mirror of
https://github.com/opencv/opencv.git
synced 2025-06-08 01:53:19 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
4eb2966559
@ -16,7 +16,7 @@ void calib::Euler(const cv::Mat& src, cv::Mat& dst, int argType)
|
||||
{
|
||||
if((src.rows == 3) && (src.cols == 3))
|
||||
{
|
||||
//convert rotaion matrix to 3 angles (pitch, yaw, roll)
|
||||
//convert rotation matrix to 3 angles (pitch, yaw, roll)
|
||||
dst = cv::Mat(3, 1, CV_64F);
|
||||
double pitch, yaw, roll;
|
||||
|
||||
@ -55,7 +55,7 @@ void calib::Euler(const cv::Mat& src, cv::Mat& dst, int argType)
|
||||
else if( (src.cols == 1 && src.rows == 3) ||
|
||||
(src.cols == 3 && src.rows == 1 ) )
|
||||
{
|
||||
//convert vector which contains 3 angles (pitch, yaw, roll) to rotaion matrix
|
||||
//convert vector which contains 3 angles (pitch, yaw, roll) to rotation matrix
|
||||
double pitch, yaw, roll;
|
||||
if(src.cols == 1 && src.rows == 3)
|
||||
{
|
||||
|
@ -141,7 +141,7 @@
|
||||
# -- Same as CUDA_ADD_EXECUTABLE except that a library is created.
|
||||
#
|
||||
# CUDA_BUILD_CLEAN_TARGET()
|
||||
# -- Creates a convience target that deletes all the dependency files
|
||||
# -- Creates a convenience target that deletes all the dependency files
|
||||
# generated. You should make clean after running this target to ensure the
|
||||
# dependency files get regenerated.
|
||||
#
|
||||
@ -473,7 +473,7 @@ else()
|
||||
endif()
|
||||
|
||||
# Propagate the host flags to the host compiler via -Xcompiler
|
||||
option(CUDA_PROPAGATE_HOST_FLAGS "Propage C/CXX_FLAGS and friends to the host compiler via -Xcompile" ON)
|
||||
option(CUDA_PROPAGATE_HOST_FLAGS "Propagate C/CXX_FLAGS and friends to the host compiler via -Xcompile" ON)
|
||||
|
||||
# Enable CUDA_SEPARABLE_COMPILATION
|
||||
option(CUDA_SEPARABLE_COMPILATION "Compile CUDA objects with separable compilation enabled. Requires CUDA 5.0+" OFF)
|
||||
|
@ -761,24 +761,24 @@ macro(ocv_compiler_optimization_fill_cpu_config)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
macro(ocv_add_dispatched_file filename)
|
||||
macro(__ocv_add_dispatched_file filename target_src_var src_directory dst_directory precomp_hpp optimizations_var)
|
||||
if(NOT OPENCV_INITIAL_PASS)
|
||||
set(__codestr "
|
||||
#include \"${CMAKE_CURRENT_LIST_DIR}/src/precomp.hpp\"
|
||||
#include \"${CMAKE_CURRENT_LIST_DIR}/src/${filename}.simd.hpp\"
|
||||
#include \"${src_directory}/${precomp_hpp}\"
|
||||
#include \"${src_directory}/${filename}.simd.hpp\"
|
||||
")
|
||||
|
||||
set(__declarations_str "#define CV_CPU_SIMD_FILENAME \"${CMAKE_CURRENT_LIST_DIR}/src/${filename}.simd.hpp\"")
|
||||
set(__declarations_str "#define CV_CPU_SIMD_FILENAME \"${src_directory}/${filename}.simd.hpp\"")
|
||||
set(__dispatch_modes "BASELINE")
|
||||
|
||||
set(__optimizations "${ARGN}")
|
||||
set(__optimizations "${${optimizations_var}}")
|
||||
if(CV_DISABLE_OPTIMIZATION OR NOT CV_ENABLE_INTRINSICS)
|
||||
set(__optimizations "")
|
||||
endif()
|
||||
|
||||
foreach(OPT ${__optimizations})
|
||||
string(TOLOWER "${OPT}" OPT_LOWER)
|
||||
set(__file "${CMAKE_CURRENT_BINARY_DIR}/${filename}.${OPT_LOWER}.cpp")
|
||||
set(__file "${CMAKE_CURRENT_BINARY_DIR}/${dst_directory}${filename}.${OPT_LOWER}.cpp")
|
||||
if(EXISTS "${__file}")
|
||||
file(READ "${__file}" __content)
|
||||
else()
|
||||
@ -791,7 +791,11 @@ macro(ocv_add_dispatched_file filename)
|
||||
endif()
|
||||
|
||||
if(";${CPU_DISPATCH};" MATCHES "${OPT}" OR __CPU_DISPATCH_INCLUDE_ALL)
|
||||
list(APPEND OPENCV_MODULE_${the_module}_SOURCES_DISPATCHED "${__file}")
|
||||
if(EXISTS "${src_directory}/${filename}.${OPT_LOWER}.cpp")
|
||||
message(STATUS "Using overrided ${OPT} source: ${src_directory}/${filename}.${OPT_LOWER}.cpp")
|
||||
else()
|
||||
list(APPEND ${target_src_var} "${__file}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(__declarations_str "${__declarations_str}
|
||||
@ -803,9 +807,11 @@ macro(ocv_add_dispatched_file filename)
|
||||
|
||||
set(__declarations_str "${__declarations_str}
|
||||
#define CV_CPU_DISPATCH_MODES_ALL ${__dispatch_modes}
|
||||
|
||||
#undef CV_CPU_SIMD_FILENAME
|
||||
")
|
||||
|
||||
set(__file "${CMAKE_CURRENT_BINARY_DIR}/${filename}.simd_declarations.hpp")
|
||||
set(__file "${CMAKE_CURRENT_BINARY_DIR}/${dst_directory}${filename}.simd_declarations.hpp")
|
||||
if(EXISTS "${__file}")
|
||||
file(READ "${__file}" __content)
|
||||
endif()
|
||||
@ -817,6 +823,17 @@ macro(ocv_add_dispatched_file filename)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
macro(ocv_add_dispatched_file filename)
|
||||
set(__optimizations "${ARGN}")
|
||||
if(" ${ARGV1}" STREQUAL " TEST")
|
||||
list(REMOVE_AT __optimizations 0)
|
||||
__ocv_add_dispatched_file("${filename}" "OPENCV_MODULE_${the_module}_TEST_SOURCES_DISPATCHED" "${CMAKE_CURRENT_LIST_DIR}/test" "test/" "test_precomp.hpp" __optimizations)
|
||||
else()
|
||||
__ocv_add_dispatched_file("${filename}" "OPENCV_MODULE_${the_module}_SOURCES_DISPATCHED" "${CMAKE_CURRENT_LIST_DIR}/src" "" "precomp.hpp" __optimizations)
|
||||
endif()
|
||||
endmacro()
|
||||
|
||||
|
||||
# Workaround to support code which always require all code paths
|
||||
macro(ocv_add_dispatched_file_force_all)
|
||||
set(__CPU_DISPATCH_INCLUDE_ALL 1)
|
||||
|
@ -3,7 +3,7 @@ if(WIN32 AND NOT MSVC)
|
||||
return()
|
||||
endif()
|
||||
|
||||
if(NOT APPLE AND CV_CLANG)
|
||||
if(NOT UNIX AND CV_CLANG)
|
||||
message(STATUS "CUDA compilation is disabled (due to Clang unsupported on your platform).")
