mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
GPU implementation of CLAHE
This commit is contained in:
parent
5810a73d30
commit
4d23e2c8c9
@ -43,7 +43,10 @@
|
||||
#ifndef __OPENCV_GPU_SCAN_HPP__
|
||||
#define __OPENCV_GPU_SCAN_HPP__
|
||||
|
||||
#include "common.hpp"
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
#include "opencv2/gpu/device/utility.hpp"
|
||||
#include "opencv2/gpu/device/warp.hpp"
|
||||
#include "opencv2/gpu/device/warp_shuffle.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
@ -166,6 +169,82 @@ namespace cv { namespace gpu { namespace device
|
||||
static const int warp_log = 5;
|
||||
static const int warp_mask = 31;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
__device__ T warpScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
const unsigned int laneId = cv::gpu::device::Warp::laneId();
|
||||
|
||||
// scan on shuffl functions
|
||||
#pragma unroll
|
||||
for (int i = 1; i <= (OPENCV_GPU_WARP_SIZE / 2); i *= 2)
|
||||
{
|
||||
const T n = cv::gpu::device::shfl_up(idata, i);
|
||||
if (laneId >= i)
|
||||
idata += n;
|
||||
}
|
||||
|
||||
return idata;
|
||||
#else
|
||||
unsigned int pos = 2 * tid - (tid & (OPENCV_GPU_WARP_SIZE - 1));
|
||||
s_Data[pos] = 0;
|
||||
pos += OPENCV_GPU_WARP_SIZE;
|
||||
s_Data[pos] = idata;
|
||||
|
||||
s_Data[pos] += s_Data[pos - 1];
|
||||
s_Data[pos] += s_Data[pos - 2];
|
||||
s_Data[pos] += s_Data[pos - 4];
|
||||
s_Data[pos] += s_Data[pos - 8];
|
||||
s_Data[pos] += s_Data[pos - 16];
|
||||
|
||||
return s_Data[pos];
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T warpScanExclusive(T idata, volatile T* s_Data, unsigned int tid)
|
||||
{
|
||||
return warpScanInclusive(idata, s_Data, tid) - idata;
|
||||
}
|
||||
|
||||
template <int tiNumScanThreads, typename T>
|
||||
__device__ T blockScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
|
||||
{
|
||||
if (tiNumScanThreads > OPENCV_GPU_WARP_SIZE)
|
||||
{
|
||||
//Bottom-level inclusive warp scan
|
||||
T warpResult = warpScanInclusive(idata, s_Data, tid);
|
||||
|
||||
//Save top elements of each warp for exclusive warp scan
|
||||
//sync to wait for warp scans to complete (because s_Data is being overwritten)
|
||||
__syncthreads();
|
||||
if ((tid & (OPENCV_GPU_WARP_SIZE - 1)) == (OPENCV_GPU_WARP_SIZE - 1))
|
||||
{
|
||||
s_Data[tid >> OPENCV_GPU_LOG_WARP_SIZE] = warpResult;
|
||||
}
|
||||
|
||||
//wait for warp scans to complete
|
||||
__syncthreads();
|
||||
|
||||
if (tid < (tiNumScanThreads / OPENCV_GPU_WARP_SIZE) )
|
||||
{
|
||||
//grab top warp elements
|
||||
T val = s_Data[tid];
|
||||
//calculate exclusive scan and write back to shared memory
|
||||
s_Data[tid] = warpScanExclusive(val, s_Data, tid);
|
||||
}
|
||||
|
||||
//return updated warp scans with exclusive scan results
|
||||
__syncthreads();
|
||||
|
||||
return warpResult + s_Data[tid >> OPENCV_GPU_LOG_WARP_SIZE];
|
||||
}
|
||||
else
|
||||
{
|
||||
return warpScanInclusive(idata, s_Data, tid);
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
#endif // __OPENCV_GPU_SCAN_HPP__
|
||||
|
@ -1062,6 +1062,14 @@ CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = St
|
||||
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
|
||||
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
|
||||
|
||||
class CV_EXPORTS CLAHE : public cv::CLAHE
|
||||
{
|
||||
public:
|
||||
using cv::CLAHE::apply;
|
||||
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
|
||||
};
|
||||
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
|
||||
|
||||
//////////////////////////////// StereoBM_GPU ////////////////////////////////
|
||||
|
||||
class CV_EXPORTS StereoBM_GPU
|
||||
|
@ -600,6 +600,39 @@ PERF_TEST_P(Sz, ImgProc_EqualizeHist,
|
||||
}
|
||||
}
|
||||
|
||||
DEF_PARAM_TEST(Sz_ClipLimit, cv::Size, double);
|
||||
|
||||
PERF_TEST_P(Sz_ClipLimit, ImgProc_CLAHE,
|
||||
Combine(GPU_TYPICAL_MAT_SIZES,
|
||||
Values(0.0, 40.0)))
|
||||
{
|
||||
const cv::Size size = GET_PARAM(0);
|
||||
const double clipLimit = GET_PARAM(1);
|
||||
|
||||
cv::Mat src(size, CV_8UC1);
|
||||
declare.in(src, WARMUP_RNG);
|
||||
|
||||
if (PERF_RUN_GPU())
|
||||
{
|
||||
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit);
|
||||
cv::gpu::GpuMat d_src(src);
|
||||
cv::gpu::GpuMat dst;
|
||||
|
||||
TEST_CYCLE() clahe->apply(d_src, dst);
|
||||
|
||||
GPU_SANITY_CHECK(dst);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit);
|
||||
cv::Mat dst;
|
||||
|
||||
TEST_CYCLE() clahe->apply(src, dst);
|
||||
|
||||
CPU_SANITY_CHECK(dst);
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////
|
||||
// ColumnSum
