mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
add detection to ground truth matching
according to Piotr Dollar paper
This commit is contained in:
parent
d1952f28d9
commit
4c4c878b1b
@ -7,6 +7,11 @@ import sys, os, os.path, glob, math, cv2
|
||||
from datetime import datetime
|
||||
import numpy
|
||||
|
||||
# "key" : ( b, g, r)
|
||||
bgr = { "red" : ( 0, 0, 255),
|
||||
"green" : ( 0, 255, 0),
|
||||
"blue" : (255, 0 , 0)}
|
||||
|
||||
def call_parser(f, a):
|
||||
return eval( "sft.parse_" + f + "('" + a + "')")
|
||||
|
||||
@ -37,10 +42,10 @@ if __name__ == "__main__":
|
||||
dom = xml.getFirstTopLevelNode()
|
||||
assert cascade.load(dom)
|
||||
|
||||
frame = 0
|
||||
pattern = args.input
|
||||
camera = cv2.VideoCapture(args.input)
|
||||
camera = cv2.VideoCapture(pattern)
|
||||
|
||||
frame = 0
|
||||
while True:
|
||||
ret, img = camera.read()
|
||||
if not ret:
|
||||
@ -53,17 +58,17 @@ if __name__ == "__main__":
|
||||
boxes = samples[tail]
|
||||
boxes = sft.norm_acpect_ratio(boxes, 0.5)
|
||||
|
||||
if boxes is not None:
|
||||
sft.draw_rects(img, boxes, (255, 0, 0), lambda x, y : y)
|
||||
|
||||
frame = frame + 1
|
||||
rects, confs = cascade.detect(img, rois = None)
|
||||
|
||||
dt_old = sft.match(boxes, rects, confs)
|
||||
dts = sft.convert2detections(rects, confs)
|
||||
sft.draw_dt(img, dts, bgr["green"])
|
||||
|
||||
if dt_old is not None:
|
||||
sft.draw_dt(img, dt_old, (0, 255, 0))
|
||||
fp, fn = sft.match(boxes, dts)
|
||||
print "fp and fn", fp, fn
|
||||
|
||||
|
||||
sft.draw_rects(img, boxes, bgr["blue"], lambda x, y : y)
|
||||
cv2.imshow("result", img);
|
||||
if (cv2.waitKey (0) == 27):
|
||||
break;
|
||||
|
@ -4,6 +4,29 @@ import cv2, re, glob
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
""" Convert numpy matrices with rectangles and confidences to sorted list of detections."""
|
||||
def convert2detections(rects, confs, crop_factor = 0.125):
|
||||
if rects is None:
|
||||
return []
|
||||
|
||||
dts = zip(*[rects.tolist(), confs.tolist()])
|
||||
dts = zip(dts[0][0], dts[0][1])
|
||||
dts = [Detection(r,c) for r, c in dts]
|
||||
|
||||
dts.sort(lambda x, y : -1 if (x.conf - y.conf) > 0 else 1)
|
||||
for dt in dts:
|
||||
dt.crop(crop_factor)
|
||||
|
||||
return dts
|
||||
|
||||
def crop_rect(rect, factor):
|
||||
val_x = factor * float(rect[2])
|
||||
val_y = factor * float(rect[3])
|
||||
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
|
||||
return x
|
||||
|
||||
#
|
||||
|
||||
def plot_curve():
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
@ -29,12 +52,6 @@ def plot_curve():
|
||||
plt.xscale('log')
|
||||
plt.show()
|
||||
|
||||
def crop_rect(rect, factor):
|
||||
val_x = factor * float(rect[2])
|
||||
val_y = factor * float(rect[3])
|
||||
x = [int(rect[0] + val_x), int(rect[1] + val_y), int(rect[2] - 2.0 * val_x), int(rect[3] - 2.0 * val_y)]
|
||||
return x
|
||||
|
||||
def draw_rects(img, rects, color, l = lambda x, y : x + y):
|
||||
if rects is not None:
|
||||
for x1, y1, x2, y2 in rects:
|
||||
@ -58,16 +75,13 @@ class Detection:
|
||||
self.conf = conf
|
||||
self.matched = False
|
||||
|
||||
# def crop(self):
|
||||
# rel_scale = self.bb[1] / 128
|
||||
|
||||
def crop(self, factor):
|
||||
print "was", self.bb
|
||||
self.bb = crop_rect(self.bb, factor)
|
||||
print "bec", self.bb
|
||||
|
||||
# we use rect-stype for dt and box style for gt. ToDo: fix it
|
||||
def overlap(self, b):
|
||||
|
||||
print self.bb, "vs", b
|
||||
a = self.bb
|
||||
w = min( a[0] + a[2], b[2]) - max(a[0], b[0]);
|
||||
h = min( a[1] + a[3], b[3]) - max(a[1], b[1]);
|
||||
@ -120,47 +134,40 @@ def norm_acpect_ratio(boxes, ratio):
|
||||
return [ norm_box(box, ratio) for box in boxes]
|
||||
|
||||
|
||||
def match(gts, rects, confs):
|
||||
if rects is None:
|
||||
return 0
|
||||
def match(gts, dts):
|
||||
|
||||
fp = 0
|
||||
fn = 0
|
||||
|
||||
dts = zip(*[rects.tolist(), confs.tolist()])
|
||||
dts = zip(dts[0][0], dts[0][1])
|
||||
dts = [Detection(r,c) for r, c in dts]
|
||||
|
||||
factor = 1.0 / 8.0
|
||||
dt_old = dts
|
||||
for dt in dts:
|
||||
dt.crop(factor)
|
||||
print dt.bb,
|
||||
|
||||
print
|
||||
|
||||
for gt in gts:
|
||||
print gt
|
||||
|
||||
# exclude small
|
||||
if gt[2] - gt[0] < 27:
|
||||
continue
|
||||
|
||||
matched = False
|
||||
# Cartesian product for each detection BB_dt with each BB_gt
|
||||
overlaps = [[dt.overlap(gt) for gt in gts]for dt in dts]
|
||||
print overlaps
|
||||
|
||||
for dt in dts:
|
||||
# dt.crop()
|
||||
overlap = dt.overlap(gt)
|
||||
print dt.bb, "vs", gt, overlap
|
||||
if overlap > 0.5:
|
||||
dt.mark_matched()
|
||||
matched = True
|
||||
print "matched ", dt.bb, gt
|
||||
matches_gt = [0]*len(gts)
|
||||
print matches_gt
|
||||
|
||||
if not matched:
|
||||
fn = fn + 1
|
||||
matches_dt = [0]*len(dts)
|
||||
print matches_dt
|
||||
|
||||
print "fn", fn
|
||||
for idx, row in enumerate(overlaps):
|
||||
print idx, row
|
||||
|
||||
for dt in dts:
|
||||
if not dt.matched:
|
||||
fp = fp + 1
|
||||
imax = row.index(max(row))
|
||||
|
||||
print "fp", fp
|
||||
return dt_old
|
||||
if (matches_gt[imax] == 0 and row[imax] > 0.5):
|
||||
matches_gt[imax] = 1
|
||||
matches_dt[idx] = 1
|
||||
|
||||
print matches_gt
|
||||
print matches_dt
|
||||
|
||||
fp = sum(1 for x in matches_dt if x == 0)
|
||||
fn = sum(1 for x in matches_gt if x == 0)
|
||||
|
||||
return fp, fn
|
Loading…
Reference in New Issue
Block a user