|
||||
return()
|
||||
endif()
|
||||
@ -188,6 +188,13 @@ if(CUDA_FOUND)
|
||||
foreach(var CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_RELEASE CMAKE_CXX_FLAGS_DEBUG)
|
||||
set(${var}_backup_in_cuda_compile_ "${${var}}")
|
||||
|
||||
if (CV_CLANG)
|
||||
# we remove -Winconsistent-missing-override and -Qunused-arguments
|
||||
# just in case we are compiling CUDA with gcc but OpenCV with clang
|
||||
string(REPLACE "-Winconsistent-missing-override" "" ${var} "${${var}}")
|
||||
string(REPLACE "-Qunused-arguments" "" ${var} "${${var}}")
|
||||
endif()
|
||||
|
||||
# we remove /EHa as it generates warnings under windows
|
||||
string(REPLACE "/EHa" "" ${var} "${${var}}")
|
||||
|
||||
|
@ -20,16 +20,19 @@ if(DEFINED ENV{OPENCV_DOWNLOAD_PATH})
|
||||
endif()
|
||||
set(OPENCV_DOWNLOAD_PATH "${OpenCV_SOURCE_DIR}/.cache" CACHE PATH "${HELP_OPENCV_DOWNLOAD_PATH}")
|
||||
set(OPENCV_DOWNLOAD_LOG "${OpenCV_BINARY_DIR}/CMakeDownloadLog.txt")
|
||||
set(OPENCV_DOWNLOAD_WITH_CURL "${OpenCV_BINARY_DIR}/download_with_curl.sh")
|
||||
set(OPENCV_DOWNLOAD_WITH_WGET "${OpenCV_BINARY_DIR}/download_with_wget.sh")
|
||||
|
||||
# Init download cache directory and log file
|
||||
# Init download cache directory and log file and helper scripts
|
||||
if(NOT EXISTS "${OPENCV_DOWNLOAD_PATH}")
|
||||
file(MAKE_DIRECTORY ${OPENCV_DOWNLOAD_PATH})
|
||||
endif()
|
||||
if(NOT EXISTS "${OPENCV_DOWNLOAD_PATH}/.gitignore")
|
||||
file(WRITE "${OPENCV_DOWNLOAD_PATH}/.gitignore" "*\n")
|
||||
endif()
|
||||
file(WRITE "${OPENCV_DOWNLOAD_LOG}" "use_cache \"${OPENCV_DOWNLOAD_PATH}\"\n")
|
||||
|
||||
file(WRITE "${OPENCV_DOWNLOAD_LOG}" "#use_cache \"${OPENCV_DOWNLOAD_PATH}\"\n")
|
||||
file(REMOVE "${OPENCV_DOWNLOAD_WITH_CURL}")
|
||||
file(REMOVE "${OPENCV_DOWNLOAD_WITH_WGET}")
|
||||
|
||||
function(ocv_download)
|
||||
cmake_parse_arguments(DL "UNPACK;RELATIVE_URL" "FILENAME;HASH;DESTINATION_DIR;ID;STATUS" "URL" ${ARGN})
|
||||
@ -103,7 +106,7 @@ function(ocv_download)
|
||||
endif()
|
||||
|
||||
# Log all calls to file
|
||||
ocv_download_log("do_${mode} \"${DL_FILENAME}\" \"${DL_HASH}\" \"${DL_URL}\" \"${DL_DESTINATION_DIR}\"")
|
||||
ocv_download_log("#do_${mode} \"${DL_FILENAME}\" \"${DL_HASH}\" \"${DL_URL}\" \"${DL_DESTINATION_DIR}\"")
|
||||
# ... and to console
|
||||
set(__msg_prefix "")
|
||||
if(DL_ID)
|
||||
@ -191,6 +194,9 @@ function(ocv_download)
|
||||
For details please refer to the download log file:
|
||||
${OPENCV_DOWNLOAD_LOG}
|
||||
")
|
||||
# write helper scripts for failed downloads
|
||||
file(APPEND "${OPENCV_DOWNLOAD_WITH_CURL}" "curl --output \"${CACHE_CANDIDATE}\" \"${DL_URL}\"\n")
|
||||
file(APPEND "${OPENCV_DOWNLOAD_WITH_WGET}" "wget -O \"${CACHE_CANDIDATE}\" \"${DL_URL}\"\n")
|
||||
return()
|
||||
endif()
|
||||
|
||||
|
@ -1202,6 +1202,9 @@ function(ocv_add_accuracy_tests)
|
||||
set(OPENCV_TEST_${the_module}_SOURCES ${test_srcs} ${test_hdrs})
|
||||
endif()
|
||||
|
||||
if(OPENCV_MODULE_${the_module}_TEST_SOURCES_DISPATCHED)
|
||||
list(APPEND OPENCV_TEST_${the_module}_SOURCES ${OPENCV_MODULE_${the_module}_TEST_SOURCES_DISPATCHED})
|
||||
endif()
|
||||
ocv_compiler_optimization_process_sources(OPENCV_TEST_${the_module}_SOURCES OPENCV_TEST_${the_module}_DEPS ${the_target})
|
||||
|
||||
if(NOT BUILD_opencv_world)
|
||||
@ -1211,6 +1214,9 @@ function(ocv_add_accuracy_tests)
|
||||
source_group("Src" FILES "${${the_target}_pch}")
|
||||
ocv_add_executable(${the_target} ${OPENCV_TEST_${the_module}_SOURCES} ${${the_target}_pch})
|
||||
ocv_target_include_modules(${the_target} ${test_deps} "${test_path}")
|
||||
if(EXISTS "${CMAKE_CURRENT_BINARY_DIR}/test")
|
||||
ocv_target_include_directories(${the_target} "${CMAKE_CURRENT_BINARY_DIR}/test")
|
||||
endif()
|
||||
ocv_target_link_libraries(${the_target} LINK_PRIVATE ${test_deps} ${OPENCV_MODULE_${the_module}_DEPS} ${OPENCV_LINKER_LIBS} ${OPENCV_TEST_${the_module}_DEPS})
|
||||
add_dependencies(opencv_tests ${the_target})
|
||||
|
||||
|
@ -362,7 +362,7 @@ MACRO(ADD_NATIVE_PRECOMPILED_HEADER _targetName _input)
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
#also inlude ${oldProps} to have the same compile options
|
||||
#also include ${oldProps} to have the same compile options
|
||||
GET_TARGET_PROPERTY(oldProps ${_targetName} COMPILE_FLAGS)
|
||||
if (oldProps MATCHES NOTFOUND)
|
||||
SET(oldProps "")
|
||||
|
@ -260,7 +260,7 @@ endif()
|
||||
set(OpenCV_LIBRARIES ${OpenCV_LIBS})
|
||||
|
||||
#
|
||||
# Some macroses for samples
|
||||
# Some macros for samples
|
||||
#
|
||||
macro(ocv_check_dependencies)
|
||||
set(OCV_DEPENDENCIES_FOUND TRUE)
|
||||
|
@ -29,7 +29,7 @@ What happens in background ?
|
||||
objects). Everything inside rectangle is unknown. Similarly any user input specifying
|
||||
foreground and background are considered as hard-labelling which means they won't change in
|
||||
the process.
|
||||
- Computer does an initial labelling depeding on the data we gave. It labels the foreground and
|
||||
- Computer does an initial labelling depending on the data we gave. It labels the foreground and
|
||||
background pixels (or it hard-labels)
|
||||
- Now a Gaussian Mixture Model(GMM) is used to model the foreground and background.
|
||||
- Depending on the data we gave, GMM learns and create new pixel distribution. That is, the
|
||||
|
@ -129,7 +129,7 @@ function onOpenCvReady() {
|
||||
</html>
|
||||
@endcode
|
||||
|
||||
@note You have to call delete method of cv.Mat to free memory allocated in Emscripten's heap. Please refer to [Memeory management of Emscripten](https://kripken.github.io/emscripten-site/docs/porting/connecting_cpp_and_javascript/embind.html#memory-management) for details.
|
||||
@note You have to call delete method of cv.Mat to free memory allocated in Emscripten's heap. Please refer to [Memory management of Emscripten](https://kripken.github.io/emscripten-site/docs/porting/connecting_cpp_and_javascript/embind.html#memory-management) for details.
|
||||
|
||||
Try it
|
||||
------
|
||||
|
@ -37,7 +37,7 @@ So what happens in background ?
|
||||
objects). Everything inside rectangle is unknown. Similarly any user input specifying
|
||||
foreground and background are considered as hard-labelling which means they won't change in
|
||||
the process.
|
||||
- Computer does an initial labelling depeding on the data we gave. It labels the foreground and
|
||||
- Computer does an initial labelling depending on the data we gave. It labels the foreground and
|
||||
background pixels (or it hard-labels)
|
||||
- Now a Gaussian Mixture Model(GMM) is used to model the foreground and background.
|
||||
- Depending on the data we gave, GMM learns and create new pixel distribution. That is, the
|
||||
|
@ -16,7 +16,7 @@ In this tutorial is explained how to build a real time application to estimate t
|
||||
order to track a textured object with six degrees of freedom given a 2D image and its 3D textured
|
||||
model.
|
||||
|
||||
The application will have the followings parts:
|
||||
The application will have the following parts:
|
||||
|
||||
- Read 3D textured object model and object mesh.
|
||||
- Take input from Camera or Video.
|
||||
@ -426,16 +426,16 @@ Here is explained in detail the code for the real time application:
|
||||
@endcode
|
||||
OpenCV provides four PnP methods: ITERATIVE, EPNP, P3P and DLS. Depending on the application type,
|
||||
the estimation method will be different. In the case that we want to make a real time application,
|
||||
the more suitable methods are EPNP and P3P due to that are faster than ITERATIVE and DLS at
|
||||
the more suitable methods are EPNP and P3P since they are faster than ITERATIVE and DLS at
|
||||
finding an optimal solution. However, EPNP and P3P are not especially robust in front of planar
|
||||
surfaces and sometimes the pose estimation seems to have a mirror effect. Therefore, in this this
|
||||
tutorial is used ITERATIVE method due to the object to be detected has planar surfaces.
|
||||
surfaces and sometimes the pose estimation seems to have a mirror effect. Therefore, in this
|
||||
tutorial an ITERATIVE method is used due to the object to be detected has planar surfaces.
|
||||
|
||||
The OpenCV RANSAC implementation wants you to provide three parameters: the maximum number of
|
||||
iterations until stop the algorithm, the maximum allowed distance between the observed and
|
||||
computed point projections to consider it an inlier and the confidence to obtain a good result.
|
||||
The OpenCV RANSAC implementation wants you to provide three parameters: 1) the maximum number of
|
||||
iterations until the algorithm stops, 2) the maximum allowed distance between the observed and
|
||||
computed point projections to consider it an inlier and 3) the confidence to obtain a good result.
|
||||
You can tune these parameters in order to improve your algorithm performance. Increasing the
|
||||
number of iterations you will have a more accurate solution, but will take more time to find a
|
||||
number of iterations will have a more accurate solution, but will take more time to find a
|
||||
solution. Increasing the reprojection error will reduce the computation time, but your solution
|
||||
will be unaccurate. Decreasing the confidence your algorithm will be faster, but the obtained
|
||||
solution will be unaccurate.
|
||||
|
@ -46,7 +46,7 @@ cd /c/lib
|
||||
myRepo=$(pwd)
|
||||
CMAKE_CONFIG_GENERATOR="Visual Studio 14 2015 Win64"
|
||||
if [ ! -d "$myRepo/opencv" ]; then
|
||||
echo "clonning opencv"
|
||||
echo "cloning opencv"
|
||||
git clone https://github.com/opencv/opencv.git
|
||||
mkdir Build
|
||||
mkdir Build/opencv
|
||||
@ -58,7 +58,7 @@ else
|
||||
cd ..
