initial version of Lab2RGB_f tetrahedral interpolation written

RGB2Lab_f added, bugs fixed, moved to float

several bugs fixed

LUT fixed, no switch in tetraInterpolate()

temporary code; to be removed and rewritten

before refactoring

extra interpolations removed, some things to do left

added Lab2RGB_b +XYZ version, etc.

basic version is done, to be sped up

tetra refactored

interpolations: LUT for weights, refactor., etc.

address arithm optimized

initial version of vectorized code added (not compiling now)

compilation fixed, now segfaults

a lot of fixes, vectorization temp. disabled

fixed trilinear shift size, max error dropped from 19 to 10

fixed several bugs (255 vs 256, signed vs unsigned, bIdx)

minor changes

packed: address arithmetics fixed

shorter code

experiments with pure integer calculations

Lab2RGB max error decreased to 2; need to clean the code

ready for vectorization; need cleaning

vectorized, to be debugged

precision fixed, max error is 2

Lab->XYZ shortened

minor fixes

Lab2RGB_f version fixed, to be completely rewritten using _b code

RGB2Lab_f vectorized

minors

moved to separate file

refactored Lab2RGB to float and int versions

minor fix

Lab2RGB_f vectorized

minor refactoring

Lab2RGBint refactored: process methods, vectorize by 4 pix

Lab2RGB_f int version is done

cleanup extra code

code copied to color.cpp

fixed blue idx bug

optimizations enabled when testing; mulFracConst introduced

divConst -> mulFracConst

calc min time in perf instead of avg

minors

process() slightly sped up

Lab2RGB_f: disabled int version

reinterpret added, minor fixes in names

some warnings fixed

changes transferred to color.cpp

RGB2Lab_f code (and trilinear interpolation code) moved to rgb2lab_faster

whitespace

shift negative fixed

more warnings fixed

"constant condition" warnings fixed, little speed up

minor changes

test_photo decolor fixed

changes copied to test_lab.cpp

idx bounds checking in LUT init

several fixes

WIP: softfloat almost integrated

test_lab partially rewritten to SoftFloat

color.cpp rewritten to SoftFloat

test_lab.cpp: accuracy code added

several fixes

RGB2Lab_b testing fixed

splineBuild() rewritten to SoftFloat

accuracy control improved

rounding fixed

Luv <=> RGB: rewritten to SoftFloat

OCL cvtColor Lab and Lut rewritten to SoftFloat

minor fixes

refactored to new SoftFloat interface

round() -> cvRound, etc.

fixed OCL tests

softfloat.cpp: internal functions made static, unused ones removed

meaningful constants

extra lines removed

unused function removed

unfinished work

it works, need to fix TODOs

refactoring; more calls rewritten

mulFracConst removed

constants made bit exact; minors

changes moved to color.cpp

fixed 1 bug and 4 warnings

OCL: fixed constants

pow(x, _1_3f) replaced by cubeRoot(x)

fixed compilation on MSVC32

magic constants explained

file with internal accuracy&speed tests moved to lab_tetra branch
This commit is contained in:
Rostislav Vasilikhin 2017-01-20 21:56:44 +03:00
parent c455fc0334
commit 4b75be801e
3 changed files with 761 additions and 1041 deletions

