mirror of
https://github.com/opencv/opencv.git
synced 2025-07-24 14:06:27 +08:00
connectedComponents: peep-hole optimizations, mostly surrouding the fact that cv::Mat::at is expensive in a tight-loop -also added a "blobstats" version
This commit is contained in:
parent
45b4f4f32b
commit
4c0cb2576d
@ -1091,9 +1091,24 @@ enum { TM_SQDIFF=0, TM_SQDIFF_NORMED=1, TM_CCORR=2, TM_CCORR_NORMED=3, TM_CCOEFF
|
||||
CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ,
|
||||
OutputArray result, int method );
|
||||
|
||||
|
||||
struct CV_EXPORTS ConnectedComponentStats
|
||||
{
|
||||
int32_t lower_x;
|
||||
int32_t lower_y;
|
||||
int32_t upper_x;
|
||||
int32_t upper_y;
|
||||
double centroid_x;
|
||||
double centroid_y;
|
||||
uint64_t integral_x;
|
||||
uint64_t integral_y;
|
||||
uint32_t area;
|
||||
};
|
||||
//! computes the connected components labeled image of boolean image I with 4 or 8 way connectivity - returns N, the total
|
||||
//number of labels [0, N-1] where 0 represents the background label.
|
||||
//number of labels [0, N-1] where 0 represents the background label. L's value type determines the label type, an important
|
||||
//consideration based on the total number of labels or alternatively the total number of pixels.
|
||||
CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity = 8);
|
||||
CV_EXPORTS_W uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity = 8);
|
||||
|
||||
|
||||
//! mode of the contour retrieval algorithm
|
||||
|
@ -41,15 +41,81 @@
|
||||
//M*/
|
||||
//
|
||||
#include "precomp.hpp"
|
||||
#include <vector>
|
||||
|
||||
namespace cv{
|
||||
namespace connectedcomponents{
|
||||
using std::vector;
|
||||
|
||||
template<typename LabelT>
|
||||
struct NoOp{
|
||||
NoOp(){
|
||||
}
|
||||
void init(const LabelT labels){
|
||||
(void) labels;
|
||||
}
|
||||
inline
|
||||
void operator()(int r, int c, LabelT l){
|
||||
(void) r;
|
||||
(void) c;
|
||||
(void) l;
|
||||
}
|
||||
void finish(){}
|
||||
};
|
||||
template<typename LabelT>
|
||||
struct CCStatsOp{
|
||||
std::vector<cv::ConnectedComponentStats> &statsv;
|
||||
CCStatsOp(std::vector<cv::ConnectedComponentStats> &_statsv): statsv(_statsv){
|
||||
}
|
||||
inline
|
||||
void init(const LabelT nlabels){
|
||||
statsv.clear();
|
||||
cv::ConnectedComponentStats stats = cv::ConnectedComponentStats();
|
||||
stats.lower_x = std::numeric_limits<LabelT>::max();
|
||||
stats.lower_y = std::numeric_limits<LabelT>::max();
|
||||
stats.upper_x = std::numeric_limits<LabelT>::min();
|
||||
stats.upper_y = std::numeric_limits<LabelT>::min();
|
||||
stats.centroid_x = 0;
|
||||
stats.centroid_y = 0;
|
||||
stats.integral_x = 0;
|
||||
stats.integral_y = 0;
|
||||
stats.area = 0;
|
||||
statsv.resize(nlabels, stats);
|
||||
}
|
||||
void operator()(int r, int c, LabelT l){
|
||||
ConnectedComponentStats &stats = statsv[l];
|
||||
if(c > stats.upper_x){
|
||||
stats.upper_x = c;
|
||||
}else{
|
||||
if(c < stats.lower_x){
|
||||
stats.lower_x = c;
|
||||
}
|
||||
}
|
||||
if(r > stats.upper_y){
|
||||
stats.upper_y = r;
|
||||
}else{
|
||||
if(r < stats.lower_y){
|
||||
stats.lower_y = r;
|
||||
}
|
||||
}
|
||||
stats.integral_x += c;
|
||||
stats.integral_y += r;
|
||||
stats.area++;
|
||||
}
|
||||
void finish(){
|
||||
for(size_t l = 0; l < statsv.size(); ++l){
|
||||
ConnectedComponentStats &stats = statsv[l];
|
||||
stats.lower_x = std::min(stats.lower_x, stats.upper_x);
|
||||
stats.lower_y = std::min(stats.lower_y, stats.upper_y);
|
||||
stats.centroid_x = stats.integral_x / double(stats.area);
|
||||
stats.centroid_y = stats.integral_y / double(stats.area);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
//Find the root of the tree of node i
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT findRoot(const vector<LabelT> &P, LabelT i){
|
||||
LabelT findRoot(const LabelT *P, LabelT i){
|
||||
LabelT root = i;
|
||||
while(P[root] < root){
|
||||
root = P[root];
|
||||
@ -60,7 +126,7 @@ namespace cv{
|
||||
//Make all nodes in the path of node i point to root