|
||||
fi
|
||||
if [ ! -d "$myRepo/opencv_contrib" ]; then
|
||||
echo "clonning opencv_contrib"
|
||||
echo "cloning opencv_contrib"
|
||||
git clone https://github.com/opencv/opencv_contrib.git
|
||||
mkdir Build
|
||||
mkdir Build/opencv_contrib
|
||||
|
@ -198,7 +198,7 @@ void CV_ChessboardDetectorTest::run_batch( const string& filename )
|
||||
|
||||
if( !fs.isOpened() || board_list.empty() || !board_list.isSeq() || board_list.size() % 2 != 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "%s can not be readed or is not valid\n", (folder + filename).c_str() );
|
||||
ts->printf( cvtest::TS::LOG, "%s can not be read or is not valid\n", (folder + filename).c_str() );
|
||||
ts->printf( cvtest::TS::LOG, "fs.isOpened=%d, board_list.empty=%d, board_list.isSeq=%d,board_list.size()%2=%d\n",
|
||||
fs.isOpened(), (int)board_list.empty(), board_list.isSeq(), board_list.size()%2);
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
|
||||
|
@ -85,7 +85,7 @@ void CV_ChessboardDetectorTimingTest::run( int start_from )
|
||||
if( !fs || !board_list || !CV_NODE_IS_SEQ(board_list->tag) ||
|
||||
board_list->data.seq->total % 4 != 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "chessboard_timing_list.dat can not be readed or is not valid" );
|
||||
ts->printf( cvtest::TS::LOG, "chessboard_timing_list.dat can not be read or is not valid" );
|
||||
code = cvtest::TS::FAIL_MISSING_TEST_DATA;
|
||||
goto _exit_;
|
||||
}
|
||||
|
@ -3,6 +3,10 @@ set(the_description "The Core Functionality")
|
||||
ocv_add_dispatched_file(mathfuncs_core SSE2 AVX AVX2)
|
||||
ocv_add_dispatched_file(stat SSE4_2 AVX2)
|
||||
|
||||
# dispatching for accuracy tests
|
||||
ocv_add_dispatched_file_force_all(test_intrin128 TEST SSE2 SSE3 SSSE3 SSE4_1 SSE4_2 AVX FP16 AVX2)
|
||||
ocv_add_dispatched_file_force_all(test_intrin256 TEST AVX2)
|
||||
|
||||
ocv_add_module(core
|
||||
OPTIONAL opencv_cudev
|
||||
WRAP java python js)
|
||||
|
@ -204,20 +204,6 @@ CV_CPU_OPTIMIZATION_HAL_NAMESPACE_BEGIN
|
||||
#define CV_SIMD512_64F 0
|
||||
#endif
|
||||
|
||||
#if CV_SIMD512
|
||||
#define CV_SIMD 1
|
||||
#define CV_SIMD_64F CV_SIMD512_64F
|
||||
#define CV_SIMD_WIDTH 64
|
||||
#elif CV_SIMD256
|
||||
#define CV_SIMD 1
|
||||
#define CV_SIMD_64F CV_SIMD256_64F
|
||||
#define CV_SIMD_WIDTH 32
|
||||
#else
|
||||
#define CV_SIMD CV_SIMD128
|
||||
#define CV_SIMD_64F CV_SIMD128_64F
|
||||
#define CV_SIMD_WIDTH 16
|
||||
#endif
|
||||
|
||||
//==================================================================================================
|
||||
|
||||
#define CV_INTRIN_DEFINE_WIDE_INTRIN(typ, vtyp, short_typ, prefix, loadsfx) \
|
||||
@ -309,7 +295,21 @@ template<typename _Tp> struct V_RegTraits
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if CV_SIMD256
|
||||
#if CV_SIMD512 && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 512)
|
||||
#define CV__SIMD_NAMESPACE simd512
|
||||
namespace CV__SIMD_NAMESPACE {
|
||||
#define CV_SIMD 1
|
||||
#define CV_SIMD_64F CV_SIMD512_64F
|
||||
#define CV_SIMD_WIDTH 64
|
||||
// TODO typedef v_uint8 / v_int32 / etc types here
|
||||
} // namespace
|
||||
using namespace CV__SIMD_NAMESPACE;
|
||||
#elif CV_SIMD256 && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 256)
|
||||
#define CV__SIMD_NAMESPACE simd256
|
||||
namespace CV__SIMD_NAMESPACE {
|
||||
#define CV_SIMD 1
|
||||
#define CV_SIMD_64F CV_SIMD256_64F
|
||||
#define CV_SIMD_WIDTH 32
|
||||
typedef v_uint8x32 v_uint8;
|
||||
typedef v_int8x32 v_int8;
|
||||
typedef v_uint16x16 v_uint16;
|
||||
@ -329,7 +329,14 @@ template<typename _Tp> struct V_RegTraits
|
||||
CV_INTRIN_DEFINE_WIDE_INTRIN_ALL_TYPES(v256)
|
||||
CV_INTRIN_DEFINE_WIDE_INTRIN(double, v_float64, f64, v256, load)
|
||||
inline void vx_cleanup() { v256_cleanup(); }
|
||||
#elif CV_SIMD128 || CV_SIMD128_CPP
|
||||
} // namespace
|
||||
using namespace CV__SIMD_NAMESPACE;
|
||||
#elif (CV_SIMD128 || CV_SIMD128_CPP) && (!defined(CV__SIMD_FORCE_WIDTH) || CV__SIMD_FORCE_WIDTH == 128)
|
||||
#define CV__SIMD_NAMESPACE simd128
|
||||
namespace CV__SIMD_NAMESPACE {
|
||||
#define CV_SIMD CV_SIMD128
|
||||
#define CV_SIMD_64F CV_SIMD128_64F
|
||||
#define CV_SIMD_WIDTH 16
|
||||
typedef v_uint8x16 v_uint8;
|
||||
typedef v_int8x16 v_int8;
|
||||
typedef v_uint16x8 v_uint16;
|
||||
@ -351,6 +358,8 @@ template<typename _Tp> struct V_RegTraits
|
||||
CV_INTRIN_DEFINE_WIDE_INTRIN(double, v_float64, f64, v, load)
|
||||
#endif
|
||||
inline void vx_cleanup() { v_cleanup(); }
|
||||
} // namespace
|
||||
using namespace CV__SIMD_NAMESPACE;
|
||||
#endif
|
||||
|
||||
inline unsigned int trailingZeros32(unsigned int value) {
|
||||
@ -380,6 +389,14 @@ inline unsigned int trailingZeros32(unsigned int value) {
|
||||
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD_64F
|
||||
#define CV_SIMD_64F 0
|
||||
#endif
|
||||
|
||||
#ifndef CV_SIMD
|
||||
#define CV_SIMD 0
|
||||
#endif
|
||||
|
||||
} // cv::
|
||||
|
||||
//! @endcond
|
||||
|
@ -494,7 +494,12 @@ void v_rshr_pack_store(ushort* ptr, const v_uint32x4& a)
|
||||
inline v_uint16x8 v_pack_u(const v_int32x4& a, const v_int32x4& b)
|
||||
{
|
||||
__m128i delta32 = _mm_set1_epi32(32768);
|
||||
__m128i r = _mm_packs_epi32(_mm_sub_epi32(a.val, delta32), _mm_sub_epi32(b.val, delta32));
|
||||
|
||||
// preliminary saturate negative values to zero
|
||||
__m128i a1 = _mm_and_si128(a.val, _mm_cmpgt_epi32(a.val, _mm_set1_epi32(0)));
|
||||
__m128i b1 = _mm_and_si128(b.val, _mm_cmpgt_epi32(b.val, _mm_set1_epi32(0)));
|
||||
|
||||
__m128i r = _mm_packs_epi32(_mm_sub_epi32(a1, delta32), _mm_sub_epi32(b1, delta32));
|
||||
return v_uint16x8(_mm_sub_epi16(r, _mm_set1_epi16(-32768)));
|
||||
}
|
||||
|
||||
|
@ -1764,7 +1764,7 @@ typedef struct CvString
|
||||
}
|
||||
CvString;
|
||||
|
||||
/** All the keys (names) of elements in the readed file storage
|
||||
/** All the keys (names) of elements in the read file storage
|
||||
are stored in the hash to speed up the lookup operations: */
|
||||
typedef struct CvStringHashNode
|
||||
{
|
||||
|
@ -453,9 +453,9 @@ struct Cvt_SIMD<int, uchar>
|
||||
{
|
||||
v_int32x4 v_src1 = v_load(src + x), v_src2 = v_load(src + x + cWidth);
|
||||
v_int32x4 v_src3 = v_load(src + x + cWidth * 2), v_src4 = v_load(src + x + cWidth * 3);
|
||||
v_uint16x8 v_dst1 = v_pack_u(v_src1, v_src2);
|
||||
v_uint16x8 v_dst2 = v_pack_u(v_src3, v_src4);
|
||||
v_store(dst + x, v_pack(v_dst1, v_dst2));
|
||||
v_int16x8 v_dst1 = v_pack(v_src1, v_src2);
|
||||
v_int16x8 v_dst2 = v_pack(v_src3, v_src4);
|
||||
v_store(dst + x, v_pack_u(v_dst1, v_dst2));
|
||||
}
|
||||
}
|
||||
return x;
|
||||
|
@ -2779,7 +2779,7 @@ cvGraphAddEdgeByPtr( CvGraph* graph,
|
||||
|
||||
if( start_vtx == end_vtx )
|
||||
CV_Error( start_vtx ? CV_StsBadArg : CV_StsNullPtr,
|
||||
"vertex pointers coinside (or set to NULL)" );
|
||||
"vertex pointers coincide (or set to NULL)" );
|
||||
|
||||
edge = (CvGraphEdge*)cvSetNew( (CvSet*)(graph->edges) );
|
||||
assert( edge->flags >= 0 );
|
||||
|
@ -36,13 +36,14 @@ vecmerge_( const T** src, T* dst, int len, int cn )
|
||||
const T* src0 = src[0];
|
||||
const T* src1 = src[1];
|
||||
|
||||
const int dstElemSize = cn * sizeof(T);
|
||||
int r = (int)((size_t)(void*)dst % (VECSZ*sizeof(T)));
|
||||
hal::StoreMode mode = hal::STORE_ALIGNED_NOCACHE;
|
||||
if( r != 0 )
|
||||
{
|
||||
mode = hal::STORE_UNALIGNED;
|
||||
if( r % cn == 0 && len > VECSZ )
|
||||
i0 = VECSZ - (r / cn);
|
||||
if (r % dstElemSize == 0 && len > VECSZ*2)
|
||||
i0 = VECSZ - (r / dstElemSize);
|
||||
}
|
||||
|
||||
if( cn == 2 )
|
||||
|
@ -1063,7 +1063,7 @@ cvReadRawDataSlice( const CvFileStorage* fs, CvSeqReader* reader,
|
||||
CV_Error( CV_StsNullPtr, "Null pointer to reader or destination array" );
|
||||
|
||||
if( !reader->seq && len != 1 )
|
||||
CV_Error( CV_StsBadSize, "The readed sequence is a scalar, thus len must be 1" );
|
||||
CV_Error( CV_StsBadSize, "The read sequence is a scalar, thus len must be 1" );
|
||||
|
||||
fmt_pair_count = icvDecodeFormat( dt, fmt_pairs, CV_FS_MAX_FMT_PAIRS );
|
||||
size_t step = ::icvCalcStructSize(dt, 0);
|
||||
|
@ -27,8 +27,8 @@ vecsplit_( const T* src, T** dst, int len, int cn )
|
||||
if( (r0|r1|r2|r3) != 0 )
|
||||
{
|
||||
mode = hal::STORE_UNALIGNED;
|
||||
if( r0 == r1 && r0 == r2 && r0 == r3 && r0 % cn == 0 && len > VECSZ )
|
||||
i0 = VECSZ - (r0 / cn);
|
||||
if( r0 == r1 && r0 == r2 && r0 == r3 && r0 % sizeof(T) == 0 && len > VECSZ*2 )
|
||||
i0 = VECSZ - (r0 / sizeof(T));
|
||||
}
|
||||
|
||||