File diff suppressed because it is too large Load Diff

View File

@ -94,6 +94,8 @@
#include "opencl_kernels_imgproc.hpp"
#include <limits>
#include "hal_replacement.hpp"
#include "opencv2/core/hal/intrin.hpp"
#include "opencv2/core/softfloat.hpp"
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
@ -138,6 +140,8 @@ const int CB2GI = -5636;
const int CR2GI = -11698;
const int CR2RI = 22987;
static const double _1_3 = 0.333333333333;
static const float _1_3f = static_cast<float>(_1_3);
// computes cubic spline coefficients for a function: (xi=i, yi=f[i]), i=0..n
template<typename _Tp> static void splineBuild(const _Tp* f, int n, _Tp* tab)
@ -164,6 +168,32 @@ template<typename _Tp> static void splineBuild(const _Tp* f, int n, _Tp* tab)
}
}
static void splineBuild(const softfloat* f, int n, float* tab)
{
const softfloat f2(2), f3(3), f4(4);
softfloat cn(0);
softfloat* sftab = reinterpret_cast<softfloat*>(tab);
int i;
tab[0] = tab[1] = 0.0f;
for(i = 1; i < n-1; i++)
{
softfloat t = (f[i+1] - f[i]*f2 + f[i-1])*f3;
softfloat l = softfloat::one()/(f4 - sftab[(i-1)*4]);
sftab[i*4] = l; sftab[i*4+1] = (t - sftab[(i-1)*4+1])*l;
}
for(i = n-1; i >= 0; i--)
{
softfloat c = sftab[i*4+1] - sftab[i*4]*cn;
softfloat b = f[i+1] - f[i] - (cn + c*f2)/f3;
softfloat d = (cn - c)/f3;
sftab[i*4] = f[i]; sftab[i*4+1] = b;
sftab[i*4+2] = c; sftab[i*4+3] = d;
cn = c;
}
}
// interpolates value of a function at x, 0 <= x <= n using a cubic spline.
template<typename _Tp> static inline _Tp splineInterpolate(_Tp x, const _Tp* tab, int n)
{
@ -3454,7 +3484,7 @@ static const float sRGB2XYZ_D65[] =
static const float XYZ2sRGB_D65[] =
{
3.240479f, -1.53715f, -0.498535f,
-0.969256f, 1.875991f, 0.041556f,
-0.969256f, 1.875991f, 0.041556f,
0.055648f, -0.204043f, 1.057311f
};
@ -5781,19 +5811,20 @@ struct HLS2RGB_b
#endif
};
///////////////////////////////////// RGB <-> L*a*b* /////////////////////////////////////
static const float D65[] = { 0.950456f, 1.f, 1.088754f };
enum { LAB_CBRT_TAB_SIZE = 1024, GAMMA_TAB_SIZE = 1024 };
static float LabCbrtTab[LAB_CBRT_TAB_SIZE*4];
static const float LabCbrtTabScale = LAB_CBRT_TAB_SIZE/1.5f;
static const float LabCbrtTabScale = softfloat(LAB_CBRT_TAB_SIZE*2)/softfloat(3);
static float sRGBGammaTab[GAMMA_TAB_SIZE*4], sRGBInvGammaTab[GAMMA_TAB_SIZE*4];
static const float GammaTabScale = (float)GAMMA_TAB_SIZE;
static const float GammaTabScale((int)GAMMA_TAB_SIZE);
static ushort sRGBGammaTab_b[256], linearGammaTab_b[256];
enum { inv_gamma_shift = 12, INV_GAMMA_TAB_SIZE = (1 << inv_gamma_shift) };
static ushort sRGBInvGammaTab_b[INV_GAMMA_TAB_SIZE], linearInvGammaTab_b[INV_GAMMA_TAB_SIZE];
#undef lab_shift
#define lab_shift xyz_shift
#define gamma_shift 3
@ -5801,46 +5832,150 @@ static ushort sRGBGammaTab_b[256], linearGammaTab_b[256];
#define LAB_CBRT_TAB_SIZE_B (256*3/2*(1<<gamma_shift))
static ushort LabCbrtTab_b[LAB_CBRT_TAB_SIZE_B];
static const bool enableBitExactness = true;
static const bool enablePackedLab = true;
enum
{
lab_base_shift = 14,
LAB_BASE = (1 << lab_base_shift),
};
static ushort LabToYF_b[256*2];
static const int minABvalue = -8145;
static int abToXZ_b[LAB_BASE*9/4];
#define clip(value) \
value < 0.0f ? 0.0f : value > 1.0f ? 1.0f : value;
//all constants should be presented through integers to keep bit-exactness
static const softdouble gammaThreshold = softdouble(809)/softdouble(20000); // 0.04045
static const softdouble gammaInvThreshold = softdouble(7827)/softdouble(2500000); // 0.0031308
static const softdouble gammaLowScale = softdouble(323)/softdouble(25); // 12.92
static const softdouble gammaPower = softdouble(12)/softdouble(5); // 2.4
static const softdouble gammaXshift = softdouble(11)/softdouble(200); // 0.055
static inline softfloat applyGamma(softfloat x)
{
//return x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4);
softdouble xd = x;
return (xd <= gammaThreshold ?
xd/gammaLowScale :
pow((xd + gammaXshift)/(softdouble::one()+gammaXshift), gammaPower));
}
static inline softfloat applyInvGamma(softfloat x)
{
//return x <= 0.0031308 ? x*12.92f : (float)(1.055*std::pow((double)x, 1./2.4) - 0.055);
softdouble xd = x;
return (xd <= gammaInvThreshold ?
xd*gammaLowScale :
pow(xd, softdouble::one()/gammaPower)*(softdouble::one()+gammaXshift) - gammaXshift);
}
static void initLabTabs()
{
static bool initialized = false;
if(!initialized)
{
float f[LAB_CBRT_TAB_SIZE+1], g[GAMMA_TAB_SIZE+1], ig[GAMMA_TAB_SIZE+1], scale = 1.f/LabCbrtTabScale;
static const softfloat lthresh = softfloat(216) / softfloat(24389); // 0.008856f = (6/29)^3
static const softfloat lscale = softfloat(841) / softfloat(108); // 7.787f = (29/3)^3/(29*4)
static const softfloat lbias = softfloat(16) / softfloat(116);
static const softfloat f255(255);
softfloat f[LAB_CBRT_TAB_SIZE+1], g[GAMMA_TAB_SIZE+1], ig[GAMMA_TAB_SIZE+1];
softfloat scale = softfloat::one()/softfloat(LabCbrtTabScale);
int i;
