector<std::vector<cv::KeyPoint> > all_keypoints;
if (do_keypoints)
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints);
else
{
// Cluster the input keypoints
all_keypoints.reserve(params_.n_levels_);
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint
!= keypoint_end; ++keypoint)
all_keypoints[keypoint->octave].push_back(*keypoint);
}
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
// Compute the resized image
cv::Mat & working_mat = image_pyramid[level];
// Compute the integral image
cv::Mat integral_image;
if (do_descriptors)
// if we don't do the descriptors (and therefore, we only do the keypoints, it is faster to not compute the
// integral image
computeIntegralImage(working_mat, level, integral_image);
// Compute the features
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level];
if (do_keypoints)
computeOrientation(working_mat, integral_image, level, keypoints);
// Compute the descriptors
cv::Mat desc;
if (do_descriptors)
computeDescriptors(working_mat, integral_image, level, keypoints, desc);
// Copy to the output data
if (!desc.empty())
{
if (do_keypoints)
{
// Rescale the coordinates
if (level != params_.first_level_)
{
float scale = std::pow(params_.scale_factor_, level - params_.first_level_);
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->pt *= scale;
}
// And add the keypoints to the output
keypoints_in_out.insert(keypoints_in_out.end(), keypoints.begin(), keypoints.end());
}
if (do_descriptors)
{
if (descriptors.empty())
desc.copyTo(descriptors);
else
descriptors.push_back(desc);
}
}
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
* @param keypoints the resulting keypoints, clustered per level
*/
void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std::vector<cv::Mat>& mask_pyramid,
std::vector<std::vector<cv::KeyPoint> >& all_keypoints_out) const
{
all_keypoints_out.resize(params_.n_levels_);
std::vector<cv::KeyPoint> all_keypoints;
all_keypoints.reserve(2 * n_features_);
for (unsigned int level = 0; level < params_.n_levels_; ++level)
{
all_keypoints_out[level].reserve(n_features_per_level_[level]);
std::vector<cv::KeyPoint> keypoints;
// Detect FAST features, 20 is a good threshold
cv::FastFeatureDetector fd(20, true);
fd.detect(image_pyramid[level], keypoints, mask_pyramid[level]);
// Remove keypoints very close to the border
// half_patch_size_ for orientation, 4 for Harris
unsigned int border_safety = std::max(half_patch_size_, 4);
#if ((CV_MAJOR_VERSION >= 2) && ((CV_MINOR_VERSION >2) || ((CV_MINOR_VERSION == 2) && (CV_SUBMINOR_VERSION>=9))))
cv::KeyPointsFilter::runByImageBorder(keypoints, image_pyramid[level].size(), border_safety);
#else
::runByImageBorder(keypoints, image_pyramid[level].size(), border_safety);
#endif
// Keep more points than necessary as FAST does not give amazing corners
if (keypoints.size() > 2 * n_features_per_level_[level])
{
std::nth_element(keypoints.begin(), keypoints.begin() + 2 * n_features_per_level_[level], keypoints.end(),
keypointResponseGreater);
keypoints.resize(2 * n_features_per_level_[level]);
}
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponse h(image_pyramid[level]);
h(keypoints);
// Set the level of the coordinates
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
keypoint->octave = level;
all_keypoints.insert(all_keypoints.end(), keypoints.begin(), keypoints.end());
}
// Only keep what we need
if (all_keypoints.size() > n_features_)
{
std::nth_element(all_keypoints.begin(), all_keypoints.begin() + n_features_, all_keypoints.end(),
keypointResponseGreater);
all_keypoints.resize(n_features_);
}
// Cluster the keypoints
for (std::vector<cv::KeyPoint>::iterator keypoint = all_keypoints.begin(), keypoint_end = all_keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
all_keypoints_out[keypoint->octave].push_back(*keypoint);
}
/** Compute the ORB keypoint orientations
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the iamge (can be empty, but the computation will be slower)
* @param scale the scale at which we compute the orientation
* @param keypoints the resulting keypoints
*/
void ORB::computeOrientation(const cv::Mat& image, const cv::Mat& integral_image, unsigned int scale,
std::vector<cv::KeyPoint>& keypoints) const
{
// If using the integral image, some offsets will be pre-computed for speed
std::vector<int> horizontal_offsets(8 * half_patch_size_), vertical_offsets(8 * half_patch_size_);
// Process each keypoint
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
{
//get a patch at the keypoint
if (integral_image.empty())
{
switch (image.depth())
{
case CV_8U:
IC_Angle<uchar, int> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_32S:
IC_Angle<int, int> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_32F:
IC_Angle<float, float> (image, half_patch_size_, *keypoint, u_max_);
break;
case CV_64F:
IC_Angle<double, double> (image, half_patch_size_, *keypoint, u_max_);
break;
}
}
else
{
// use the integral image if you can
switch (integral_image.depth())
{
case CV_32S:
IC_Angle_Integral<int> (integral_image, half_patch_size_, *keypoint, orientation_horizontal_offsets_[scale],
orientation_vertical_offsets_[scale]);
break;
case CV_32F:
IC_Angle_Integral<float> (integral_image, half_patch_size_, *keypoint,
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
break;
case CV_64F:
IC_Angle_Integral<double> (integral_image, half_patch_size_, *keypoint,
orientation_horizontal_offsets_[scale], orientation_vertical_offsets_[scale]);
break;
}
}
}
}
/** Compute the integral image and upadte the cached values
* @param image the image to compute the features and descriptors on
* @param level the scale at which we compute the orientation
* @param descriptors the resulting descriptors
*/
void ORB::computeIntegralImage(const cv::Mat & image, unsigned int level, cv::Mat &integral_image)
{
integral(image, integral_image, CV_32S);
integral_image_steps_.resize(params_.n_levels_, 0);