if( cn == 2 )
|
||||
|
@ -469,7 +469,32 @@ cv::String getCacheDirectory(const char* sub_directory_name, const char* configu
|
||||
{
|
||||
if (utils::fs::isDirectory(default_cache_path))
|
||||
{
|
||||
default_cache_path = utils::fs::join(default_cache_path, utils::fs::join("opencv", CV_VERSION));
|
||||
cv::String default_cache_path_base = utils::fs::join(default_cache_path, "opencv");
|
||||
default_cache_path = utils::fs::join(default_cache_path_base, "4.0" CV_VERSION_STATUS);
|
||||
if (utils::getConfigurationParameterBool("OPENCV_CACHE_SHOW_CLEANUP_MESSAGE", true)
|
||||
&& !utils::fs::isDirectory(default_cache_path))
|
||||
{
|
||||
std::vector<cv::String> existedCacheDirs;
|
||||
try
|
||||
{
|
||||
utils::fs::glob_relative(default_cache_path_base, "*", existedCacheDirs, false, true);
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
// ignore
|
||||
}
|
||||
if (!existedCacheDirs.empty())
|
||||
{
|
||||
CV_LOG_WARNING(NULL, "Creating new OpenCV cache directory: " << default_cache_path);
|
||||
CV_LOG_WARNING(NULL, "There are several neighbour directories, probably created by old OpenCV versions.");
|
||||
CV_LOG_WARNING(NULL, "Feel free to cleanup these unused directories:");
|
||||
for (size_t i = 0; i < existedCacheDirs.size(); i++)
|
||||
{
|
||||
CV_LOG_WARNING(NULL, " - " << existedCacheDirs[i]);
|
||||
}
|
||||
CV_LOG_WARNING(NULL, "Note: This message is showed only once.");
|
||||
}
|
||||
}
|
||||
if (sub_directory_name && sub_directory_name[0] != '\0')
|
||||
default_cache_path = utils::fs::join(default_cache_path, cv::String(sub_directory_name) + native_separator);
|
||||
if (!utils::fs::createDirectories(default_cache_path))
|
||||
|
@ -1,5 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_intrin.simd.hpp"
|
@ -2,101 +2,100 @@
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_intrin.simd.hpp"
|
||||
|
||||
#define CV_CPU_SIMD_FILENAME "test_intrin.simd.hpp"
|
||||
#define CV_CPU_DISPATCH_MODE FP16
|
||||
#include "opencv2/core/private/cv_cpu_include_simd_declarations.hpp"
|
||||
#include "test_intrin128.simd.hpp"
|
||||
#include "test_intrin128.simd_declarations.hpp"
|
||||
|
||||
#undef CV_CPU_DISPATCH_MODES_ALL
|
||||
|
||||
#include "opencv2/core/cv_cpu_dispatch.h"
|
||||
#include "test_intrin256.simd.hpp"
|
||||
#include "test_intrin256.simd_declarations.hpp"
|
||||
|
||||
#define CV_CPU_DISPATCH_MODE AVX2
|
||||
#include "opencv2/core/private/cv_cpu_include_simd_declarations.hpp"
|
||||
|
||||
namespace opencv_test { namespace hal {
|
||||
using namespace CV_CPU_OPTIMIZATION_NAMESPACE;
|
||||
|
||||
TEST(hal_intrin, uint8x16)
|
||||
{ test_hal_intrin_uint8(); }
|
||||
#define CV_CPU_CALL_BASELINE_(fn, args) CV_CPU_CALL_BASELINE(fn, args)
|
||||
|
||||
TEST(hal_intrin, int8x16)
|
||||
{ test_hal_intrin_int8(); }
|
||||
#define DISPATCH_SIMD128(fn, cpu_opt) do { \
|
||||
CV_CPU_CALL_ ## cpu_opt ## _(fn, ()); \
|
||||
throw SkipTestException("SIMD128 (" #cpu_opt ") is not available or disabled"); \
|
||||
} while(0)
|
||||
|
||||
TEST(hal_intrin, uint16x8)
|
||||
{ test_hal_intrin_uint16(); }
|
||||
#define DISPATCH_SIMD256(fn, cpu_opt) do { \
|
||||
CV_CPU_CALL_ ## cpu_opt ## _(fn, ()); \
|
||||
throw SkipTestException("SIMD256 (" #cpu_opt ") is not available or disabled"); \
|
||||
} while(0)
|
||||
|
||||
TEST(hal_intrin, int16x8)
|
||||
{ test_hal_intrin_int16(); }
|
||||
#define DEFINE_SIMD_TESTS(simd_size, cpu_opt) \
|
||||
TEST(hal_intrin ## simd_size, uint8x16_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_uint8, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, int8x16_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_int8, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, uint16x8_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_uint16, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, int16x8_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_int16, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, int32x4_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_int32, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, uint32x4_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_uint32, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, uint64x2_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_uint64, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, int64x2_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_int64, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, float32x4_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_float32, cpu_opt); } \
|
||||
TEST(hal_intrin ## simd_size, float64x2_ ## cpu_opt) { DISPATCH_SIMD ## simd_size(test_hal_intrin_float64, cpu_opt); } \
|
||||
|
||||
TEST(hal_intrin, int32x4)
|
||||
{ test_hal_intrin_int32(); }
|
||||
namespace intrin128 {
|
||||
|
||||
TEST(hal_intrin, uint32x4)
|
||||
{ test_hal_intrin_uint32(); }
|
||||
DEFINE_SIMD_TESTS(128, BASELINE)
|
||||
|
||||
TEST(hal_intrin, uint64x2)
|
||||
{ test_hal_intrin_uint64(); }
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_SSE2 || defined CV_CPU_BASELINE_COMPILE_SSE2
|
||||
DEFINE_SIMD_TESTS(128, SSE2)
|
||||
#endif
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_SSE3 || defined CV_CPU_BASELINE_COMPILE_SSE3
|
||||
DEFINE_SIMD_TESTS(128, SSE3)
|
||||
#endif
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_SSSE3 || defined CV_CPU_BASELINE_COMPILE_SSSE3
|
||||
DEFINE_SIMD_TESTS(128, SSSE3)
|
||||
#endif
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_SSE4_1 || defined CV_CPU_BASELINE_COMPILE_SSE4_1
|
||||
DEFINE_SIMD_TESTS(128, SSE4_1)
|
||||
#endif
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_SSE4_2 || defined CV_CPU_BASELINE_COMPILE_SSE4_2
|
||||
DEFINE_SIMD_TESTS(128, SSE4_2)
|
||||
#endif
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_AVX || defined CV_CPU_BASELINE_COMPILE_AVX
|
||||
DEFINE_SIMD_TESTS(128, AVX)
|
||||
#endif
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_AVX2 || defined CV_CPU_BASELINE_COMPILE_AVX2
|
||||
DEFINE_SIMD_TESTS(128, AVX2)
|
||||
#endif
|
||||
|
||||
TEST(hal_intrin, int64x2)
|
||||
{ test_hal_intrin_int64(); }
|
||||
|
||||
TEST(hal_intrin, float32x4)
|
||||
{ test_hal_intrin_float32(); }
|
||||
|
||||
TEST(hal_intrin, float64x2)
|
||||
{ test_hal_intrin_float64(); }
|
||||
|
||||
TEST(hal_intrin, float16x8)
|
||||
TEST(hal_intrin128, float16x8_FP16)
|
||||
{
|
||||
CV_CPU_CALL_FP16_(test_hal_intrin_float16, ());
|
||||
throw SkipTestException("Unsupported hardware: FP16 is not available");
|
||||
}
|
||||
|
||||
#define DISPATCH_SIMD_MODES AVX2
|
||||
#define DISPATCH_SIMD_NAME "SIMD256"
|
||||
#define DISPATCH_SIMD(fun) \
|
||||
do { \
|
||||
CV_CPU_DISPATCH(fun, (), DISPATCH_SIMD_MODES); \
|
||||
throw SkipTestException( \
|
||||
"Unsupported hardware: " \
|
||||
DISPATCH_SIMD_NAME \
|
||||
" is not available" \
|
||||
); \
|
||||
} while(0)
|
||||
} // namespace intrin128
|
||||
|
||||
TEST(hal_intrin256, uint8x32)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_uint8); }
|
||||
|
||||
TEST(hal_intrin256, int8x32)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_int8); }
|
||||
namespace intrin256 {
|
||||
|
||||
TEST(hal_intrin256, uint16x16)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_uint16); }
|
||||
|
||||
TEST(hal_intrin256, int16x16)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_int16); }
|
||||
// Not available due missing C++ backend for SIMD256
|
||||
//DEFINE_SIMD_TESTS(256, BASELINE)
|
||||
|
||||
TEST(hal_intrin256, uint32x8)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_uint32); }
|
||||
//#if defined CV_CPU_DISPATCH_COMPILE_AVX
|
||||
//DEFINE_SIMD_TESTS(256, AVX)
|
||||
//#endif
|
||||
|
||||
TEST(hal_intrin256, int32x8)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_int32); }
|
||||
#if defined CV_CPU_DISPATCH_COMPILE_AVX2 || defined CV_CPU_BASELINE_COMPILE_AVX2
|
||||
DEFINE_SIMD_TESTS(256, AVX2)
|
||||
#endif
|
||||
|
||||
TEST(hal_intrin256, uint64x4)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_uint64); }
|
||||
|
||||
TEST(hal_intrin256, int64x4)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_int64); }
|
||||
|
||||
TEST(hal_intrin256, float32x8)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_float32); }
|
||||
|
||||
TEST(hal_intrin256, float64x4)
|
||||
{ DISPATCH_SIMD(test_hal_intrin_float64); }
|
||||
|
||||
TEST(hal_intrin256, float16x16)
|
||||
TEST(hal_intrin256, float16x16_FP16)
|
||||
{
|
||||
if (!CV_CPU_HAS_SUPPORT_FP16)
|
||||
throw SkipTestException("Unsupported hardware: FP16 is not available");