for(i = 0; i <= LAB_CBRT_TAB_SIZE; i++)
{
float x = i*scale;
f[i] = x < 0.008856f ? x*7.787f + 0.13793103448275862f : cvCbrt(x);
softfloat x = scale*softfloat(i);
f[i] = x < lthresh ? mulAdd(x, lscale, lbias) : cbrt(x);
}
splineBuild(f, LAB_CBRT_TAB_SIZE, LabCbrtTab);
scale = 1.f/GammaTabScale;
scale = softfloat::one()/softfloat(GammaTabScale);
for(i = 0; i <= GAMMA_TAB_SIZE; i++)
{
float x = i*scale;
g[i] = x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4);
ig[i] = x <= 0.0031308 ? x*12.92f : (float)(1.055*std::pow((double)x, 1./2.4) - 0.055);
softfloat x = scale*softfloat(i);
g[i] = applyGamma(x);
ig[i] = applyInvGamma(x);
}
splineBuild(g, GAMMA_TAB_SIZE, sRGBGammaTab);
splineBuild(ig, GAMMA_TAB_SIZE, sRGBInvGammaTab);
static const softfloat intScale(255*(1 << gamma_shift));
for(i = 0; i < 256; i++)
{
float x = i*(1.f/255.f);
sRGBGammaTab_b[i] = saturate_cast<ushort>(255.f*(1 << gamma_shift)*(x <= 0.04045f ? x*(1.f/12.92f) : (float)std::pow((double)(x + 0.055)*(1./1.055), 2.4)));
softfloat x = softfloat(i)/f255;
sRGBGammaTab_b[i] = (ushort)(cvRound(intScale*applyGamma(x)));
linearGammaTab_b[i] = (ushort)(i*(1 << gamma_shift));
}
static const softfloat invScale = softfloat::one()/softfloat((int)INV_GAMMA_TAB_SIZE);
for(i = 0; i < INV_GAMMA_TAB_SIZE; i++)
{
softfloat x = invScale*softfloat(i);
sRGBInvGammaTab_b[i] = (ushort)(cvRound(f255*applyInvGamma(x)));
linearInvGammaTab_b[i] = (ushort)(cvTrunc(f255*x));
}
static const softfloat cbTabScale(softfloat::one()/(f255*(1 << gamma_shift)));
static const softfloat lshift2(1 << lab_shift2);
for(i = 0; i < LAB_CBRT_TAB_SIZE_B; i++)
{
float x = i*(1.f/(255.f*(1 << gamma_shift)));
LabCbrtTab_b[i] = saturate_cast<ushort>((1 << lab_shift2)*(x < 0.008856f ? x*7.787f + 0.13793103448275862f : cvCbrt(x)));
softfloat x = cbTabScale*softfloat(i);
LabCbrtTab_b[i] = (ushort)(cvRound(lshift2 * (x < lthresh ? mulAdd(x, lscale, lbias) : cbrt(x))));
}
//Lookup table for L to y and ify calculations
static const int BASE = (1 << 14);
for(i = 0; i < 256; i++)
{
int y, ify;
//8 * 255.0 / 100.0 == 20.4
if( i <= 20)
{
//yy = li / 903.3f;
//y = L*100/903.3f; 903.3f = (29/3)^3, 255 = 17*3*5
y = cvRound(softfloat(i*BASE*20*9)/softfloat(17*29*29*29));
//fy = 7.787f * yy + 16.0f / 116.0f; 7.787f = (29/3)^3/(29*4)
ify = cvRound(softfloat(BASE)*(softfloat(16)/softfloat(116) + softfloat(i*5)/softfloat(3*17*29)));
}
else
{
//fy = (li + 16.0f) / 116.0f;
softfloat fy = (softfloat(i*100*BASE)/softfloat(255*116) +
softfloat(16*BASE)/softfloat(116));
ify = cvRound(fy);
//yy = fy * fy * fy;
y = cvRound(fy*fy*fy/softfloat(BASE*BASE));
}
LabToYF_b[i*2 ] = (ushort)y; // 2260 <= y <= BASE
LabToYF_b[i*2+1] = (ushort)ify; // 0 <= ify <= BASE
}
//Lookup table for a,b to x,z conversion
for(i = minABvalue; i < LAB_BASE*9/4+minABvalue; i++)
{
int v;
//6.f/29.f*BASE = 3389.730
if(i <= 3390)
{
//fxz[k] = (fxz[k] - 16.0f / 116.0f) / 7.787f;
// 7.787f = (29/3)^3/(29*4)
v = i*108/841 - BASE*16/116*108/841;
}
else
{
//fxz[k] = fxz[k] * fxz[k] * fxz[k];
v = i*i/BASE*i/BASE;
}
abToXZ_b[i-minABvalue] = v; // -1335 <= v <= 88231
}
initialized = true;
}
}
struct RGB2Lab_b
{
typedef uchar channel_type;
@ -5857,21 +5992,15 @@ struct RGB2Lab_b
if (!_whitept)
_whitept = D65;
float scale[] =
{
(1 << lab_shift)/_whitept[0],
(float)(1 << lab_shift),
(1 << lab_shift)/_whitept[2]
};
static const softfloat lshift(1 << lab_shift);
for( int i = 0; i < _3; i++ )
{
coeffs[i*3+(blueIdx^2)] = cvRound(_coeffs[i*3]*scale[i]);
coeffs[i*3+1] = cvRound(_coeffs[i*3+1]*scale[i]);
coeffs[i*3+blueIdx] = cvRound(_coeffs[i*3+2]*scale[i]);
coeffs[i*3+(blueIdx^2)] = cvRound((lshift*softfloat(_coeffs[i*3 ]))/softfloat(_whitept[i]));
coeffs[i*3+1] = cvRound((lshift*softfloat(_coeffs[i*3+1]))/softfloat(_whitept[i]));
coeffs[i*3+blueIdx] = cvRound((lshift*softfloat(_coeffs[i*3+2]))/softfloat(_whitept[i]));
CV_Assert( coeffs[i] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 2*(1 << lab_shift) );
CV_Assert(coeffs[i*3] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 2*(1 << lab_shift));
}
}
@ -5886,7 +6015,8 @@ struct RGB2Lab_b
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
for( i = 0; i < n; i += 3, src += scn )
i = 0;
for(; i < n; i += 3, src += scn )
{
int R = tab[src[0]], G = tab[src[1]], B = tab[src[2]];
int fX = LabCbrtTab_b[CV_DESCALE(R*C0 + G*C1 + B*C2, lab_shift)];
@ -5909,9 +6039,6 @@ struct RGB2Lab_b
};
#define clip(value) \
value < 0.0f ? 0.0f : value > 1.0f ? 1.0f : value;
struct RGB2Lab_f
{
typedef float channel_type;
@ -5928,17 +6055,22 @@ struct RGB2Lab_f
if (!_whitept)
_whitept = D65;
float scale[] = { 1.0f / _whitept[0], 1.0f, 1.0f / _whitept[2] };
softfloat scale[] = { softfloat::one() / softfloat(_whitept[0]),
softfloat::one(),
softfloat::one() / softfloat(_whitept[2]) };
for( int i = 0; i < _3; i++ )
{
int j = i * 3;
coeffs[j + (blueIdx ^ 2)] = _coeffs[j] * scale[i];
coeffs[j + 1] = _coeffs[j + 1] * scale[i];