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
void setRoot(vector<LabelT> &P, LabelT i, LabelT root){
|
||||
void setRoot(LabelT *P, LabelT i, LabelT root){
|
||||
while(P[i] < i){
|
||||
LabelT j = P[i];
|
||||
P[i] = root;
|
||||
@ -72,7 +138,7 @@ namespace cv{
|
||||
//Find the root of the tree of the node i and compress the path in the process
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT find(vector<LabelT> &P, LabelT i){
|
||||
LabelT find(LabelT *P, LabelT i){
|
||||
LabelT root = findRoot(P, i);
|
||||
setRoot(P, i, root);
|
||||
return root;
|
||||
@ -81,7 +147,7 @@ namespace cv{
|
||||
//unite the two trees containing nodes i and j and return the new root
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT set_union(vector<LabelT> &P, LabelT i, LabelT j){
|
||||
LabelT set_union(LabelT *P, LabelT i, LabelT j){
|
||||
LabelT root = findRoot(P, i);
|
||||
if(i != j){
|
||||
LabelT rootj = findRoot(P, j);
|
||||
@ -97,9 +163,9 @@ namespace cv{
|
||||
//Flatten the Union Find tree and relabel the components
|
||||
template<typename LabelT>
|
||||
inline static
|
||||
LabelT flattenL(vector<LabelT> &P){
|
||||
LabelT flattenL(LabelT *P, LabelT length){
|
||||
LabelT k = 1;
|
||||
for(size_t i = 1; i < P.size(); ++i){
|
||||
for(LabelT i = 1; i < length; ++i){
|
||||
if(P[i] < i){
|
||||
P[i] = P[P[i]];
|
||||
}else{
|
||||
@ -109,137 +175,155 @@ namespace cv{
|
||||
return k;
|
||||
}
|
||||
|
||||
////Flatten the Union Find tree - inconsistent labels
|
||||
//void flatten(int P[], int size){
|
||||
// for(int i = 1; i < size; ++i){
|
||||
// P[i] = P[P[i]];
|
||||
// }
|
||||
//}
|
||||
const int G4[2][2] = {{-1, 0}, {0, -1}};//b, d neighborhoods
|
||||
const int G8[4][2] = {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
|
||||
//Based on "Two Strategies to Speed up Connected Components Algorithms", the SAUF (Scan array union find) variant
|
||||
//using decision trees
|
||||
//Kesheng Wu, et al
|
||||
template<typename LabelT, typename PixelT, int connectivity = 8>
|
||||
//Note: rows are encoded as position in the "rows" array to save lookup times
|
||||
//reference for 4-way: {{-1, 0}, {0, -1}};//b, d neighborhoods
|
||||
const int G4[2][2] = {{1, 0}, {0, -1}};//b, d neighborhoods
|
||||
//reference for 8-way: {{-1, -1}, {-1, 0}, {-1, 1}, {0, -1}};//a, b, c, d neighborhoods
|
||||
const int G8[4][2] = {{1, -1}, {1, 0}, {1, 1}, {0, -1}};//a, b, c, d neighborhoods
|
||||
template<typename LabelT, typename PixelT, typename StatsOp = NoOp<LabelT>, int connectivity = 8>
|
||||
struct LabelingImpl{
|
||||
LabelT operator()(Mat &L, const Mat &I){
|
||||
LabelT operator()(Mat &L, const Mat &I, StatsOp &sop){
|
||||
const int rows = L.rows;
|
||||
const int cols = L.cols;
|
||||
size_t nPixels = size_t(rows) * cols;
|
||||
vector<LabelT> P; P.push_back(0);
|
||||
LabelT l = 1;
|
||||
size_t Plength = (size_t(rows + 3 - 1)/3) * (size_t(cols + 3 - 1)/3);
|
||||
if(connectivity == 4){
|
||||
Plength = 4 * Plength;//a quick and dirty upper bound, an exact answer exists if you want to find it
|
||||
//the 4 comes from the fact that a 3x3 block can never have more than 4 unique labels
|
||||
}
|
||||
LabelT *P = (LabelT *) fastMalloc(sizeof(LabelT) * Plength);
|
||||
P[0] = 0;
|
||||
LabelT lunique = 1;
|
||||
//scanning phase
|
||||
for(int r_i = 0; r_i < rows; ++r_i){
|
||||
for(int c_i = 0; c_i < cols; ++c_i){
|
||||
if(!I.at<PixelT>(r_i, c_i)){
|
||||
L.at<LabelT>(r_i, c_i) = 0;
|
||||
continue;
|
||||
}
|
||||
if(connectivity == 8){
|
||||
const int a = 0;
|
||||
const int b = 1;
|
||||
const int c = 2;
|
||||
const int d = 3;
|
||||
|
||||
bool T[4];
|
||||
|
||||
for(size_t i = 0; i < 4; ++i){
|
||||
int gr = r_i + G8[i][0];
|
||||
int gc = c_i + G8[i][1];
|
||||
T[i] = false;
|
||||
if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
|
||||
if(I.at<PixelT>(gr, gc)){
|
||||
T[i] = true;
|
||||
}
|
||||
}
|
||||
LabelT *Lrow = (LabelT *)(L.data + L.step.p[0] * r_i);
|
||||
LabelT *Lrow_prev = (LabelT *)(((char *)Lrow) - L.step.p[0]);
|
||||