|
||||
|
||||
|
186
modules/gpu/src/cuda/clahe.cu
Normal file
186
modules/gpu/src/cuda/clahe.cu
Normal file
@ -0,0 +1,186 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
#include "opencv2/gpu/device/emulation.hpp"
|
||||
#include "opencv2/gpu/device/scan.hpp"
|
||||
#include "opencv2/gpu/device/reduce.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
namespace clahe
|
||||
{
|
||||
__global__ void calcLutKernel(const PtrStepb src, PtrStepb lut,
|
||||
const int2 tileSize, const int tilesX,
|
||||
const int clipLimit, const float lutScale)
|
||||
{
|
||||
__shared__ int smem[512];
|
||||
|
||||
const int tx = blockIdx.x;
|
||||
const int ty = blockIdx.y;
|
||||
const unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
smem[tid] = 0;
|
||||
__syncthreads();
|
||||
|
||||
for (int i = threadIdx.y; i < tileSize.y; i += blockDim.y)
|
||||
{
|
||||
const uchar* srcPtr = src.ptr(ty * tileSize.y + i) + tx * tileSize.x;
|
||||
for (int j = threadIdx.x; j < tileSize.x; j += blockDim.x)
|
||||
{
|
||||
const int data = srcPtr[j];
|
||||
Emulation::smem::atomicAdd(&smem[data], 1);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
int tHistVal = smem[tid];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (clipLimit > 0)
|
||||
{
|
||||
// clip histogram bar
|
||||
|
||||
int clipped = 0;
|
||||
if (tHistVal > clipLimit)
|
||||
{
|
||||
clipped = tHistVal - clipLimit;
|
||||
tHistVal = clipLimit;
|
||||
}
|
||||
|
||||
// find number of overall clipped samples
|
||||
|
||||
reduce<256>(smem, clipped, tid, plus<int>());
|
||||
|
||||
// broadcast evaluated value
|
||||
|
||||
__shared__ int totalClipped;
|
||||
|
||||
if (tid == 0)
|
||||
totalClipped = clipped;
|
||||
__syncthreads();
|
||||
|
||||
// redistribute clipped samples evenly
|
||||
|
||||
int redistBatch = totalClipped / 256;
|
||||
tHistVal += redistBatch;
|
||||
|
||||
int residual = totalClipped - redistBatch * 256;
|
||||
if (tid < residual)
|
||||
++tHistVal;
|
||||
}
|
||||
|
||||
const int lutVal = blockScanInclusive<256>(tHistVal, smem, tid);
|
||||
|
||||
lut(ty * tilesX + tx, tid) = saturate_cast<uchar>(__float2int_rn(lutScale * lutVal));
|
||||
}
|
||||
|
||||
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(tilesX, tilesY);
|
||||
|
||||
calcLutKernel<<<grid, block, 0, stream>>>(src, lut, tileSize, tilesX, clipLimit, lutScale);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
__global__ void tranformKernel(const PtrStepSzb src, PtrStepb dst, const PtrStepb lut, const int2 tileSize, const int tilesX, const int tilesY)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x >= src.cols || y >= src.rows)
|
||||
return;
|
||||
|
||||
const float tyf = (static_cast<float>(y) / tileSize.y) - 0.5f;
|
||||
int ty1 = __float2int_rd(tyf);
|
||||
int ty2 = ty1 + 1;
|
||||
const float ya = tyf - ty1;
|
||||
ty1 = ::max(ty1, 0);
|
||||
ty2 = ::min(ty2, tilesY - 1);
|
||||
|
||||
const float txf = (static_cast<float>(x) / tileSize.x) - 0.5f;
|
||||
int tx1 = __float2int_rd(txf);
|
||||
int tx2 = tx1 + 1;
|
||||
const float xa = txf - tx1;
|
||||
tx1 = ::max(tx1, 0);
|
||||
tx2 = ::min(tx2, tilesX - 1);
|
||||
|
||||
const int srcVal = src(y, x);
|
||||
|
||||
float res = 0;
|
||||
|
||||
res += lut(ty1 * tilesX + tx1, srcVal) * ((1.0f - xa) * (1.0f - ya));
|
||||
res += lut(ty1 * tilesX + tx2, srcVal) * ((xa) * (1.0f - ya));
|
||||
res += lut(ty2 * tilesX + tx1, srcVal) * ((1.0f - xa) * (ya));
|
||||
res += lut(ty2 * tilesX + tx2, srcVal) * ((xa) * (ya));
|
||||
|
||||
dst(y, x) = saturate_cast<uchar>(res);
|
||||
}
|
||||
|
||||
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(tranformKernel, cudaFuncCachePreferL1) );
|
||||
|
||||
tranformKernel<<<grid, block, 0, stream>>>(src, dst, lut, tileSize, tilesX, tilesY);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
#endif // CUDA_DISABLER
|
@ -96,6 +96,7 @@ void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool)
|
||||
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); }
|
||||
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
|
||||
void cv::gpu::CannyBuf::release() { throw_nogpu(); }
|
||||
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double, cv::Size) { throw_nogpu(); return cv::Ptr<cv::gpu::CLAHE>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
@ -1559,4 +1560,136 @@ void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& d
|
||||
CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
|
||||
namespace clahe
|
||||
{
|
||||
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
|
||||
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