coeffs[j + blueIdx] = _coeffs[j + 2] * scale[i];
softfloat c0 = scale[i] * softfloat(_coeffs[j ]);
softfloat c1 = scale[i] * softfloat(_coeffs[j + 1]);
softfloat c2 = scale[i] * softfloat(_coeffs[j + 2]);
coeffs[j + (blueIdx ^ 2)] = c0;
coeffs[j + 1] = c1;
coeffs[j + blueIdx] = c2;
CV_Assert( coeffs[j] >= 0 && coeffs[j + 1] >= 0 && coeffs[j + 2] >= 0 &&
coeffs[j] + coeffs[j + 1] + coeffs[j + 2] < 1.5f*LabCbrtTabScale );
CV_Assert( c0 >= 0 && c1 >= 0 && c2 >= 0 &&
c0 + c1 + c2 < softfloat((int)LAB_CBRT_TAB_SIZE) );
}
}
@ -5952,8 +6084,7 @@ struct RGB2Lab_f
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
n *= 3;
static const float _1_3 = 1.0f / 3.0f;
static const float _a = 16.0f / 116.0f;
static const float _a = (softfloat(16) / softfloat(116));
for (i = 0; i < n; i += 3, src += scn )
{
float R = clip(src[0]);
@ -5969,10 +6100,10 @@ struct RGB2Lab_f
float X = R*C0 + G*C1 + B*C2;
float Y = R*C3 + G*C4 + B*C5;
float Z = R*C6 + G*C7 + B*C8;
float FX = X > 0.008856f ? std::pow(X, _1_3) : (7.787f * X + _a);
float FY = Y > 0.008856f ? std::pow(Y, _1_3) : (7.787f * Y + _a);
float FZ = Z > 0.008856f ? std::pow(Z, _1_3) : (7.787f * Z + _a);
// 7.787f = (29/3)^3/(29*4), 0.008856f = (6/29)^3, 903.3 = (29/3)^3
float FX = X > 0.008856f ? std::pow(X, _1_3f) : (7.787f * X + _a);
float FY = Y > 0.008856f ? std::pow(Y, _1_3f) : (7.787f * Y + _a);
float FZ = Z > 0.008856f ? std::pow(Z, _1_3f) : (7.787f * Z + _a);
float L = Y > 0.008856f ? (116.f * FY - 16.f) : (903.3f * Y);
float a = 500.f * (FX - FY);
@ -5989,13 +6120,15 @@ struct RGB2Lab_f
bool srgb;
};
struct Lab2RGB_f
// Performs conversion in floats
struct Lab2RGBfloat
{
typedef float channel_type;
Lab2RGB_f( int _dstcn, int blueIdx, const float* _coeffs,
Lab2RGBfloat( int _dstcn, int _blueIdx, const float* _coeffs,
const float* _whitept, bool _srgb )
: dstcn(_dstcn), srgb(_srgb)
: dstcn(_dstcn), srgb(_srgb), blueIdx(_blueIdx)
{
initLabTabs();
@ -6006,13 +6139,14 @@ struct Lab2RGB_f
for( int i = 0; i < 3; i++ )
{
coeffs[i+(blueIdx^2)*3] = _coeffs[i]*_whitept[i];
coeffs[i+3] = _coeffs[i+3]*_whitept[i];
coeffs[i+blueIdx*3] = _coeffs[i+6]*_whitept[i];
coeffs[i+(blueIdx^2)*3] = (softfloat(_coeffs[i] )*softfloat(_whitept[i]));
coeffs[i+3] = (softfloat(_coeffs[i+3])*softfloat(_whitept[i]));
coeffs[i+blueIdx*3] = (softfloat(_coeffs[i+6])*softfloat(_whitept[i]));
}
lThresh = 0.008856f * 903.3f;
fThresh = 7.787f * 0.008856f + 16.0f / 116.0f;
lThresh = softfloat(8); // 0.008856f * 903.3f = (6/29)^3*(29/3)^3 = 8
fThresh = softfloat(6)/softfloat(29); // 7.787f * 0.008856f + 16.0f / 116.0f = 6/29
#if CV_SSE2
haveSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
@ -6022,6 +6156,7 @@ struct Lab2RGB_f
void process(__m128& v_li0, __m128& v_li1, __m128& v_ai0,
__m128& v_ai1, __m128& v_bi0, __m128& v_bi1) const
{
// 903.3 = (29/3)^3, 7.787 = (29/3)^3/(29*4)
__m128 v_y00 = _mm_mul_ps(v_li0, _mm_set1_ps(1.0f/903.3f));
__m128 v_y01 = _mm_mul_ps(v_li1, _mm_set1_ps(1.0f/903.3f));
__m128 v_fy00 = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(7.787f), v_y00), _mm_set1_ps(16.0f/116.0f));
@ -6187,6 +6322,7 @@ struct Lab2RGB_f
float ai = src[i + 1];
float bi = src[i + 2];
// 903.3 = (29/3)^3, 7.787 = (29/3)^3/(29*4)
float y, fy;
if (li <= lThresh)
{
@ -6207,7 +6343,6 @@ struct Lab2RGB_f
else
fxz[j] = fxz[j] * fxz[j] * fxz[j];
float x = fxz[0], z = fxz[1];
float ro = C0 * x + C1 * y + C2 * z;
float go = C3 * x + C4 * y + C5 * z;
@ -6237,18 +6372,391 @@ struct Lab2RGB_f
#if CV_SSE2
bool haveSIMD;
#endif
int blueIdx;
};
// Performs conversion in integers
struct Lab2RGBinteger
{
typedef uchar channel_type;
static const int base_shift = 14;
static const int BASE = (1 << base_shift);
// lThresh == (6/29)^3 * (29/3)^3 * BASE/100
static const int lThresh = 1311;
// fThresh == ((29/3)^3/(29*4) * (6/29)^3 + 16/116)*BASE
static const int fThresh = 3390;
// base16_116 == BASE*16/116
static const int base16_116 = 2260;
static const int shift = lab_shift+(base_shift-inv_gamma_shift);
Lab2RGBinteger( int _dstcn, int blueIdx, const float* _coeffs,
const float* _whitept, bool srgb )
: dstcn(_dstcn)
{
if(!_coeffs)
_coeffs = XYZ2sRGB_D65;
if(!_whitept)
_whitept = D65;
static const softfloat lshift(1 << lab_shift);
for(int i = 0; i < 3; i++)
{
coeffs[i+(blueIdx)*3] = cvRound(lshift*softfloat(_coeffs[i ])*softfloat(_whitept[i]));
coeffs[i+3] = cvRound(lshift*softfloat(_coeffs[i+3])*softfloat(_whitept[i]));
coeffs[i+(blueIdx^2)*3] = cvRound(lshift*softfloat(_coeffs[i+6])*softfloat(_whitept[i]));
}
tab = srgb ? sRGBInvGammaTab_b : linearInvGammaTab_b;
}
// L, a, b should be in their natural range
inline void process(const uchar LL, const uchar aa, const uchar bb, int& ro, int& go, int& bo) const
{
int x, y, z;
int ify;
y = LabToYF_b[LL*2 ];
ify = LabToYF_b[LL*2+1];
//float fxz[] = { ai / 500.0f + fy, fy - bi / 200.0f };
int adiv, bdiv;
adiv = aa*BASE/500 - 128*BASE/500, bdiv = bb*BASE/200 - 128*BASE/200;