const PixelT *Irow = (PixelT *)(I.data + I.step.p[0] * r_i);
|
||||
const PixelT *Irow_prev = (const PixelT *)(((char *)Irow) - I.step.p[0]);
|
||||
LabelT *Lrows[2] = {
|
||||
Lrow,
|
||||
Lrow_prev
|
||||
};
|
||||
const PixelT *Irows[2] = {
|
||||
Irow,
|
||||
Irow_prev
|
||||
};
|
||||
if(connectivity == 8){
|
||||
const int a = 0;
|
||||
const int b = 1;
|
||||
const int c = 2;
|
||||
const int d = 3;
|
||||
const bool T_a_r = (r_i - G8[a][0]) >= 0;
|
||||
const bool T_b_r = (r_i - G8[b][0]) >= 0;
|
||||
const bool T_c_r = (r_i - G8[c][0]) >= 0;
|
||||
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
|
||||
if(!*Irows[0]){
|
||||
Lrow[c_i] = 0;
|
||||
continue;
|
||||
}
|
||||
Irows[1] = Irow_prev + c_i;
|
||||
Lrows[0] = Lrow + c_i;
|
||||
Lrows[1] = Lrow_prev + c_i;
|
||||
const bool T_a = T_a_r && (c_i + G8[a][1]) >= 0 && *(Irows[G8[a][0]] + G8[a][1]);
|
||||
const bool T_b = T_b_r && *(Irows[G8[b][0]] + G8[b][1]);
|
||||
const bool T_c = T_c_r && (c_i + G8[c][1]) < cols && *(Irows[G8[c][0]] + G8[c][1]);
|
||||
const bool T_d = (c_i + G8[d][1]) >= 0 && *(Irows[G8[d][0]] + G8[d][1]);
|
||||
|
||||
//decision tree
|
||||
if(T[b]){
|
||||
if(T_b){
|
||||
//copy(b)
|
||||
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[b][0], c_i + G8[b][1]);
|
||||
*Lrows[0] = *(Lrows[G8[b][0]] + G8[b][1]);
|
||||
}else{//not b
|
||||
if(T[c]){
|
||||
if(T[a]){
|
||||
if(T_c){
|
||||
if(T_a){
|
||||
//copy(c, a)
|
||||
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]));
|
||||
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[a][0]] + G8[a][1]));
|
||||
}else{
|
||||
if(T[d]){
|
||||
if(T_d){
|
||||
//copy(c, d)
|
||||
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]), L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]));
|
||||
*Lrows[0] = set_union(P, *(Lrows[G8[c][0]] + G8[c][1]), *(Lrows[G8[d][0]] + G8[d][1]));
|
||||
}else{
|
||||
//copy(c)
|
||||
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[c][0], c_i + G8[c][1]);
|
||||
*Lrows[0] = *(Lrows[G8[c][0]] + G8[c][1]);
|
||||
}
|
||||
}
|
||||
}else{//not c
|
||||
if(T[a]){
|
||||
if(T_a){
|
||||
//copy(a)
|
||||
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[a][0], c_i + G8[a][1]);
|
||||
*Lrows[0] = *(Lrows[G8[a][0]] + G8[a][1]);
|
||||
}else{
|
||||
if(T[d]){
|
||||
if(T_d){
|
||||
//copy(d)
|
||||
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G8[d][0], c_i + G8[d][1]);
|
||||
*Lrows[0] = *(Lrows[G8[d][0]] + G8[d][1]);
|
||||
}else{
|
||||
//new label
|
||||
L.at<LabelT>(r_i, c_i) = l;
|
||||
P.push_back(l);//P[l] = l;
|
||||
l = l + 1;
|
||||
*Lrows[0] = lunique;
|
||||
P[lunique] = lunique;
|
||||
lunique = lunique + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
//B & D only
|
||||
const int b = 0;
|
||||
const int d = 1;
|
||||
assert(connectivity == 4);
|
||||
bool T[2];
|
||||
for(size_t i = 0; i < 2; ++i){
|
||||
int gr = r_i + G4[i][0];
|
||||
int gc = c_i + G4[i][1];
|
||||
T[i] = false;
|
||||
if(gr >= 0 && gr < rows && gc >= 0 && gc < cols){
|
||||
if(I.at<PixelT>(gr, gc)){
|
||||
T[i] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}else{
|
||||
//B & D only
|
||||
assert(connectivity == 4);
|
||||
const int b = 0;
|
||||
const int d = 1;
|
||||
const bool T_b_r = (r_i - G4[b][0]) >= 0;
|
||||
for(int c_i = 0; Irows[0] != Irow + cols; ++Irows[0], c_i++){
|
||||
if(!*Irows[0]){
|
||||
Lrow[c_i] = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
if(T[b]){
|
||||
if(T[d]){
|
||||
Irows[1] = Irow_prev + c_i;
|
||||
Lrows[0] = Lrow + c_i;
|
||||
Lrows[1] = Lrow_prev + c_i;
|
||||
const bool T_b = T_b_r && *(Irows[G4[b][0]] + G4[b][1]);
|
||||
const bool T_d = (c_i + G4[d][1]) >= 0 && *(Irows[G4[d][0]] + G4[d][1]);
|
||||
if(T_b){
|
||||
if(T_d){
|
||||
//copy(d, b)
|
||||
L.at<LabelT>(r_i, c_i) = set_union(P, L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]), L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]));
|
||||
*Lrows[0] = set_union(P, *(Lrows[G4[d][0]] + G4[d][1]), *(Lrows[G4[b][0]] + G4[b][1]));
|
||||
}else{
|
||||
//copy(b)
|
||||