if (integral_image_steps_[level] == integral_image.step1())
return;
// If the integral image dimensions have changed, recompute everything
int integral_image_step = integral_image.step1();
// Cache the step sizes
integral_image_steps_[level] = integral_image_step;
// Cache the offsets for the orientation
orientation_horizontal_offsets_.resize(params_.n_levels_);
orientation_vertical_offsets_.resize(params_.n_levels_);
orientation_horizontal_offsets_[level].resize(8 * half_patch_size_);
orientation_vertical_offsets_[level].resize(8 * half_patch_size_);
for (int v = 1, offset_index = 0; v <= half_patch_size_; ++v)
{
// Compute the offsets to use if using the integral image
for (int signed_v = -v; signed_v <= v; signed_v += 2 * v)
{
// the offsets are computed so that we can compute the integral image
// elem at 0 - eleme at 1 - elem at 2 + elem at 3
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step + u_max_[v] + 1;
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v + 1;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step + u_max_[v] + 1;
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v + 1;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = (signed_v + 1) * integral_image_step - u_max_[v];
orientation_vertical_offsets_[level][offset_index] = (u_max_[v] + 1) * integral_image_step + signed_v;
++offset_index;
orientation_horizontal_offsets_[level][offset_index] = signed_v * integral_image_step - u_max_[v];
orientation_vertical_offsets_[level][offset_index] = -u_max_[v] * integral_image_step + signed_v;
++offset_index;
}
}
// Remove the previous version if dimensions are different
patterns_.resize(params_.n_levels_, 0);
if ((patterns_[level]) && (patterns_[level]->compareNormalizedStep(integral_image)))
{
delete patterns_[level];
patterns_[level] = 0;
}
if (!patterns_[level])
patterns_[level] = new OrbPatterns(params_.patch_size_, integral_image.step1());
}
/** Compute the ORB decriptors
* @param image the image to compute the features and descriptors on
* @param integral_image the integral image of the image (can be empty, but the computation will be slower)
* @param level the scale at which we compute the orientation
* @param keypoints the keypoints to use
* @param descriptors the resulting descriptors
*/
void ORB::computeDescriptors(const cv::Mat& image, const cv::Mat& integral_image, unsigned int level,
std::vector<cv::KeyPoint>& keypoints, cv::Mat & descriptors) const
{
//convert to grayscale if more than one color
cv::Mat gray_image = image;
if (image.type() != CV_8UC1)
cv::cvtColor(image, gray_image, CV_BGR2GRAY);
int border_safety = params_.patch_size_ + kKernelWidth / 2 + 2;
//Remove keypoints very close to the border
cv::KeyPointsFilter::runByImageBorder(keypoints, image.size(), border_safety);
// Get the patterns to apply
cv::Ptr<OrbPatterns> patterns = patterns_[level];
//create the descriptor mat, keypoints.size() rows, BYTES cols
descriptors = cv::Mat::zeros(keypoints.size(), kBytes, CV_8UC1);
for (size_t i = 0; i < keypoints.size(); i++)
// look up the test pattern
patterns->compute(keypoints[i], integral_image, descriptors.ptr(i));
}
}

View File

@ -0,0 +1,259 @@
//x1,y1,x2,y2
int ORB::OrbPatterns::bit_pattern_31_[256*4] ={
8,-3, 9,5/*mean (0), correlation (0)*/,
4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/,
-11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/,
7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/,
2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/,
1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/,
-2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/,
-13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/,
-13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/,
10,4, 11,9/*mean (0.122065), correlation (0.093285)*/,
-13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/,
-11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/,
7,7, 12,6/*mean (0.160583), correlation (0.130064)*/,
-4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/,
-13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/,
-9,0, -7,5/*mean (0.198234), correlation (0.143636)*/,
12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/,
-3,6, -2,12/*mean (0.166847), correlation (0.171682)*/,
-6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/,
11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/,
4,7, 5,1/*mean (0.205106), correlation (0.186848)*/,
5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/,
3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/,
-8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/,
-2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/,
-13,12, -8,10/*mean (0.14783), correlation (0.206356)*/,
-7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/,
-4,2, -3,7/*mean (0.188237), correlation (0.21384)*/,
-10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/,
5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/,
5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/,
1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/,
9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/,
4,7, 4,12/*mean (0.131005), correlation (0.257622)*/,
2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/,
-4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/,
-8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/,
4,11, 9,12/*mean (0.226226), correlation (0.258255)*/,
0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/,
-13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/,
-3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/,
-6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/,
8,12, 10,7/*mean (0.225337), correlation (0.282851)*/,
0,9, 1,3/*mean (0.226687), correlation (0.278734)*/,
7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/,
-13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/,
10,7, 12,1/*mean (0.125517), correlation (0.31089)*/,
-6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/,