int ifxz[] = {ify + adiv, ify - bdiv};
for(int k = 0; k < 2; k++)
{
int& v = ifxz[k];
v = abToXZ_b[v-minABvalue];
}
x = ifxz[0]; /* y = y */; z = ifxz[1];
int C0 = coeffs[0], C1 = coeffs[1], C2 = coeffs[2];
int C3 = coeffs[3], C4 = coeffs[4], C5 = coeffs[5];
int C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
ro = CV_DESCALE(C0 * x + C1 * y + C2 * z, shift);
go = CV_DESCALE(C3 * x + C4 * y + C5 * z, shift);
bo = CV_DESCALE(C6 * x + C7 * y + C8 * z, shift);
ro = max(0, min((int)INV_GAMMA_TAB_SIZE-1, ro));
go = max(0, min((int)INV_GAMMA_TAB_SIZE-1, go));
bo = max(0, min((int)INV_GAMMA_TAB_SIZE-1, bo));
ro = tab[ro];
go = tab[go];
bo = tab[bo];
}
// L, a, b shoule be in their natural range
inline void processLabToXYZ(const v_uint8x16& lv, const v_uint8x16& av, const v_uint8x16& bv,
v_int32x4& xiv00, v_int32x4& yiv00, v_int32x4& ziv00,
v_int32x4& xiv01, v_int32x4& yiv01, v_int32x4& ziv01,
v_int32x4& xiv10, v_int32x4& yiv10, v_int32x4& ziv10,
v_int32x4& xiv11, v_int32x4& yiv11, v_int32x4& ziv11) const
{
v_uint16x8 lv0, lv1;
v_expand(lv, lv0, lv1);
// Load Y and IFY values from lookup-table
// y = LabToYF_b[L_value*2], ify = LabToYF_b[L_value*2 + 1]
// LabToYF_b[i*2 ] = y; // 2260 <= y <= BASE
// LabToYF_b[i*2+1] = ify; // 0 <= ify <= BASE
uint16_t CV_DECL_ALIGNED(16) v_lv0[8], v_lv1[8];
v_store_aligned(v_lv0, (lv0 << 1)); v_store_aligned(v_lv1, (lv1 << 1));
v_int16x8 ify0, ify1;
yiv00 = v_int32x4(LabToYF_b[v_lv0[0] ], LabToYF_b[v_lv0[1] ], LabToYF_b[v_lv0[2] ], LabToYF_b[v_lv0[3] ]);
yiv01 = v_int32x4(LabToYF_b[v_lv0[4] ], LabToYF_b[v_lv0[5] ], LabToYF_b[v_lv0[6] ], LabToYF_b[v_lv0[7] ]);
yiv10 = v_int32x4(LabToYF_b[v_lv1[0] ], LabToYF_b[v_lv1[1] ], LabToYF_b[v_lv1[2] ], LabToYF_b[v_lv1[3] ]);
yiv11 = v_int32x4(LabToYF_b[v_lv1[4] ], LabToYF_b[v_lv1[5] ], LabToYF_b[v_lv1[6] ], LabToYF_b[v_lv1[7] ]);
ify0 = v_int16x8(LabToYF_b[v_lv0[0]+1], LabToYF_b[v_lv0[1]+1], LabToYF_b[v_lv0[2]+1], LabToYF_b[v_lv0[3]+1],
LabToYF_b[v_lv0[4]+1], LabToYF_b[v_lv0[5]+1], LabToYF_b[v_lv0[6]+1], LabToYF_b[v_lv0[7]+1]);
ify1 = v_int16x8(LabToYF_b[v_lv1[0]+1], LabToYF_b[v_lv1[1]+1], LabToYF_b[v_lv1[2]+1], LabToYF_b[v_lv1[3]+1],
LabToYF_b[v_lv1[4]+1], LabToYF_b[v_lv1[5]+1], LabToYF_b[v_lv1[6]+1], LabToYF_b[v_lv1[7]+1]);
v_int16x8 adiv0, adiv1, bdiv0, bdiv1;
v_uint16x8 av0, av1, bv0, bv1;
v_expand(av, av0, av1); v_expand(bv, bv0, bv1);
//adiv = aa*BASE/500 - 128*BASE/500, bdiv = bb*BASE/200 - 128*BASE/200;
//approximations with reasonable precision
v_uint16x8 mulA = v_setall_u16(53687);
v_uint32x4 ma00, ma01, ma10, ma11;
v_uint32x4 addA = v_setall_u32(1 << 7);
v_mul_expand((av0 + (av0 << 2)), mulA, ma00, ma01);
v_mul_expand((av1 + (av1 << 2)), mulA, ma10, ma11);
adiv0 = v_reinterpret_as_s16(v_pack(((ma00 + addA) >> 13), ((ma01 + addA) >> 13)));
adiv1 = v_reinterpret_as_s16(v_pack(((ma10 + addA) >> 13), ((ma11 + addA) >> 13)));
v_uint16x8 mulB = v_setall_u16(41943);
v_uint32x4 mb00, mb01, mb10, mb11;
v_uint32x4 addB = v_setall_u32(1 << 4);
v_mul_expand(bv0, mulB, mb00, mb01);
v_mul_expand(bv1, mulB, mb10, mb11);
bdiv0 = v_reinterpret_as_s16(v_pack((mb00 + addB) >> 9, (mb01 + addB) >> 9));
bdiv1 = v_reinterpret_as_s16(v_pack((mb10 + addB) >> 9, (mb11 + addB) >> 9));
// 0 <= adiv <= 8356, 0 <= bdiv <= 20890
/* x = ifxz[0]; y = y; z = ifxz[1]; */
v_uint16x8 xiv0, xiv1, ziv0, ziv1;
v_int16x8 vSubA = v_setall_s16(-128*BASE/500 - minABvalue), vSubB = v_setall_s16(128*BASE/200-1 - minABvalue);
// int ifxz[] = {ify + adiv, ify - bdiv};
// ifxz[k] = abToXZ_b[ifxz[k]-minABvalue];
xiv0 = v_reinterpret_as_u16(v_add_wrap(v_add_wrap(ify0, adiv0), vSubA));
xiv1 = v_reinterpret_as_u16(v_add_wrap(v_add_wrap(ify1, adiv1), vSubA));
ziv0 = v_reinterpret_as_u16(v_add_wrap(v_sub_wrap(ify0, bdiv0), vSubB));
ziv1 = v_reinterpret_as_u16(v_add_wrap(v_sub_wrap(ify1, bdiv1), vSubB));
uint16_t CV_DECL_ALIGNED(16) v_x0[8], v_x1[8], v_z0[8], v_z1[8];
v_store_aligned(v_x0, xiv0 ); v_store_aligned(v_x1, xiv1 );
v_store_aligned(v_z0, ziv0 ); v_store_aligned(v_z1, ziv1 );
xiv00 = v_int32x4(abToXZ_b[v_x0[0]], abToXZ_b[v_x0[1]], abToXZ_b[v_x0[2]], abToXZ_b[v_x0[3]]);
xiv01 = v_int32x4(abToXZ_b[v_x0[4]], abToXZ_b[v_x0[5]], abToXZ_b[v_x0[6]], abToXZ_b[v_x0[7]]);
xiv10 = v_int32x4(abToXZ_b[v_x1[0]], abToXZ_b[v_x1[1]], abToXZ_b[v_x1[2]], abToXZ_b[v_x1[3]]);
xiv11 = v_int32x4(abToXZ_b[v_x1[4]], abToXZ_b[v_x1[5]], abToXZ_b[v_x1[6]], abToXZ_b[v_x1[7]]);
ziv00 = v_int32x4(abToXZ_b[v_z0[0]], abToXZ_b[v_z0[1]], abToXZ_b[v_z0[2]], abToXZ_b[v_z0[3]]);
ziv01 = v_int32x4(abToXZ_b[v_z0[4]], abToXZ_b[v_z0[5]], abToXZ_b[v_z0[6]], abToXZ_b[v_z0[7]]);
ziv10 = v_int32x4(abToXZ_b[v_z1[0]], abToXZ_b[v_z1[1]], abToXZ_b[v_z1[2]], abToXZ_b[v_z1[3]]);
ziv11 = v_int32x4(abToXZ_b[v_z1[4]], abToXZ_b[v_z1[5]], abToXZ_b[v_z1[6]], abToXZ_b[v_z1[7]]);
// abToXZ_b[i-minABvalue] = v; // -1335 <= v <= 88231
}
void operator()(const float* src, float* dst, int n) const
{
int dcn = dstcn;
float alpha = ColorChannel<float>::max();