|
||||
DISPATCH_SIMD(test_hal_intrin_float16);
|
||||
//CV_CPU_CALL_FP16_(test_hal_intrin_float16, ());
|
||||
CV_CPU_CALL_AVX2_(test_hal_intrin_float16, ());
|
||||
throw SkipTestException("Unsupported hardware: FP16 is not available");
|
||||
}
|
||||
|
||||
|
||||
} // namespace intrin256
|
||||
|
||||
}} // namespace
|
@ -1,19 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_intrin_utils.hpp"
|
||||
|
||||
namespace opencv_test { namespace hal {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
void test_hal_intrin_float16()
|
||||
{
|
||||
TheTest<v_float16>()
|
||||
.test_loadstore_fp16()
|
||||
.test_float_cvt_fp16()
|
||||
;
|
||||
}
|
||||
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
}} // namespace
|
@ -1,296 +0,0 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
#include "test_intrin_utils.hpp"
|
||||
|
||||
namespace opencv_test { namespace hal {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
void test_hal_intrin_uint8();
|
||||
void test_hal_intrin_int8();
|
||||
void test_hal_intrin_uint16();
|
||||
void test_hal_intrin_int16();
|
||||
void test_hal_intrin_uint32();
|
||||
void test_hal_intrin_int32();
|
||||
void test_hal_intrin_uint64();
|
||||
void test_hal_intrin_int64();
|
||||
void test_hal_intrin_float32();
|
||||
void test_hal_intrin_float64();
|
||||
|
||||
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
//============= 8-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint8()
|
||||
{
|
||||
TheTest<v_uint8>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_expand_q()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_cmp()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
|
||||
.test_pack_u<1>().test_pack_u<2>().test_pack_u<3>().test_pack_u<8>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
|
||||
;
|
||||
|
||||
#if CV_SIMD256
|
||||
TheTest<v_uint8>()
|
||||
.test_pack<9>().test_pack<10>().test_pack<13>().test_pack<15>()
|
||||
.test_pack_u<9>().test_pack_u<10>().test_pack_u<13>().test_pack_u<15>()
|
||||
.test_extract<16>().test_extract<17>().test_extract<23>().test_extract<31>()
|
||||
.test_rotate<16>().test_rotate<17>().test_rotate<23>().test_rotate<31>()
|
||||
;
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_hal_intrin_int8()
|
||||
{
|
||||
TheTest<v_int8>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_expand_q()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_cmp()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_abs()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
|
||||
;
|
||||
}
|
||||
|
||||
//============= 16-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint16()
|
||||
{
|
||||
TheTest<v_uint16>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_mul()
|
||||
.test_mul_expand()
|
||||
.test_cmp()
|
||||
.test_shift<1>()
|
||||
.test_shift<8>()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
|
||||
.test_pack_u<1>().test_pack_u<2>().test_pack_u<7>().test_pack_u<16>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
|
||||
;
|
||||
}
|
||||
|
||||
void test_hal_intrin_int16()
|
||||
{
|
||||
TheTest<v_int16>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_mul()
|
||||
.test_mul_expand()
|
||||
.test_cmp()
|
||||
.test_shift<1>()
|
||||
.test_shift<8>()
|
||||
.test_dot_prod()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_abs()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
|
||||
;
|
||||
}
|
||||
|
||||
//============= 32-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint32()
|
||||
{
|
||||
TheTest<v_uint32>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_mul_expand()
|
||||
.test_cmp()
|
||||
.test_shift<1>()
|
||||
.test_shift<8>()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
||||
.test_transpose()
|
||||
;
|
||||
}
|
||||
|
||||
void test_hal_intrin_int32()
|
||||
{
|
||||
TheTest<v_int32>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_abs()
|
||||
.test_cmp()
|
||||
.test_popcount()
|
||||
.test_shift<1>().test_shift<8>()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
||||
.test_float_cvt32()
|
||||
.test_float_cvt64()
|
||||
.test_transpose()
|
||||
;
|
||||
}
|
||||
|
||||
//============= 64-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint64()
|
||||
{
|
||||
TheTest<v_uint64>()
|
||||
.test_loadstore()
|
||||
.test_addsub()
|
||||
.test_shift<1>().test_shift<8>()
|
||||
.test_logic()
|
||||
.test_extract<0>().test_extract<1>()
|
||||
.test_rotate<0>().test_rotate<1>()
|
||||
;
|
||||
}
|
||||
|
||||
void test_hal_intrin_int64()
|
||||
{
|
||||
TheTest<v_int64>()
|
||||
.test_loadstore()
|
||||
.test_addsub()
|
||||
.test_shift<1>().test_shift<8>()
|
||||
.test_logic()
|
||||
.test_extract<0>().test_extract<1>()
|
||||
.test_rotate<0>().test_rotate<1>()
|
||||
;
|
||||
}
|
||||
|
||||
//============= Floating point =====================================================================
|
||||
void test_hal_intrin_float32()
|
||||
{
|
||||
TheTest<v_float32>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_interleave_2channel()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_div()
|
||||
.test_cmp()
|
||||
.test_sqrt_abs()
|
||||
.test_min_max()
|
||||
.test_float_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_unpack()
|
||||
.test_float_math()
|
||||
.test_float_cvt64()
|
||||
.test_matmul()
|
||||
.test_transpose()
|
||||
.test_reduce_sum4()
|
||||
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
||||
;
|
||||
|
||||
#if CV_SIMD256
|
||||
TheTest<v_float32>()
|
||||
.test_extract<4>().test_extract<5>().test_extract<6>().test_extract<7>()
|
||||
.test_rotate<4>().test_rotate<5>().test_rotate<6>().test_rotate<7>()
|
||||
;
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_hal_intrin_float64()
|
||||
{
|
||||
#if CV_SIMD_64F
|
||||
TheTest<v_float64>()
|
||||
.test_loadstore()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_div()
|
||||
.test_cmp()
|
||||
.test_sqrt_abs()
|
||||
.test_min_max()
|
||||
.test_float_absdiff()
|
||||
.test_mask()
|
||||
.test_unpack()
|
||||
.test_float_math()
|
||||
.test_float_cvt32()
|
||||
.test_extract<0>().test_extract<1>()
|
||||
.test_rotate<0>().test_rotate<1>()
|
||||
;
|
||||
|
||||
#if CV_SIMD256
|
||||
TheTest<v_float64>()
|
||||
.test_extract<2>().test_extract<3>()
|
||||
.test_rotate<2>().test_rotate<3>()
|
||||
;
|
||||
#endif //CV_SIMD256
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CV_FP16 && CV_SIMD_WIDTH > 16
|
||||
void test_hal_intrin_float16()
|
||||
{
|
||||
TheTest<v_float16>()
|
||||
.test_loadstore_fp16()
|
||||
.test_float_cvt_fp16()
|
||||
;
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif //CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
|
||||
}} //namespace
|
22
modules/core/test/test_intrin128.simd.hpp
Normal file
22
modules/core/test/test_intrin128.simd.hpp
Normal file
@ -0,0 +1,22 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
#define CV__SIMD_FORCE_WIDTH 128
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
#undef CV__SIMD_FORCE_WIDTH
|
||||
|
||||
#if CV_SIMD_WIDTH != 16
|
||||
#error "Invalid build configuration"
|
||||
#endif
|
||||
|
||||
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
namespace opencv_test { namespace hal { namespace intrin128 {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
#include "test_intrin_utils.hpp"
|
||||
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
}}} //namespace
|
23
modules/core/test/test_intrin256.simd.hpp
Normal file
23
modules/core/test/test_intrin256.simd.hpp
Normal file
@ -0,0 +1,23 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#if !defined CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY && \
|
||||
!defined CV_DISABLE_OPTIMIZATION && defined CV_ENABLE_INTRINSICS // TODO? C++ fallback implementation for SIMD256
|
||||
|
||||
#define CV__SIMD_FORCE_WIDTH 256
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
#undef CV__SIMD_FORCE_WIDTH
|
||||
|
||||
#if CV_SIMD_WIDTH != 32
|
||||
#error "Invalid build configuration"
|
||||
#endif
|
||||
|
||||
#endif // CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
namespace opencv_test { namespace hal { namespace intrin256 {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
#include "test_intrin_utils.hpp"
|
||||
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
}}} //namespace
|
@ -1,10 +1,22 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
|
||||
namespace opencv_test { namespace hal {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
// This file is not standalone.