class CLAHE_Impl : public cv::gpu::CLAHE
|
||||
{
|
||||
public:
|
||||
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
|
||||
|
||||
cv::AlgorithmInfo* info() const;
|
||||
|
||||
void apply(cv::InputArray src, cv::OutputArray dst);
|
||||
void apply(InputArray src, OutputArray dst, Stream& stream);
|
||||
|
||||
void setClipLimit(double clipLimit);
|
||||
double getClipLimit() const;
|
||||
|
||||
void setTilesGridSize(cv::Size tileGridSize);
|
||||
cv::Size getTilesGridSize() const;
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
private:
|
||||
double clipLimit_;
|
||||
int tilesX_;
|
||||
int tilesY_;
|
||||
|
||||
GpuMat srcExt_;
|
||||
GpuMat lut_;
|
||||
};
|
||||
|
||||
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
|
||||
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
|
||||
{
|
||||
}
|
||||
|
||||
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_GPU",
|
||||
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
|
||||
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
|
||||
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
|
||||
|
||||
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
|
||||
{
|
||||
apply(_src, _dst, Stream::Null());
|
||||
}
|
||||
|
||||
void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
|
||||
{
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
|
||||
_dst.create( src.size(), src.type() );
|
||||
GpuMat dst = _dst.getGpuMat();
|
||||
|
||||
const int histSize = 256;
|
||||
|
||||
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
|
||||
|
||||
cudaStream_t stream = StreamAccessor::getStream(s);
|
||||
|
||||
cv::Size tileSize;
|
||||
GpuMat srcForLut;
|
||||
|
||||
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
|
||||
{
|
||||
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
|
||||
srcForLut = src;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::gpu::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
|
||||
|
||||
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
|
||||
srcForLut = srcExt_;
|
||||
}
|
||||
|
||||
const int tileSizeTotal = tileSize.area();
|
||||
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
|
||||
|
||||
int clipLimit = 0;
|
||||
if (clipLimit_ > 0.0)
|
||||
{
|
||||
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
|
||||
clipLimit = std::max(clipLimit, 1);
|
||||
}
|
||||
|
||||
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);
|
||||
|
||||
clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
|
||||
}
|
||||
|
||||
void CLAHE_Impl::setClipLimit(double clipLimit)
|
||||
{
|
||||
clipLimit_ = clipLimit;
|
||||
}
|
||||
|
||||
double CLAHE_Impl::getClipLimit() const
|
||||
{
|
||||
return clipLimit_;
|
||||
}
|
||||
|
||||
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
|
||||
{
|
||||
tilesX_ = tileGridSize.width;
|
||||
tilesY_ = tileGridSize.height;
|
||||
}
|
||||
|
||||
cv::Size CLAHE_Impl::getTilesGridSize() const
|
||||
{
|
||||
return cv::Size(tilesX_, tilesY_);
|
||||
}
|
||||
|
||||
void CLAHE_Impl::collectGarbage()
|
||||
{
|
||||
srcExt_.release();
|
||||
lut_.release();
|
||||
}
|
||||
}
|
||||
|
||||
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double clipLimit, cv::Size tileGridSize)
|
||||
{
|
||||
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
@ -217,6 +217,50 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, EqualizeHist, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES));
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// CLAHE
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(ClipLimit, double)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(CLAHE, cv::gpu::DeviceInfo, cv::Size, ClipLimit)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
cv::Size size;
|
||||
double clipLimit;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
size = GET_PARAM(1);
|
||||
clipLimit = GET_PARAM(2);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
GPU_TEST_P(CLAHE, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_8UC1);
|
||||
|
||||
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit);
|
||||
cv::gpu::GpuMat dst;
|
||||
clahe->apply(loadMat(src), dst);
|
||||
|
||||
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit);
|
||||
cv::Mat dst_gold;
|
||||
clahe_gold->apply(src, dst_gold);
|
||||
|
||||
ASSERT_MAT_NEAR(dst_gold, dst, 1.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CLAHE, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
DIFFERENT_SIZES,
|
||||
testing::Values(0.0, 40.0)));
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// ColumnSum
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user