int i = 0;
if(enablePackedLab)
{
v_float32x4 vldiv = v_setall_f32(256.f/100.0f);
v_float32x4 vf255 = v_setall_f32(255.f);
static const int nPixels = 16;
for(; i <= n*3-3*nPixels; i += 3*nPixels, dst += dcn*nPixels)
{
/*
int L = saturate_cast<int>(src[i]*BASE/100.0f);
int a = saturate_cast<int>(src[i + 1]*BASE/256);
int b = saturate_cast<int>(src[i + 2]*BASE/256);
*/
v_float32x4 vl[4], va[4], vb[4];
for(int k = 0; k < 4; k++)
{
v_load_deinterleave(src + i + k*3*4, vl[k], va[k], vb[k]);
vl[k] *= vldiv;
}
v_int32x4 ivl[4], iva[4], ivb[4];
for(int k = 0; k < 4; k++)
{
ivl[k] = v_round(vl[k]), iva[k] = v_round(va[k]), ivb[k] = v_round(vb[k]);
}
v_int16x8 ivl16[2], iva16[2], ivb16[2];
ivl16[0] = v_pack(ivl[0], ivl[1]); iva16[0] = v_pack(iva[0], iva[1]); ivb16[0] = v_pack(ivb[0], ivb[1]);
ivl16[1] = v_pack(ivl[2], ivl[3]); iva16[1] = v_pack(iva[2], iva[3]); ivb16[1] = v_pack(ivb[2], ivb[3]);
v_uint8x16 ivl8, iva8, ivb8;
ivl8 = v_reinterpret_as_u8(v_pack(ivl16[0], ivl16[1]));
iva8 = v_reinterpret_as_u8(v_pack(iva16[0], iva16[1]));
ivb8 = v_reinterpret_as_u8(v_pack(ivb16[0], ivb16[1]));
v_int32x4 ixv[4], iyv[4], izv[4];
processLabToXYZ(ivl8, iva8, ivb8, ixv[0], iyv[0], izv[0],
ixv[1], iyv[1], izv[1],
ixv[2], iyv[2], izv[2],
ixv[3], iyv[3], izv[3]);
/*
ro = CV_DESCALE(C0 * x + C1 * y + C2 * z, shift);
go = CV_DESCALE(C3 * x + C4 * y + C5 * z, shift);
bo = CV_DESCALE(C6 * x + C7 * y + C8 * z, shift);
*/
v_int32x4 C0 = v_setall_s32(coeffs[0]), C1 = v_setall_s32(coeffs[1]), C2 = v_setall_s32(coeffs[2]);
v_int32x4 C3 = v_setall_s32(coeffs[3]), C4 = v_setall_s32(coeffs[4]), C5 = v_setall_s32(coeffs[5]);
v_int32x4 C6 = v_setall_s32(coeffs[6]), C7 = v_setall_s32(coeffs[7]), C8 = v_setall_s32(coeffs[8]);
v_int32x4 descaleShift = v_setall_s32(1 << (shift-1)), tabsz = v_setall_s32((int)INV_GAMMA_TAB_SIZE-1);
for(int k = 0; k < 4; k++)
{
v_int32x4 i_r, i_g, i_b;
v_uint32x4 r_vecs, g_vecs, b_vecs;
i_r = (ixv[k]*C0 + iyv[k]*C1 + izv[k]*C2 + descaleShift) >> shift;
i_g = (ixv[k]*C3 + iyv[k]*C4 + izv[k]*C5 + descaleShift) >> shift;
i_b = (ixv[k]*C6 + iyv[k]*C7 + izv[k]*C8 + descaleShift) >> shift;
//limit indices in table and then substitute
//ro = tab[ro]; go = tab[go]; bo = tab[bo];
int32_t CV_DECL_ALIGNED(16) rshifts[4], gshifts[4], bshifts[4];
v_int32x4 rs = v_max(v_setzero_s32(), v_min(tabsz, i_r));
v_int32x4 gs = v_max(v_setzero_s32(), v_min(tabsz, i_g));
v_int32x4 bs = v_max(v_setzero_s32(), v_min(tabsz, i_b));
v_store_aligned(rshifts, rs);
v_store_aligned(gshifts, gs);
v_store_aligned(bshifts, bs);
r_vecs = v_uint32x4(tab[rshifts[0]], tab[rshifts[1]], tab[rshifts[2]], tab[rshifts[3]]);
g_vecs = v_uint32x4(tab[gshifts[0]], tab[gshifts[1]], tab[gshifts[2]], tab[gshifts[3]]);
b_vecs = v_uint32x4(tab[bshifts[0]], tab[bshifts[1]], tab[bshifts[2]], tab[bshifts[3]]);
v_float32x4 v_r, v_g, v_b;
v_r = v_cvt_f32(v_reinterpret_as_s32(r_vecs))/vf255;
v_g = v_cvt_f32(v_reinterpret_as_s32(g_vecs))/vf255;
v_b = v_cvt_f32(v_reinterpret_as_s32(b_vecs))/vf255;
if(dcn == 4)
{
v_store_interleave(dst + k*dcn*4, v_b, v_g, v_r, v_setall_f32(alpha));
}
else // dcn == 3
{
v_store_interleave(dst + k*dcn*4, v_b, v_g, v_r);
}
}
}
}
for(; i < n*3; i += 3, dst += dcn)
{
int ro, go, bo;
process((uchar)(src[i + 0]*255.f/100.f), (uchar)src[i + 1], (uchar)src[i + 2], ro, go, bo);
dst[0] = bo/255.f;
dst[1] = go/255.f;
dst[2] = ro/255.f;
if(dcn == 4)
dst[3] = alpha;
}
}
void operator()(const uchar* src, uchar* dst, int n) const
{
int i, dcn = dstcn;
uchar alpha = ColorChannel<uchar>::max();
i = 0;
if(enablePackedLab)
{
static const int nPixels = 8*2;
for(; i <= n*3-3*nPixels; i += 3*nPixels, dst += dcn*nPixels)
{
/*
int L = src[i + 0];
int a = src[i + 1];
int b = src[i + 2];
*/
v_uint8x16 u8l, u8a, u8b;
v_load_deinterleave(src + i, u8l, u8a, u8b);
v_int32x4 xiv[4], yiv[4], ziv[4];
processLabToXYZ(u8l, u8a, u8b, xiv[0], yiv[0], ziv[0],
xiv[1], yiv[1], ziv[1],
xiv[2], yiv[2], ziv[2],
xiv[3], yiv[3], ziv[3]);
/*
ro = CV_DESCALE(C0 * x + C1 * y + C2 * z, shift);
go = CV_DESCALE(C3 * x + C4 * y + C5 * z, shift);
bo = CV_DESCALE(C6 * x + C7 * y + C8 * z, shift);
*/
v_int32x4 C0 = v_setall_s32(coeffs[0]), C1 = v_setall_s32(coeffs[1]), C2 = v_setall_s32(coeffs[2]);
v_int32x4 C3 = v_setall_s32(coeffs[3]), C4 = v_setall_s32(coeffs[4]), C5 = v_setall_s32(coeffs[5]);
v_int32x4 C6 = v_setall_s32(coeffs[6]), C7 = v_setall_s32(coeffs[7]), C8 = v_setall_s32(coeffs[8]);
v_int32x4 descaleShift = v_setall_s32(1 << (shift-1));
v_int32x4 tabsz = v_setall_s32((int)INV_GAMMA_TAB_SIZE-1);
v_uint32x4 r_vecs[4], g_vecs[4], b_vecs[4];
for(int k = 0; k < 4; k++)
{
v_int32x4 i_r, i_g, i_b;
i_r = (xiv[k]*C0 + yiv[k]*C1 + ziv[k]*C2 + descaleShift) >> shift;
i_g = (xiv[k]*C3 + yiv[k]*C4 + ziv[k]*C5 + descaleShift) >> shift;
i_b = (xiv[k]*C6 + yiv[k]*C7 + ziv[k]*C8 + descaleShift) >> shift;
//limit indices in table and then substitute
//ro = tab[ro]; go = tab[go]; bo = tab[bo];