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[b][0], c_i + G4[b][1]);
|
||||
*Lrows[0] = *(Lrows[G4[b][0]] + G4[b][1]);
|
||||
}
|
||||
}else{
|
||||
if(T[d]){
|
||||
if(T_d){
|
||||
//copy(d)
|
||||
L.at<LabelT>(r_i, c_i) = L.at<LabelT>(r_i + G4[d][0], c_i + G4[d][1]);
|
||||
*Lrows[0] = *(Lrows[G4[d][0]] + G4[d][1]);
|
||||
}else{
|
||||
//new label
|
||||
L.at<LabelT>(r_i, c_i) = l;
|
||||
P.push_back(l);//P[l] = l;
|
||||
l = l + 1;
|
||||
*Lrows[0] = lunique;
|
||||
P[lunique] = lunique;
|
||||
lunique = lunique + 1;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//analysis
|
||||
LabelT nLabels = flattenL(P);
|
||||
LabelT nLabels = flattenL(P, lunique);
|
||||
sop.init(nLabels);
|
||||
|
||||
//assign final labels
|
||||
for(size_t r = 0; r < rows; ++r){
|
||||
for(size_t c = 0; c < cols; ++c){
|
||||
L.at<LabelT>(r, c) = P[L.at<LabelT>(r, c)];
|
||||
for(int r_i = 0; r_i < rows; ++r_i){
|
||||
LabelT *Lrow_start = (LabelT *)(L.data + L.step.p[0] * r_i);
|
||||
LabelT *Lrow_end = Lrow_start + cols;
|
||||
LabelT *Lrow = Lrow_start;
|
||||
for(int c_i = 0; Lrow != Lrow_end; ++Lrow, ++c_i){
|
||||
const LabelT l = P[*Lrow];
|
||||
*Lrow = l;
|
||||
sop(r_i, c_i, l);
|
||||
}
|
||||
}
|
||||
|
||||
sop.finish();
|
||||
fastFree(P);
|
||||
|
||||
return nLabels;
|
||||
}//End function LabelingImpl operator()
|
||||
|
||||
@ -247,7 +331,8 @@ namespace cv{
|
||||
}//end namespace connectedcomponents
|
||||
|
||||
//L's type must have an appropriate depth for the number of pixels in I
|
||||
uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
|
||||
template<typename StatsOp>
|
||||
uint64_t connectedComponents_sub1(Mat &L, const Mat &I, int connectivity, StatsOp &sop){
|
||||
CV_Assert(L.rows == I.rows);
|
||||
CV_Assert(L.cols == I.cols);
|
||||
CV_Assert(L.channels() == 1 && I.channels() == 1);
|
||||
@ -261,98 +346,102 @@ uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
|
||||
if(lDepth == CV_8U){
|
||||
if(iDepth == CV_8U || iDepth == CV_8S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint8_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint8_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint8_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_16U || iDepth == CV_16S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint16_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint16_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, uint16_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_32S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint8_t, int32_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint8_t, int32_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, int32_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_32F){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint8_t, float, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint8_t, float, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, float, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_64F){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint8_t, double, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint8_t, double, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint8_t, double, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}
|
||||
}else if(lDepth == CV_16U){
|
||||
if(iDepth == CV_8U || iDepth == CV_8S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint8_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint8_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint8_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_16U || iDepth == CV_16S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint16_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint16_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, uint16_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_32S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint16_t, int32_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint16_t, int32_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, int32_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_32F){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint16_t, float, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint16_t, float, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, float, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_64F){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<uint16_t, double, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<uint16_t, double, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<uint16_t, double, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}
