mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
Merge pull request #24561 from asmorkalov:usac_bug_fix_port
Port of Replace double atomic in USAC
This commit is contained in:
commit
4b4c130f0a
@ -210,12 +210,12 @@ public:
|
||||
class Score {
|
||||
public:
|
||||
int inlier_number;
|
||||
double score;
|
||||
float score;
|
||||
Score () { // set worst case
|
||||
inlier_number = 0;
|
||||
score = std::numeric_limits<double>::max();
|
||||
score = std::numeric_limits<float>::max();
|
||||
}
|
||||
Score (int inlier_number_, double score_) { // copy constructor
|
||||
Score (int inlier_number_, float score_) { // copy constructor
|
||||
inlier_number = inlier_number_;
|
||||
score = score_;
|
||||
}
|
||||
@ -254,7 +254,7 @@ public:
|
||||
// get @inliers of the @model for given threshold
|
||||
virtual int getInliers (const Mat &model, std::vector<int> &inliers, double thr) const = 0;
|
||||
// Set the best score, so evaluation of the model can terminate earlier
|
||||
virtual void setBestScore (double best_score_) = 0;
|
||||
virtual void setBestScore (float best_score_) = 0;
|
||||
// set @inliers_mask: true if point i is inlier, false - otherwise.
|
||||
virtual int getInliers (const Mat &model, std::vector<bool> &inliers_mask) const = 0;
|
||||
virtual int getPointsSize() const = 0;
|
||||
|
@ -175,6 +175,8 @@ public:
|
||||
Matx33d Bz(bz);
|
||||
// Bz is rank 2, matrix, so epipole is its null-vector
|
||||
Vec3d xy1 = Utils::getRightEpipole(Mat(Bz * (1/sqrt(norm_bz))));
|
||||
const double one_over_xy1_norm = 1 / sqrt(xy1[0] * xy1[0] + xy1[1] * xy1[1] + xy1[2] * xy1[2]);
|
||||
xy1 *= one_over_xy1_norm;
|
||||
|
||||
if (fabs(xy1(2)) < 1e-10) continue;
|
||||
Mat_<double> E(3,3);
|
||||
|
@ -69,7 +69,7 @@ public:
|
||||
else if (inlier_number - point < preemptive_thr)
|
||||
break;
|
||||
// score is negative inlier number! If less then better
|
||||
return {inlier_number, -static_cast<double>(inlier_number)};
|
||||
return {inlier_number, -static_cast<float>(inlier_number)};
|
||||
}
|
||||
|
||||
Score getScore (const std::vector<float> &errors) const override {
|
||||
@ -78,10 +78,10 @@ public:
|
||||
if (errors[point] < threshold)
|
||||
inlier_number++;
|
||||
// score is negative inlier number! If less then better
|
||||
return {inlier_number, -static_cast<double>(inlier_number)};
|
||||
return {inlier_number, -static_cast<float>(inlier_number)};
|
||||
}
|
||||
|
||||
void setBestScore(double best_score_) override {
|
||||
void setBestScore(float best_score_) override {
|
||||
if (best_score > best_score_) best_score = best_score_;
|
||||
}
|
||||
|
||||
@ -106,18 +106,17 @@ protected:
|
||||
const Ptr<Error> error;
|
||||
const int points_size;
|
||||
const double threshold, k_msac;
|
||||
double best_score, norm_thr, one_over_thr;
|
||||
const float norm_thr, one_over_thr;
|
||||
float best_score;
|
||||
public:
|
||||
MsacQualityImpl (int points_size_, double threshold_, const Ptr<Error> &error_, double k_msac_)
|
||||
: error (error_), points_size (points_size_), threshold (threshold_), k_msac(k_msac_) {
|
||||
best_score = std::numeric_limits<double>::max();
|
||||
norm_thr = threshold*k_msac;
|
||||
one_over_thr = 1 / norm_thr;
|
||||
}
|
||||
: error (error_), points_size (points_size_), threshold (threshold_), k_msac(k_msac_),
|
||||
norm_thr(static_cast<float>(threshold*k_msac)), one_over_thr(1.f/norm_thr),
|
||||
best_score(std::numeric_limits<float>::max()) {}
|
||||
|
||||
inline Score getScore (const Mat &model) const override {
|
||||
error->setModelParameters(model);
|
||||
double err, sum_errors = 0;
|
||||
float err, sum_errors = 0;
|
||||
int inlier_number = 0;
|
||||
const auto preemptive_thr = points_size + best_score;
|
||||
for (int point = 0; point < points_size; point++) {
|
||||
@ -133,7 +132,7 @@ public:
|
||||
}
|
||||
|
||||
Score getScore (const std::vector<float> &errors) const override {
|
||||
double sum_errors = 0;
|
||||
float sum_errors = 0;
|
||||
int inlier_number = 0;
|
||||
for (int point = 0; point < points_size; point++) {
|
||||
const auto err = errors[point];
|
||||
@ -146,7 +145,7 @@ public:
|
||||
return {inlier_number, sum_errors};
|
||||
}
|
||||
|
||||
void setBestScore(double best_score_) override {
|
||||
void setBestScore(float best_score_) override {
|
||||
if (best_score > best_score_) best_score = best_score_;
|
||||
}
|
||||
|
||||
@ -244,7 +243,7 @@ public:
|
||||
} else if (total_loss + point_idx > preemptive_thr)
|
||||
