add detection to ground truth matching

according to Piotr Dollar paper
This commit is contained in:
marina.kolpakova 2013-01-20 20:20:08 +04:00
parent d1952f28d9
commit 4c4c878b1b
2 changed files with 64 additions and 52 deletions

View File

@ -7,6 +7,11 @@ import sys, os, os.path, glob, math, cv2
from datetime import datetime
import numpy
# "key" : ( b, g, r)
bgr = { "red" : ( 0, 0, 255),
"green" : ( 0, 255, 0),
"blue" : (255, 0 , 0)}
def call_parser(f, a):
return eval( "sft.parse_" + f + "('" + a + "')")
@ -37,10 +42,10 @@ if __name__ == "__main__":
dom = xml.getFirstTopLevelNode()
assert cascade.load(dom)
frame = 0
pattern = args.input
camera = cv2.VideoCapture(args.input)
camera = cv2.VideoCapture(pattern)
frame = 0
while True:
ret, img = camera.read()
if not ret:
@ -53,17 +58,17 @@ if __name__ == "__main__":
boxes = samples[tail]
boxes = sft.norm_acpect_ratio(boxes, 0.5)
if boxes is not None:
sft.draw_rects(img, boxes, (255, 0, 0), lambda x, y : y)
frame = frame + 1
rects, confs = cascade.detect(img, rois = None)
dt_old = sft.match(boxes, rects, confs)
dts = sft.convert2detections(rects, confs)
sft.draw_dt(img, dts, bgr["green"])
if dt_old is not None:
sft.draw_dt(img, dt_old, (0, 255, 0))
fp, fn = sft.match(boxes, dts)
print "fp and fn", fp, fn
sft.draw_rects(img, boxes, bgr["blue"], lambda x, y : y)
cv2.imshow("result", img);
if (cv2.waitKey (0) == 27):
break;

View File

@ -4,6 +4,29 @@ import cv2, re, glob
import numpy as np
import matplotlib.pyplot as plt
""" Convert numpy matrices with rectangles and confidences to sorted list of detections."""
def convert2detections(rects, confs, crop_factor = 0.125):
if rects is None:
return []
dts = zip(*[rects.tolist(), confs.tolist()])
dts = zip(dts[0][0], dts[0][1])
dts = [Detection(r,c) for r, c in dts]
dts.sort(lambda x, y : -1 if (x.conf - y.conf) > 0 else 1)
for dt in dts:
dt.crop(crop_factor)
return dts
def crop_rect(rect, factor):
val_x = factor * float(rect[2])
val_y = factor * float(rect[3])
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
return x
#
def plot_curve():
fig, ax = plt.subplots()
@ -29,12 +52,6 @@ def plot_curve():
plt.xscale('log')
plt.show()
def crop_rect(rect, factor):
val_x = factor * float(rect[2])
val_y = factor * float(rect[3])
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
return x
def draw_rects(img, rects, color, l = lambda x, y : x + y):
if rects is not None:
for x1, y1, x2, y2 in rects:
@ -58,16 +75,13 @@ class Detection:
self.conf = conf
self.matched = False
# def crop(self):
# rel_scale = self.bb[1] / 128
def crop(self, factor):
print "was", self.bb
self.bb = crop_rect(self.bb, factor)
print "bec", self.bb
# we use rect-stype for dt and box style for gt. ToDo: fix it
def overlap(self, b):
print self.bb, "vs", b
a = self.bb
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
@ -120,47 +134,40 @@ def norm_acpect_ratio(boxes, ratio):
return [ norm_box(box, ratio) for box in boxes]
def match(gts, rects, confs):
if rects is None:
return 0
def match(gts, dts):
fp = 0
fn = 0
dts = zip(*[rects.tolist(), confs.tolist()])
dts = zip(dts[0][0], dts[0][1])
dts = [Detection(r,c) for r, c in dts]
factor = 1.0 / 8.0
dt_old = dts
for dt in dts:
dt.crop(factor)
print dt.bb,
print
for gt in gts:
print gt
# exclude small
if gt[2] - gt[0] < 27:
continue
matched = False
# Cartesian product for each detection BB_dt with each BB_gt
overlaps = [[dt.overlap(gt) for gt in gts]for dt in dts]
print overlaps
for dt in dts:
# dt.crop()
overlap = dt.overlap(gt)
print dt.bb, "vs", gt, overlap
if overlap > 0.5:
dt.mark_matched()
matched = True
print "matched ", dt.bb, gt
matches_gt = [0]*len(gts)
print matches_gt
if not matched:
fn = fn + 1
matches_dt = [0]*len(dts)
print matches_dt
print "fn", fn
for idx, row in enumerate(overlaps):
print idx, row
for dt in dts:
if not dt.matched:
fp = fp + 1
imax = row.index(max(row))
print "fp", fp
return dt_old
if (matches_gt[imax] == 0 and row[imax] > 0.5):
matches_gt[imax] = 1
matches_dt[idx] = 1
print matches_gt
print matches_dt
fp = sum(1 for x in matches_dt if x == 0)
fn = sum(1 for x in matches_gt if x == 0)
return fp, fn