int32_t CV_DECL_ALIGNED(16) rshifts[4], gshifts[4], bshifts[4];
v_int32x4 rs = v_max(v_setzero_s32(), v_min(tabsz, i_r));
v_int32x4 gs = v_max(v_setzero_s32(), v_min(tabsz, i_g));
v_int32x4 bs = v_max(v_setzero_s32(), v_min(tabsz, i_b));
v_store_aligned(rshifts, rs);
v_store_aligned(gshifts, gs);
v_store_aligned(bshifts, bs);
r_vecs[k] = v_uint32x4(tab[rshifts[0]], tab[rshifts[1]], tab[rshifts[2]], tab[rshifts[3]]);
g_vecs[k] = v_uint32x4(tab[gshifts[0]], tab[gshifts[1]], tab[gshifts[2]], tab[gshifts[3]]);
b_vecs[k] = v_uint32x4(tab[bshifts[0]], tab[bshifts[1]], tab[bshifts[2]], tab[bshifts[3]]);
}
v_uint16x8 u_rvec0 = v_pack(r_vecs[0], r_vecs[1]), u_rvec1 = v_pack(r_vecs[2], r_vecs[3]);
v_uint16x8 u_gvec0 = v_pack(g_vecs[0], g_vecs[1]), u_gvec1 = v_pack(g_vecs[2], g_vecs[3]);
v_uint16x8 u_bvec0 = v_pack(b_vecs[0], b_vecs[1]), u_bvec1 = v_pack(b_vecs[2], b_vecs[3]);
v_uint8x16 u8_b, u8_g, u8_r;
u8_b = v_pack(u_bvec0, u_bvec1);
u8_g = v_pack(u_gvec0, u_gvec1);
u8_r = v_pack(u_rvec0, u_rvec1);
if(dcn == 4)
{
v_store_interleave(dst, u8_b, u8_g, u8_r, v_setall_u8(alpha));
}
else
{
v_store_interleave(dst, u8_b, u8_g, u8_r);
}
}
}
for (; i < n*3; i += 3, dst += dcn)
{
int ro, go, bo;
process(src[i + 0], src[i + 1], src[i + 2], ro, go, bo);
dst[0] = saturate_cast<uchar>(bo);
dst[1] = saturate_cast<uchar>(go);
dst[2] = saturate_cast<uchar>(ro);
if( dcn == 4 )
dst[3] = alpha;
}
}
int dstcn;
int coeffs[9];
ushort* tab;
};
struct Lab2RGB_f
{
typedef float channel_type;
Lab2RGB_f( int _dstcn, int _blueIdx, const float* _coeffs,
const float* _whitept, bool _srgb )
: fcvt(_dstcn, _blueIdx, _coeffs, _whitept, _srgb), dstcn(_dstcn)
{ }
void operator()(const float* src, float* dst, int n) const
{
fcvt(src, dst, n);
}
Lab2RGBfloat fcvt;
int dstcn;
};
#undef clip
struct Lab2RGB_b
{
typedef uchar channel_type;
Lab2RGB_b( int _dstcn, int blueIdx, const float* _coeffs,
Lab2RGB_b( int _dstcn, int _blueIdx, const float* _coeffs,
const float* _whitept, bool _srgb )
: dstcn(_dstcn), cvt(3, blueIdx, _coeffs, _whitept, _srgb )
: fcvt(3, _blueIdx, _coeffs, _whitept, _srgb ), icvt(_dstcn, _blueIdx, _coeffs, _whitept, _srgb), dstcn(_dstcn)
{
useBitExactness = (!_coeffs && !_whitept && _srgb && enableBitExactness);
#if CV_NEON
v_scale_inv = vdupq_n_f32(100.f/255.f);
v_scale = vdupq_n_f32(255.f);
@ -6305,6 +6813,12 @@ struct Lab2RGB_b
void operator()(const uchar* src, uchar* dst, int n) const
{
if(useBitExactness)
{
icvt(src, dst, n);
return;
}
int i, j, dcn = dstcn;
uchar alpha = ColorChannel<uchar>::max();
float CV_DECL_ALIGNED(16) buf[3*BLOCK_SIZE];
@ -6313,7 +6827,8 @@ struct Lab2RGB_b
__m128 v_res = _mm_set_ps(0.f, 128.f, 128.f, 0.f);
#endif
for( i = 0; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE*3 )
i = 0;
for(; i < n; i += BLOCK_SIZE, src += BLOCK_SIZE*3 )
{
int dn = std::min(n - i, (int)BLOCK_SIZE);
j = 0;
@ -6360,7 +6875,7 @@ struct Lab2RGB_b
buf[j+1] = (float)(src[j+1] - 128);
buf[j+2] = (float)(src[j+2] - 128);
}
cvt(buf, buf, dn);
fcvt(buf, buf, dn);
j = 0;
#if CV_NEON
@ -6453,9 +6968,8 @@ struct Lab2RGB_b
}
}
int dstcn;
Lab2RGB_f cvt;
Lab2RGBfloat fcvt;
Lab2RGBinteger icvt;
#if CV_NEON
float32x4_t v_scale, v_scale_inv, v_128;
uint8x8_t v_alpha;
@ -6465,8 +6979,11 @@ struct Lab2RGB_b
__m128i v_zero;
bool haveSIMD;
#endif
bool useBitExactness;
int dstcn;
};
#undef clip
///////////////////////////////////// RGB <-> L*u*v* /////////////////////////////////////
@ -6492,12 +7009,17 @@ struct RGB2Luv_f
if( blueIdx == 0 )
std::swap(coeffs[i*3], coeffs[i*3+2]);
CV_Assert( coeffs[i*3] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 1.5f );
softfloat(coeffs[i*3]) +
softfloat(coeffs[i*3+1]) +
softfloat(coeffs[i*3+2]) < softfloat(1.5f) );
}
float d = 1.f/std::max(whitept[0] + whitept[1]*15 + whitept[2]*3, FLT_EPSILON);
un = 4*whitept[0]*d*13;
vn = 9*whitept[1]*d*13;
softfloat d = softfloat(whitept[0]) +
softfloat(whitept[1])*softfloat(15) +
softfloat(whitept[2])*softfloat(3);
d = softfloat::one()/max(d, softfloat(FLT_EPSILON));
un = d*softfloat(13*4)*softfloat(whitept[0]);
vn = d*softfloat(13*9)*softfloat(whitept[1]);
#if CV_SSE2
haveSIMD = checkHardwareSupport(CV_CPU_SSE2);
@ -6790,9 +7312,12 @@ struct Luv2RGB_f
coeffs[i+blueIdx*3] = _coeffs[i+6];
}
float d = 1.f/std::max(whitept[0] + whitept[1]*15 + whitept[2]*3, FLT_EPSILON);
un = 4*13*whitept[0]*d;
vn = 9*13*whitept[1]*d;
softfloat d = softfloat(whitept[0]) +
softfloat(whitept[1])*softfloat(15) +
softfloat(whitept[2])*softfloat(3);
d = softfloat::one()/max(d, softfloat(FLT_EPSILON));
un = softfloat(4*13)*d*softfloat(whitept[0]);
vn = softfloat(9*13)*d*softfloat(whitept[1]);
#if CV_SSE2
haveSIMD = checkHardwareSupport(CV_CPU_SSE2);
#endif
@ -8534,21 +9059,15 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
{
int coeffs[9];
const float * const _coeffs = sRGB2XYZ_D65, * const _whitept = D65;
const float scale[] =
static const softfloat lshift(1 << lab_shift);