|
||||
// It is included with these active namespaces:
|
||||
//namespace opencv_test { namespace hal { namespace intrinXXX {
|
||||
//CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
void test_hal_intrin_uint8();
|
||||
void test_hal_intrin_int8();
|
||||
void test_hal_intrin_uint16();
|
||||
void test_hal_intrin_int16();
|
||||
void test_hal_intrin_uint32();
|
||||
void test_hal_intrin_int32();
|
||||
void test_hal_intrin_uint64();
|
||||
void test_hal_intrin_int64();
|
||||
void test_hal_intrin_float32();
|
||||
void test_hal_intrin_float64();
|
||||
|
||||
void test_hal_intrin_float16();
|
||||
|
||||
@ -258,6 +270,7 @@ template<typename R> struct TheTest
|
||||
v_store(out.u.d, r_low);
|
||||
for (int i = 0; i < R::nlanes/2; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((LaneType)data.u[i], (LaneType)out.u[i]);
|
||||
}
|
||||
|
||||
@ -266,6 +279,7 @@ template<typename R> struct TheTest
|
||||
v_store(out.u.d, r_low_align8byte);
|
||||
for (int i = 0; i < R::nlanes/2; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((LaneType)data.u[i + R::nlanes/2], (LaneType)out.u[i]);
|
||||
}
|
||||
|
||||
@ -296,6 +310,7 @@ template<typename R> struct TheTest
|
||||
resV.fill((LaneType)8);
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((LaneType)0, resZ[i]);
|
||||
EXPECT_EQ((LaneType)8, resV[i]);
|
||||
}
|
||||
@ -342,6 +357,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(data1, Data<R>(a));
|
||||
EXPECT_EQ(data2, Data<R>(b));
|
||||
EXPECT_EQ(data3, Data<R>(c));
|
||||
@ -374,6 +390,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(data1, Data<R>(a));
|
||||
EXPECT_EQ(data2, Data<R>(b));
|
||||
}
|
||||
@ -397,6 +414,7 @@ template<typename R> struct TheTest
|
||||
const int n = Rx2::nlanes;
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i], resB[i]);
|
||||
EXPECT_EQ(dataA[i], resC[i]);
|
||||
EXPECT_EQ(dataA[i + n], resD[i]);
|
||||
@ -412,7 +430,10 @@ template<typename R> struct TheTest
|
||||
Data<Rx4> out = vx_load_expand_q(data.d);
|
||||
const int n = Rx4::nlanes;
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(data[i], out[i]);
|
||||
}
|
||||
|
||||
return *this;
|
||||
}
|
||||
@ -426,6 +447,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resC = a + b, resD = a - b;
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] + dataB[i]), resC[i]);
|
||||
EXPECT_EQ(saturate_cast<LaneType>(dataA[i] - dataB[i]), resD[i]);
|
||||
}
|
||||
@ -443,6 +465,7 @@ template<typename R> struct TheTest
|
||||
resD = v_sub_wrap(a, b);
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((LaneType)(dataA[i] + dataB[i]), resC[i]);
|
||||
EXPECT_EQ((LaneType)(dataA[i] - dataB[i]), resD[i]);
|
||||
}
|
||||
@ -458,6 +481,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resC = a * b;
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i] * dataB[i], resC[i]);
|
||||
}
|
||||
|
||||
@ -473,6 +497,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resC = a / b;
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i] / dataB[i], resC[i]);
|
||||
}
|
||||
|
||||
@ -492,6 +517,7 @@ template<typename R> struct TheTest
|
||||
const int n = R::nlanes / 2;
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((typename Rx2::lane_type)dataA[i] * dataB[i], resC[i]);
|
||||
EXPECT_EQ((typename Rx2::lane_type)dataA[i + n] * dataB[i + n], resD[i]);
|
||||
}
|
||||
@ -511,6 +537,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < Ru::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((u_type)std::abs(dataA[i] - dataB[i]), resC[i]);
|
||||
}
|
||||
|
||||
@ -529,6 +556,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(static_cast<LaneType>(dataA[i] << s), resB[i]);
|
||||
EXPECT_EQ(static_cast<LaneType>(dataA[i] << s), resC[i]);
|
||||
EXPECT_EQ(static_cast<LaneType>(dataA[i] >> s), resD[i]);
|
||||
@ -553,6 +581,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i] == dataB[i], resC[i] != 0);
|
||||
EXPECT_EQ(dataA[i] != dataB[i], resD[i] != 0);
|
||||
EXPECT_EQ(dataA[i] > dataB[i], resE[i] != 0);
|
||||
@ -583,6 +612,7 @@ template<typename R> struct TheTest
|
||||
const int n = R::nlanes / 2;
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i*2] * dataB[i*2] + dataA[i*2 + 1] * dataB[i*2 + 1], resD[i]);
|
||||
EXPECT_EQ(dataA[i*2] * dataB[i*2] + dataA[i*2 + 1] * dataB[i*2 + 1] + dataC[i], resE[i]);
|
||||
}
|
||||
@ -597,6 +627,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resC = a & b, resD = a | b, resE = a ^ b, resF = ~a;
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i] & dataB[i], resC[i]);
|
||||
EXPECT_EQ(dataA[i] | dataB[i], resD[i]);
|
||||
EXPECT_EQ(dataA[i] ^ dataB[i], resE[i]);
|
||||
@ -615,6 +646,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resB = v_sqrt(a), resC = v_invsqrt(a), resE = v_abs(d);
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_COMPARE_EQ((float)std::sqrt(dataA[i]), (float)resB[i]);
|
||||
EXPECT_COMPARE_EQ(1/(float)std::sqrt(dataA[i]), (float)resC[i]);
|
||||
EXPECT_COMPARE_EQ((float)abs(dataA[i]), (float)resE[i]);
|
||||
@ -632,6 +664,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resC = v_min(a, b), resD = v_max(a, b);
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(std::min(dataA[i], dataB[i]), resC[i]);
|
||||
EXPECT_EQ(std::max(dataA[i], dataB[i]), resD[i]);
|
||||
}
|
||||
@ -672,6 +705,7 @@ template<typename R> struct TheTest
|
||||
const u_type mask = std::numeric_limits<LaneType>::is_signed ? (u_type)(1 << (sizeof(u_type)*8 - 1)) : 0;
|
||||
for (int i = 0; i < Ru::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
u_type uA = dataA[i] ^ mask;
|
||||
u_type uB = dataB[i] ^ mask;
|
||||
EXPECT_EQ(uA > uB ? uA - uB : uB - uA, resC[i]);
|
||||
@ -691,6 +725,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resC = v_absdiff(a, b);
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i] > dataB[i] ? dataA[i] - dataB[i] : dataB[i] - dataA[i], resC[i]);
|
||||
}
|
||||
return *this;
|
||||
@ -744,6 +779,7 @@ template<typename R> struct TheTest
|
||||
Data<R> resF = f;
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
int_type m2 = dataB.as_int(i);
|
||||
EXPECT_EQ((dataD.as_int(i) & m2) | (dataE.as_int(i) & ~m2), resF.as_int(i));
|
||||
}
|
||||
@ -776,6 +812,7 @@ template<typename R> struct TheTest
|
||||
const w_type add = (w_type)1 << (s - 1);
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(pack_saturate_cast<LaneType>(dataA[i]), resC[i]);
|
||||
EXPECT_EQ(pack_saturate_cast<LaneType>(dataB[i]), resC[i + n]);
|
||||
EXPECT_EQ(pack_saturate_cast<LaneType>((dataA[i] + add) >> s), resD[i]);
|
||||
@ -816,6 +853,7 @@ template<typename R> struct TheTest
|
||||
const w_type add = (w_type)1 << (s - 1);
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(pack_saturate_cast<LaneType>(dataA[i]), resC[i]);
|
||||
EXPECT_EQ(pack_saturate_cast<LaneType>(dataB[i]), resC[i + n]);
|
||||
EXPECT_EQ(pack_saturate_cast<LaneType>((dataA[i] + add) >> s), resD[i]);
|
||||
@ -845,6 +883,7 @@ template<typename R> struct TheTest
|
||||
const int n = R::nlanes/2;
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(dataA[i], resC[i*2]);
|
||||
EXPECT_EQ(dataB[i], resC[i*2+1]);
|
||||
EXPECT_EQ(dataA[i+n], resD[i*2]);
|
||||
@ -876,6 +915,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
if (i + s >= R::nlanes)
|
||||
EXPECT_EQ(dataB[i - R::nlanes + s], resC[i]);
|
||||
else
|
||||
@ -901,6 +941,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
if (i + s >= R::nlanes)
|
||||
{
|
||||
EXPECT_EQ((LaneType)0, resC[i]);
|
||||
@ -940,6 +981,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ(cvRound(data1[i]), resB[i]);
|
||||
EXPECT_EQ((typename Ri::lane_type)data1[i], resC[i]);
|
||||
EXPECT_EQ(cvFloor(data1[i]), resD[i]);
|
||||
@ -964,6 +1006,7 @@ template<typename R> struct TheTest
|
||||
int n = std::min<int>(Rt::nlanes, R::nlanes);
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((typename Rt::lane_type)dataA[i], resB[i]);
|
||||
}
|
||||
return *this;
|
||||
@ -983,10 +1026,12 @@ template<typename R> struct TheTest
|
||||