|
||||
}else if(lDepth == CV_32S){
|
||||
//note that signed types don't really make sense here and not being able to use uint32_t matters for scientific projects
|
||||
//OpenCV: how should we proceed? .at<T> typechecks in debug mode
|
||||
if(iDepth == CV_8U || iDepth == CV_8S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<int32_t, uint8_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<int32_t, uint8_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, uint8_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_16U || iDepth == CV_16S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<int32_t, uint16_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<int32_t, uint16_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, uint16_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_32S){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<int32_t, int32_t, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<int32_t, int32_t, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, int32_t, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_32F){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<int32_t, float, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<int32_t, float, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, float, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else if(iDepth == CV_64F){
|
||||
if(connectivity == 4){
|
||||
return (uint64_t) LabelingImpl<int32_t, double, 4>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 4>()(L, I, sop);
|
||||
}else{
|
||||
return (uint64_t) LabelingImpl<int32_t, double, 8>()(L, I);
|
||||
return (uint64_t) LabelingImpl<int32_t, double, StatsOp, 8>()(L, I, sop);
|
||||
}
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
@ -360,6 +449,33 @@ uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
|
||||
return -1;
|
||||
}
|
||||
|
||||
uint64_t connectedComponents(Mat &L, const Mat &I, int connectivity){
|
||||
int lDepth = L.depth();
|
||||
if(lDepth == CV_8U){
|
||||
connectedcomponents::NoOp<uint8_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
|
||||
}else if(lDepth == CV_16U){
|
||||
connectedcomponents::NoOp<uint16_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
|
||||
}else if(lDepth == CV_32S){
|
||||
connectedcomponents::NoOp<uint32_t> sop; return connectedComponents_sub1(L, I, connectivity, sop);
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
uint64_t connectedComponents(Mat &L, const Mat &I, std::vector<ConnectedComponentStats> &statsv, int connectivity){
|
||||
int lDepth = L.depth();
|
||||
if(lDepth == CV_8U){
|
||||
connectedcomponents::CCStatsOp<uint8_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
|
||||
}else if(lDepth == CV_16U){
|
||||
connectedcomponents::CCStatsOp<uint16_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
|
||||
}else if(lDepth == CV_32S){
|
||||
connectedcomponents::CCStatsOp<uint32_t> sop(statsv); return connectedComponents_sub1(L, I, connectivity, sop);
|
||||
}else{
|
||||
CV_Assert(false);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
@ -12,7 +12,7 @@ static void on_trackbar(int, void*)
|
||||
{
|
||||
Mat bw = threshval < 128 ? (img < threshval) : (img > threshval);
|
||||
Mat labelImage(img.size(), CV_32S);
|
||||
int nLabels = connectedComponents(labelImage, bw, 8);
|
||||
uint64_t nLabels = connectedComponents(labelImage, bw, 8);
|
||||
Vec3b colors[nLabels];
|
||||
colors[0] = Vec3b(0, 0, 0);//background
|
||||
for(int label = 1; label < nLabels; ++label){
|
||||
|
Loading…
Reference in New Issue
Block a user