10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/,
-13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/,
-13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/,
3,3, 7,8/*mean (0.177755), correlation (0.309394)*/,
5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/,
-1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/,
3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/,
2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/,
-13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/,
-13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/,
-13,3, -11,8/*mean (0.134222), correlation (0.322922)*/,
-7,12, -4,7/*mean (0.153284), correlation (0.337061)*/,
6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/,
-9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/,
-2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/,
-12,5, -7,5/*mean (0.207805), correlation (0.335631)*/,
3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/,
-7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/,
-3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/,
2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/,
-11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/,
-1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/,
5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/,
-4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/,
-9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/,
-12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/,
10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/,
7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/,
-7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/,
-4,9, -3,4/*mean (0.099865), correlation (0.372276)*/,
7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/,
-7,6, -5,1/*mean (0.126125), correlation (0.369606)*/,
-13,11, -12,5/*mean (0.130364), correlation (0.358502)*/,
-3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/,
7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/,
-13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/,
1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/,
2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/,
-4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/,
-1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/,
7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/,
1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/,
9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/,
-1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/,
-13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/,
7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/,
12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/,
6,3, 7,11/*mean (0.1074), correlation (0.413224)*/,
5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/,
2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/,
3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/,
2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/,
9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/,
-8,4, -7,9/*mean (0.183682), correlation (0.402956)*/,
-11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/,
1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/,
6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/,
2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/,
6,3, 11,0/*mean (0.204588), correlation (0.411762)*/,
3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/,
7,8, 9,3/*mean (0.213237), correlation (0.409306)*/,
-11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/,
-10,11, -5,10/*mean (0.247672), correlation (0.413392)*/,
-5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/,
-10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/,
8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/,
4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/,
-10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/,
4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/,
-2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/,
-5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/,
7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/,
-9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/,
-5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/,
8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/,
-9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/,
1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/,
7,-4, 9,1/*mean (0.132692), correlation (0.454)*/,
-2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/,
11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/,
-12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/,
3,7, 7,12/*mean (0.147627), correlation (0.456643)*/,
5,5, 10,8/*mean (0.152901), correlation (0.455036)*/,
0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/,
-9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/,
0,7, 2,12/*mean (0.18312), correlation (0.433855)*/,
-1,2, 1,7/*mean (0.185504), correlation (0.443838)*/,
5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/,
3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/,
-13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/,
-5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/,
-4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/,
6,5, 8,0/*mean (0.1972), correlation (0.450481)*/,
-7,6, -6,12/*mean (0.199438), correlation (0.458156)*/,
-13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/,
1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/,
4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/,
-2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/,
2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/,
-2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/,
4,1, 9,3/*mean (0.23962), correlation (0.444824)*/,
-6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/,
-3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/,
7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/,