int n = std::min<int>(Rt::nlanes, R::nlanes);
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((typename Rt::lane_type)dataA[i], resB[i]);
|
||||
}
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_EQ((typename Rt::lane_type)dataA[i+n], resC[i]);
|
||||
}
|
||||
#endif
|
||||
@ -1006,6 +1051,7 @@ template<typename R> struct TheTest
|
||||
{
|
||||
for (int j = i; j < i + 4; ++j)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d j=%d", i, j));
|
||||
LaneType val = dataV[i] * dataA[j]
|
||||
+ dataV[i + 1] * dataB[j]
|
||||
+ dataV[i + 2] * dataC[j]
|
||||
@ -1019,6 +1065,7 @@ template<typename R> struct TheTest
|
||||
{
|
||||
for (int j = i; j < i + 4; ++j)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d j=%d", i, j));
|
||||
LaneType val = dataV[i] * dataA[j]
|
||||
+ dataV[i + 1] * dataB[j]
|
||||
+ dataV[i + 2] * dataC[j]
|
||||
@ -1045,6 +1092,7 @@ template<typename R> struct TheTest
|
||||
{
|
||||
for (int j = 0; j < 4; ++j)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d j=%d", i, j));
|
||||
EXPECT_EQ(dataA[i + j], res[j][i]);
|
||||
EXPECT_EQ(dataB[i + j], res[j][i + 1]);
|
||||
EXPECT_EQ(dataC[i + j], res[j][i + 2]);
|
||||
@ -1066,6 +1114,7 @@ template<typename R> struct TheTest
|
||||
|
||||
for (int i = 0; i < R::nlanes; i += 4)
|
||||
{
|
||||
SCOPED_TRACE(cv::format("i=%d", i));
|
||||
EXPECT_COMPARE_EQ(dataA.sum(i, 4), res[i]);
|
||||
EXPECT_COMPARE_EQ(dataB.sum(i, 4), res[i + 1]);
|
||||
EXPECT_COMPARE_EQ(dataC.sum(i, 4), res[i + 2]);
|
||||
@ -1121,7 +1170,304 @@ template<typename R> struct TheTest
|
||||
|
||||
};
|
||||
|
||||
|
||||
#if 1
|
||||
#define DUMP_ENTRY(type) printf("SIMD%d: %s\n", 8*(int)sizeof(v_uint8), CV__TRACE_FUNCTION);
|
||||
#endif
|
||||
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
}} // namespace
|
||||
//============= 8-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint8()
|
||||
{
|
||||
DUMP_ENTRY(v_uint8);
|
||||
TheTest<v_uint8>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_expand_q()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_cmp()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
|
||||
.test_pack_u<1>().test_pack_u<2>().test_pack_u<3>().test_pack_u<8>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
|
||||
;
|
||||
|
||||
#if CV_SIMD_WIDTH == 32
|
||||
TheTest<v_uint8>()
|
||||
.test_pack<9>().test_pack<10>().test_pack<13>().test_pack<15>()
|
||||
.test_pack_u<9>().test_pack_u<10>().test_pack_u<13>().test_pack_u<15>()
|
||||
.test_extract<16>().test_extract<17>().test_extract<23>().test_extract<31>()
|
||||
.test_rotate<16>().test_rotate<17>().test_rotate<23>().test_rotate<31>()
|
||||
;
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_hal_intrin_int8()
|
||||
{
|
||||
DUMP_ENTRY(v_int8);
|
||||
TheTest<v_int8>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_expand_q()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_cmp()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_abs()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<3>().test_pack<8>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<8>().test_extract<15>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<8>().test_rotate<15>()
|
||||
;
|
||||
}
|
||||
|
||||
//============= 16-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint16()
|
||||
{
|
||||
DUMP_ENTRY(v_uint16);
|
||||
TheTest<v_uint16>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_mul()
|
||||
.test_mul_expand()
|
||||
.test_cmp()
|
||||
.test_shift<1>()
|
||||
.test_shift<8>()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
|
||||
.test_pack_u<1>().test_pack_u<2>().test_pack_u<7>().test_pack_u<16>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
|
||||
;
|
||||
}
|
||||
|
||||
void test_hal_intrin_int16()
|
||||
{
|
||||
DUMP_ENTRY(v_int16);
|
||||
TheTest<v_int16>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_addsub_wrap()
|
||||
.test_mul()
|
||||
.test_mul_expand()
|
||||
.test_cmp()
|
||||
.test_shift<1>()
|
||||
.test_shift<8>()
|
||||
.test_dot_prod()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_abs()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<7>().test_pack<16>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<4>().test_extract<7>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<4>().test_rotate<7>()
|
||||
;
|
||||
}
|
||||
|
||||
//============= 32-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint32()
|
||||
{
|
||||
DUMP_ENTRY(v_uint32);
|
||||
TheTest<v_uint32>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_mul_expand()
|
||||
.test_cmp()
|
||||
.test_shift<1>()
|
||||
.test_shift<8>()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_popcount()
|
||||
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
||||
.test_transpose()
|
||||
;
|
||||
}
|
||||
|
||||
void test_hal_intrin_int32()
|
||||
{
|
||||
DUMP_ENTRY(v_int32);
|
||||
TheTest<v_int32>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_expand()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_abs()
|
||||
.test_cmp()
|
||||
.test_popcount()
|
||||
.test_shift<1>().test_shift<8>()
|
||||
.test_logic()
|
||||
.test_min_max()
|
||||
.test_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_pack<1>().test_pack<2>().test_pack<15>().test_pack<32>()
|
||||
.test_unpack()
|
||||
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
||||
.test_float_cvt32()
|
||||
.test_float_cvt64()
|
||||
.test_transpose()
|
||||
;
|
||||
}
|
||||
|
||||
//============= 64-bit integer =====================================================================
|
||||
|
||||
void test_hal_intrin_uint64()
|
||||
{
|
||||
DUMP_ENTRY(v_uint64);
|
||||
TheTest<v_uint64>()
|
||||
.test_loadstore()
|
||||
.test_addsub()
|
||||
.test_shift<1>().test_shift<8>()
|
||||
.test_logic()
|
||||
.test_extract<0>().test_extract<1>()
|
||||
.test_rotate<0>().test_rotate<1>()
|
||||
;
|
||||
}
|
||||
|
||||
void test_hal_intrin_int64()
|
||||
{
|
||||
DUMP_ENTRY(v_int64);
|
||||
TheTest<v_int64>()
|
||||
.test_loadstore()
|
||||
.test_addsub()
|
||||
.test_shift<1>().test_shift<8>()
|
||||
.test_logic()
|
||||
.test_extract<0>().test_extract<1>()
|
||||
.test_rotate<0>().test_rotate<1>()
|
||||
;
|
||||
}
|
||||
|
||||
//============= Floating point =====================================================================
|
||||
void test_hal_intrin_float32()
|
||||
{
|
||||
DUMP_ENTRY(v_float32);
|
||||
TheTest<v_float32>()
|
||||
.test_loadstore()
|
||||
.test_interleave()
|
||||
.test_interleave_2channel()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_div()
|
||||
.test_cmp()
|
||||
.test_sqrt_abs()
|
||||
.test_min_max()
|
||||
.test_float_absdiff()
|
||||
.test_reduce()
|
||||
.test_mask()
|
||||
.test_unpack()
|
||||
.test_float_math()
|
||||
.test_float_cvt64()
|
||||
.test_matmul()
|
||||
.test_transpose()
|
||||
.test_reduce_sum4()
|
||||
.test_extract<0>().test_extract<1>().test_extract<2>().test_extract<3>()
|
||||
.test_rotate<0>().test_rotate<1>().test_rotate<2>().test_rotate<3>()
|
||||
;
|
||||
|
||||
#if CV_SIMD_WIDTH == 32
|
||||
TheTest<v_float32>()
|
||||
.test_extract<4>().test_extract<5>().test_extract<6>().test_extract<7>()
|
||||
.test_rotate<4>().test_rotate<5>().test_rotate<6>().test_rotate<7>()
|
||||
;
|
||||
#endif
|
||||
}
|
||||
|
||||
void test_hal_intrin_float64()
|
||||
{
|
||||
DUMP_ENTRY(v_float64);
|
||||
#if CV_SIMD_64F
|
||||
TheTest<v_float64>()
|
||||
.test_loadstore()
|
||||
.test_addsub()
|
||||
.test_mul()
|
||||
.test_div()
|
||||
.test_cmp()
|
||||
.test_sqrt_abs()
|
||||
.test_min_max()
|
||||
.test_float_absdiff()
|
||||
.test_mask()
|
||||
.test_unpack()
|
||||
.test_float_math()
|
||||
.test_float_cvt32()
|
||||
.test_extract<0>().test_extract<1>()
|
||||
.test_rotate<0>().test_rotate<1>()
|
||||
;
|
||||
|
||||
#if CV_SIMD_WIDTH == 32
|
||||
TheTest<v_float64>()
|
||||
.test_extract<2>().test_extract<3>()
|
||||
.test_rotate<2>().test_rotate<3>()
|
||||
;
|
||||
#endif //CV_SIMD256
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CV_FP16
|