break;
|
||||
}
|
||||
return {num_tentative_inliers, total_loss};
|
||||
return {num_tentative_inliers, (float)total_loss};
|
||||
}
|
||||
|
||||
Score getScore (const std::vector<float> &errors) const override {
|
||||
@ -263,10 +262,10 @@ public:
|
||||
(stored_complete_gamma_values[x] - gamma_value_of_k)) * norm_loss);
|
||||
}
|
||||
}
|
||||
return {num_tentative_inliers, total_loss};
|
||||
return {num_tentative_inliers, (float)total_loss};
|
||||
}
|
||||
|
||||
void setBestScore (double best_loss) override {
|
||||
void setBestScore (float best_loss) override {
|
||||
if (previous_best_loss > best_loss) previous_best_loss = best_loss;
|
||||
}
|
||||
|
||||
@ -317,7 +316,7 @@ public:
|
||||
return {inlier_number, Utils::findMedian (errors)};
|
||||
}
|
||||
|
||||
void setBestScore (double /*best_score*/) override {}
|
||||
void setBestScore (float /*best_score*/) override {}
|
||||
|
||||
int getPointsSize () const override { return points_size; }
|
||||
int getInliers (const Mat &model, std::vector<int> &inliers) const override
|
||||
@ -487,9 +486,9 @@ public:
|
||||
if (last_model_is_good && do_sprt) {
|
||||
out_score.inlier_number = tested_inliers;
|
||||
if (score_type == ScoreMethod::SCORE_METHOD_MSAC)
|
||||
out_score.score = sum_errors;
|
||||
out_score.score = static_cast<float>(sum_errors);
|
||||
else if (score_type == ScoreMethod::SCORE_METHOD_RANSAC)
|
||||
out_score.score = -static_cast<double>(tested_inliers);
|
||||
out_score.score = -static_cast<float>(tested_inliers);
|
||||
else out_score = quality->getScore(errors);
|
||||
}
|
||||
return last_model_is_good;
|
||||
|
@ -818,7 +818,7 @@ bool UniversalRANSAC::run(Ptr<RansacOutput> &ransac_output) {
|
||||
const bool is_prosac = params->getSampler() == SamplingMethod::SAMPLING_PROSAC;
|
||||
std::atomic_bool success(false);
|
||||
std::atomic_int num_hypothesis_tested(0), thread_cnt(0), max_number_inliers(0), subset_size, termination_length;
|
||||
std::atomic<double> best_score_all(std::numeric_limits<double>::max());
|
||||
std::atomic<float> best_score_all(std::numeric_limits<float>::max());
|
||||
std::vector<Score> best_scores(MAX_THREADS), best_scores_not_LO;
|
||||
std::vector<Mat> best_models(MAX_THREADS), best_models_not_LO, K1_apx, K2_apx;
|
||||
std::vector<int> num_tested_models_threads(MAX_THREADS), growth_function, non_random_inliers;
|
||||
@ -867,7 +867,7 @@ bool UniversalRANSAC::run(Ptr<RansacOutput> &ransac_output) {
|
||||
model_verifier, local_optimization, termination, sampler, lo_sampler, weight_fnc, true);
|
||||
bool is_last_from_LO_thread = false;
|
||||
Mat best_model_thread, non_degenerate_model, lo_model, best_not_LO_thread;
|
||||
Score best_score_thread, current_score, non_denegenerate_model_score, lo_score,best_score_all_threads, best_not_LO_score_thread;
|
||||
Score best_score_thread, current_score, non_denegenerate_model_score, lo_score, best_score_all_threads, best_not_LO_score_thread;
|
||||
std::vector<int> sample(estimator->getMinimalSampleSize()), best_sample_thread, supports;
|
||||
supports.reserve(3*MAX_MODELS_ADAPT); // store model supports
|
||||
std::vector<bool> best_inliers_mask_local(points_size, false), model_inliers_mask(points_size, false);
|
||||
@ -875,7 +875,8 @@ bool UniversalRANSAC::run(Ptr<RansacOutput> &ransac_output) {
|
||||
auto update_best = [&] (const Score &new_score, const Mat &new_model, bool from_LO=false) {
|
||||
// update best score of all threads
|
||||
if (max_number_inliers < new_score.inlier_number) max_number_inliers = new_score.inlier_number;
|
||||
if (best_score_all > new_score.score) best_score_all = new_score.score;
|
||||
if (best_score_all > new_score.score)
|
||||
best_score_all = new_score.score;
|
||||
best_score_all_threads = Score(max_number_inliers, best_score_all);
|
||||
//
|
||||
quality->getInliers(new_model, model_inliers_mask);
|
||||
@ -924,7 +925,7 @@ bool UniversalRANSAC::run(Ptr<RansacOutput> &ransac_output) {
|
||||
success = num_hypothesis_tested++ > max_iters;
|
||||
if (iters % 10 && !adapt) {
|
||||
// Synchronize threads. just to speed verification of model.
|
||||
quality->setBestScore(std::min(best_score_thread.score, (double)best_score_all));
|
||||
quality->setBestScore(std::min(best_score_thread.score, (float)best_score_all));
|
||||
model_verifier->update(best_score_thread.inlier_number > max_number_inliers ? best_score_thread : best_score_all_threads, iters);
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user