4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/,
-13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/,
7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/,
7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/,
-7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/,
-8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/,
-13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/,
2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/,
10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/,
-6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/,
8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/,
2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/,
-11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/,
-12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/,
-11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/,
5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/,
-2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/,
-1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/,
-13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/,
-10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/,
-3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/,
2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/,
-9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/,
-4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/,
-4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/,
-6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/,
6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/,
-13,11, -5,5/*mean (0.162427), correlation (0.501907)*/,
11,11, 12,6/*mean (0.16652), correlation (0.497632)*/,
7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/,
-1,12, 0,7/*mean (0.169456), correlation (0.495339)*/,
-4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/,
-7,1, -6,7/*mean (0.175), correlation (0.500024)*/,
-13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/,
-7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/,
-8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/,
-5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/,
-13,7, -8,10/*mean (0.196739), correlation (0.496503)*/,
1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/,
1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/,
9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/,
5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/,
-1,11, 1,-13/*mean (0.212), correlation (0.499414)*/,
-9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/,
-1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/,
-13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/,
8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/,
2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/,
7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/,
-10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/,
-10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/,
4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/,
3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/,
-4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/,
5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/,
4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/,
-9,9, -4,3/*mean (0.236977), correlation (0.497739)*/,
0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/,
-12,1, -6,1/*mean (0.243297), correlation (0.489447)*/,
3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/,
-10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/,
8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/,
-8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/,
2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/,
10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/,
6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/,
-7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/,
-3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/,
-1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/,
-3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/,
-8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/,
4,2, 12,12/*mean (0.01778), correlation (0.546921)*/,
2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/,
6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/,
3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/,
11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/,
-3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/,
4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/,
2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/,
-10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/,
-13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/,
-13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/,
6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/,
0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/,
-13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/,
-9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/,
-13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/,
5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/,
2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/,
-1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/,
9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/,
11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/,
3,0, 3,5/*mean (0.101147), correlation (0.525576)*/,
-1,4, 0,10/*mean (0.105263), correlation (0.531498)*/,
3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/,
-13,0, -10,5/*mean (0.112798), correlation (0.536582)*/,
5,8, 12,11/*mean (0.114181), correlation (0.555793)*/,
8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/,
7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/,
-10,4, -10,9/*mean (0.12094), correlation (0.554785)*/,
7,3, 12,4/*mean (0.122582), correlation (0.555825)*/,
9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/,
7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/,
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
};