for( int i = 0; i < 3; i++ )
{
(1 << lab_shift)/_whitept[0],
(float)(1 << lab_shift),
(1 << lab_shift)/_whitept[2]
};
coeffs[i*3+(bidx^2)] = cvRound(lshift*softfloat(_coeffs[i*3 ])/softfloat(_whitept[i]));
coeffs[i*3+1] = cvRound(lshift*softfloat(_coeffs[i*3+1])/softfloat(_whitept[i]));
coeffs[i*3+bidx] = cvRound(lshift*softfloat(_coeffs[i*3+2])/softfloat(_whitept[i]));
for (int i = 0; i < 3; i++ )
{
coeffs[i*3+(bidx^2)] = cvRound(_coeffs[i*3]*scale[i]);
coeffs[i*3+1] = cvRound(_coeffs[i*3+1]*scale[i]);
coeffs[i*3+bidx] = cvRound(_coeffs[i*3+2]*scale[i]);
CV_Assert( coeffs[i] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 2*(1 << lab_shift) );
CV_Assert(coeffs[i*3] >= 0 && coeffs[i*3+1] >= 0 && coeffs[i*3+2] >= 0 &&
coeffs[i*3] + coeffs[i*3+1] + coeffs[i*3+2] < 2*(1 << lab_shift));
}
Mat(1, 9, CV_32SC1, coeffs).copyTo(ucoeffs);
}
@ -8573,36 +9092,47 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
{
float coeffs[9];
const float * const _coeffs = sRGB2XYZ_D65, * const _whitept = D65;
float scale[] = { 1.0f / _whitept[0], 1.0f, 1.0f / _whitept[2] };
softfloat scale[] = { softfloat::one() / softfloat(_whitept[0]),
softfloat::one(),
softfloat::one() / softfloat(_whitept[2]) };
for (int i = 0; i < 3; i++)
{
int j = i * 3;
coeffs[j + (bidx ^ 2)] = _coeffs[j] * (lab ? scale[i] : 1);
coeffs[j + 1] = _coeffs[j + 1] * (lab ? scale[i] : 1);
coeffs[j + bidx] = _coeffs[j + 2] * (lab ? scale[i] : 1);
CV_Assert( coeffs[j] >= 0 && coeffs[j + 1] >= 0 && coeffs[j + 2] >= 0 &&
coeffs[j] + coeffs[j + 1] + coeffs[j + 2] < 1.5f*(lab ? LabCbrtTabScale : 1) );
softfloat c0 = (lab ? scale[i] : softfloat::one()) * softfloat(_coeffs[j ]);
softfloat c1 = (lab ? scale[i] : softfloat::one()) * softfloat(_coeffs[j + 1]);
softfloat c2 = (lab ? scale[i] : softfloat::one()) * softfloat(_coeffs[j + 2]);
coeffs[j + (bidx ^ 2)] = c0;
coeffs[j + 1] = c1;
coeffs[j + bidx] = c2;
CV_Assert( c0 >= 0 && c1 >= 0 && c2 >= 0 &&
c0 + c1 + c2 < (lab ? softfloat((int)LAB_CBRT_TAB_SIZE) : softfloat(3)/softfloat(2)));
}
float d = 1.f/std::max(_whitept[0] + _whitept[1]*15 + _whitept[2]*3, FLT_EPSILON);
un = 13*4*_whitept[0]*d;
vn = 13*9*_whitept[1]*d;
softfloat d = softfloat(_whitept[0]) +
softfloat(_whitept[1])*softfloat(15) +
softfloat(_whitept[2])*softfloat(3);
d = softfloat::one()/max(d, softfloat(FLT_EPSILON));
un = d*softfloat(13*4)*softfloat(_whitept[0]);
vn = d*softfloat(13*9)*softfloat(_whitept[1]);
Mat(1, 9, CV_32FC1, coeffs).copyTo(ucoeffs);
}
float _1_3 = 1.0f / 3.0f, _a = 16.0f / 116.0f;
float _a = softfloat(16)/softfloat(116);
ocl::KernelArg ucoeffsarg = ocl::KernelArg::PtrReadOnly(ucoeffs);
if (lab)
{
if (srgb)
k.args(srcarg, dstarg, ocl::KernelArg::PtrReadOnly(usRGBGammaTab),
ucoeffsarg, _1_3, _a);
ucoeffsarg, _1_3f, _a);
else
k.args(srcarg, dstarg, ucoeffsarg, _1_3, _a);
k.args(srcarg, dstarg, ucoeffsarg, _1_3f, _a);
}
else
{
@ -8648,14 +9178,17 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
for( int i = 0; i < 3; i++ )
{
coeffs[i+(bidx^2)*3] = _coeffs[i] * (lab ? _whitept[i] : 1);
coeffs[i+3] = _coeffs[i+3] * (lab ? _whitept[i] : 1);
coeffs[i+bidx*3] = _coeffs[i+6] * (lab ? _whitept[i] : 1);
coeffs[i+(bidx^2)*3] = softfloat(_coeffs[i] )*softfloat(lab ? _whitept[i] : 1);
coeffs[i+3] = softfloat(_coeffs[i+3])*softfloat(lab ? _whitept[i] : 1);
coeffs[i+bidx*3] = softfloat(_coeffs[i+6])*softfloat(lab ? _whitept[i] : 1);
}
float d = 1.f/std::max(_whitept[0] + _whitept[1]*15 + _whitept[2]*3, FLT_EPSILON);
un = 4*13*_whitept[0]*d;
vn = 9*13*_whitept[1]*d;
softfloat d = softfloat(_whitept[0]) +
softfloat(_whitept[1])*softfloat(15) +
softfloat(_whitept[2])*softfloat(3);
d = softfloat::one()/max(d, softfloat(FLT_EPSILON));
un = softfloat(4*13)*d*softfloat(_whitept[0]);
vn = softfloat(9*13)*d*softfloat(_whitept[1]);
Mat(1, 9, CV_32FC1, coeffs).copyTo(ucoeffs);
}
@ -8663,8 +9196,8 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
_dst.create(sz, CV_MAKETYPE(depth, dcn));
dst = _dst.getUMat();
float lThresh = 0.008856f * 903.3f;
float fThresh = 7.787f * 0.008856f + 16.0f / 116.0f;
float lThresh = softfloat(8); // 0.008856f * 903.3f = (6/29)^3*(29/3)^3 = 8
float fThresh = softfloat(6)/softfloat(29); // 7.787f * 0.008856f + 16.0f / 116.0f = 6/29
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
dstarg = ocl::KernelArg::WriteOnly(dst),

View File

@ -1755,6 +1755,7 @@ __kernel void BGR2Lab(__global const uchar * srcptr, int src_step, int src_offse
B = splineInterpolate(B * GammaTabScale, gammaTab, GAMMA_TAB_SIZE);
#endif
// 7.787f = (29/3)^3/(29*4), 0.008856f = (6/29)^3, 903.3 = (29/3)^3
float X = fma(R, C0, fma(G, C1, B*C2));
float Y = fma(R, C3, fma(G, C4, B*C5));
float Z = fma(R, C6, fma(G, C7, B*C8));
@ -1794,6 +1795,7 @@ inline void Lab2BGR_f(const float * srcbuf, float * dstbuf,
C6 = coeffs[6], C7 = coeffs[7], C8 = coeffs[8];
float y, fy;
// 903.3 = (29/3)^3, 7.787 = (29/3)^3/(29*4)
if (li <= lThresh)
{
y = li / 903.3f;