||||
void test_hal_intrin_float16()
|
||||
{
|
||||
DUMP_ENTRY(v_float16);
|
||||
#if CV_SIMD_WIDTH > 16
|
||||
TheTest<v_float16>()
|
||||
.test_loadstore_fp16()
|
||||
.test_float_cvt_fp16()
|
||||
;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/*#if defined(CV_CPU_DISPATCH_MODE_FP16) && CV_CPU_DISPATCH_MODE == FP16
|
||||
void test_hal_intrin_float16()
|
||||
{
|
||||
TheTest<v_float16>()
|
||||
.test_loadstore_fp16()
|
||||
.test_float_cvt_fp16()
|
||||
;
|
||||
}
|
||||
#endif*/
|
||||
|
||||
#endif //CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
//CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
//}}} // namespace
|
||||
|
@ -1814,4 +1814,62 @@ BIGDATA_TEST(Mat, push_back_regression_4158) // memory usage: ~10.6 Gb
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TEST(Core_Merge, hang_12171)
|
||||
{
|
||||
Mat src1(4, 24, CV_8UC1, Scalar::all(1));
|
||||
Mat src2(4, 24, CV_8UC1, Scalar::all(2));
|
||||
Rect src_roi(0, 0, 23, 4);
|
||||
Mat src_channels[2] = { src1(src_roi), src2(src_roi) };
|
||||
Mat dst(4, 24, CV_8UC2, Scalar::all(5));
|
||||
Rect dst_roi(1, 0, 23, 4);
|
||||
cv::merge(src_channels, 2, dst(dst_roi));
|
||||
EXPECT_EQ(5, dst.ptr<uchar>()[0]);
|
||||
EXPECT_EQ(5, dst.ptr<uchar>()[1]);
|
||||
EXPECT_EQ(1, dst.ptr<uchar>()[2]);
|
||||
EXPECT_EQ(2, dst.ptr<uchar>()[3]);
|
||||
EXPECT_EQ(5, dst.ptr<uchar>(1)[0]);
|
||||
EXPECT_EQ(5, dst.ptr<uchar>(1)[1]);
|
||||
EXPECT_EQ(1, dst.ptr<uchar>(1)[2]);
|
||||
EXPECT_EQ(2, dst.ptr<uchar>(1)[3]);
|
||||
}
|
||||
|
||||
TEST(Core_Split, hang_12171)
|
||||
{
|
||||
Mat src(4, 24, CV_8UC2, Scalar(1,2,3,4));
|
||||
Rect src_roi(0, 0, 23, 4);
|
||||
Mat dst1(4, 24, CV_8UC1, Scalar::all(5));
|
||||
Mat dst2(4, 24, CV_8UC1, Scalar::all(10));
|
||||
Rect dst_roi(0, 0, 23, 4);
|
||||
Mat dst[2] = { dst1(dst_roi), dst2(dst_roi) };
|
||||
cv::split(src(src_roi), dst);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>()[0]);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>()[1]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>()[0]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>()[1]);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>(1)[0]);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>(1)[1]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>(1)[0]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>(1)[1]);
|
||||
}
|
||||
|
||||
TEST(Core_Split, crash_12171)
|
||||
{
|
||||
Mat src(4, 40, CV_8UC2, Scalar(1,2,3,4));
|
||||
Rect src_roi(0, 0, 39, 4);
|
||||
Mat dst1(4, 40, CV_8UC1, Scalar::all(5));
|
||||
Mat dst2(4, 40, CV_8UC1, Scalar::all(10));
|
||||
Rect dst_roi(0, 0, 39, 4);
|
||||
Mat dst[2] = { dst1(dst_roi), dst2(dst_roi) };
|
||||
cv::split(src(src_roi), dst);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>()[0]);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>()[1]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>()[0]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>()[1]);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>(1)[0]);
|
||||
EXPECT_EQ(1, dst1.ptr<uchar>(1)[1]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>(1)[0]);
|
||||
EXPECT_EQ(2, dst2.ptr<uchar>(1)[1]);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
@ -11,6 +11,5 @@
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/private.hpp"
|
||||
#include "opencv2/core/hal/hal.hpp"
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
|
||||
#endif
|
||||
|
@ -246,7 +246,7 @@ namespace cv { namespace cuda { namespace device
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Fot all remaining rows in the median filter, add the values to the the histogram
|
||||
// For all remaining rows in the median filter, add the values to the the histogram
|
||||
for (int j=threadIdx.x; j<cols; j+=blockDim.x){
|
||||
for(int i=initStartRow; i<initStopRow; i++){
|
||||
int pos=::min(i,rows-1);
|
||||
|
@ -342,7 +342,7 @@ void cv::cuda::meanShiftSegmentation(InputArray _src, OutputArray _dst, int sp,
|
||||
}
|
||||
}
|
||||
|
||||
// Sort all graph's edges connecting different components (in asceding order)
|
||||
// Sort all graph's edges connecting different components (in ascending order)
|
||||
std::sort(edges.begin(), edges.end());
|
||||
|
||||
// Exclude small components (starting from the nearest couple)
|
||||
|
@ -48,7 +48,7 @@ namespace opencv_test { namespace {
|
||||
|
||||
namespace
|
||||
{
|
||||
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
|
||||
cv::Mat createTransformMatrix(cv::Size srcSize, double angle)
|
||||
{
|
||||
cv::Mat M(2, 3, CV_64FC1);
|
||||
|
||||
@ -80,7 +80,7 @@ PARAM_TEST_CASE(BuildWarpAffineMaps, cv::cuda::DeviceInfo, cv::Size, Inverse)
|
||||
|
||||
CUDA_TEST_P(BuildWarpAffineMaps, Accuracy)
|
||||
{
|
||||
cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
|
||||
cv::Mat M = createTransformMatrix(size, CV_PI / 4);
|
||||
cv::Mat src = randomMat(randomSize(200, 400), CV_8UC1);
|
||||
|
||||
cv::cuda::GpuMat xmap, ymap;
|
||||
@ -207,7 +207,7 @@ PARAM_TEST_CASE(WarpAffine, cv::cuda::DeviceInfo, cv::Size, MatType, Inverse, In
|
||||
CUDA_TEST_P(WarpAffine, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, type);
|
||||
cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
|
||||
cv::Mat M = createTransformMatrix(size, CV_PI / 3);
|
||||
int flags = interpolation;
|
||||
if (inverse)
|
||||
flags |= cv::WARP_INVERSE_MAP;
|
||||
@ -257,7 +257,7 @@ CUDA_TEST_P(WarpAffineNPP, Accuracy)
|
||||
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
|
||||
ASSERT_FALSE(src.empty());
|
||||
|
||||
cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
|
||||
cv::Mat M = createTransformMatrix(src.size(), CV_PI / 4);
|
||||
int flags = interpolation;
|
||||
if (inverse)
|
||||
flags |= cv::WARP_INVERSE_MAP;
|
||||
|
@ -48,7 +48,7 @@ namespace opencv_test { namespace {
|
||||
|
||||
namespace
|
||||
{
|
||||
cv::Mat createTransfomMatrix(cv::Size srcSize, double angle)
|
||||
cv::Mat createTransformMatrix(cv::Size srcSize, double angle)
|
||||
{
|
||||
cv::Mat M(3, 3, CV_64FC1);
|
||||
|
||||
@ -81,7 +81,7 @@ PARAM_TEST_CASE(BuildWarpPerspectiveMaps, cv::cuda::DeviceInfo, cv::Size, Invers
|
||||
|
||||
CUDA_TEST_P(BuildWarpPerspectiveMaps, Accuracy)
|
||||
{
|
||||
cv::Mat M = createTransfomMatrix(size, CV_PI / 4);
|
||||
cv::Mat M = createTransformMatrix(size, CV_PI / 4);
|
||||
|
||||
cv::cuda::GpuMat xmap, ymap;
|
||||
cv::cuda::buildWarpPerspectiveMaps(M, inverse, size, xmap, ymap);
|
||||
@ -210,7 +210,7 @@ PARAM_TEST_CASE(WarpPerspective, cv::cuda::DeviceInfo, cv::Size, MatType, Invers
|
||||
CUDA_TEST_P(WarpPerspective, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, type);
|
||||
cv::Mat M = createTransfomMatrix(size, CV_PI / 3);
|
||||
cv::Mat M = createTransformMatrix(size, CV_PI / 3);
|
||||
int flags = interpolation;
|
||||
if (inverse)
|
||||
flags |= cv::WARP_INVERSE_MAP;
|
||||
@ -260,7 +260,7 @@ CUDA_TEST_P(WarpPerspectiveNPP, Accuracy)
|
||||
cv::Mat src = readImageType("stereobp/aloe-L.png", type);
|
||||
ASSERT_FALSE(src.empty());
|
||||
|
||||
cv::Mat M = createTransfomMatrix(src.size(), CV_PI / 4);
|
||||
cv::Mat M = createTransformMatrix(src.size(), CV_PI / 4);
|
||||
int flags = interpolation;
|
||||
if (inverse)
|
||||
flags |= cv::WARP_INVERSE_MAP;
|
||||
|
@ -199,7 +199,7 @@ TEST(Resize, Downscale)
|
||||
|
||||
// warpAffine & warpPerspective
|
||||
|
||||
Mat createAffineTransfomMatrix(Size srcSize, float angle, bool perspective)
|
||||
Mat createAffineTransformMatrix(Size srcSize, float angle, bool perspective)
|
||||
{
|
||||
cv::Mat M(perspective ? 3 : 2, 3, CV_32FC1);
|
||||
|
||||
@ -220,7 +220,7 @@ TEST(WarpAffine, Rotation)
|
||||
const Size size = randomSize(100, 400);
|
||||
|
||||
Mat src = randomMat(size, CV_32FC1, 0, 1);
|
||||
Mat M = createAffineTransfomMatrix(size, static_cast<float>(CV_PI / 4), false);
|
||||
Mat M = createAffineTransformMatrix(size, static_cast<float>(CV_PI / 4), false);
|
||||
|
||||
GpuMat_<float> d_src(src);
|
||||
GpuMat_<float> d_M;
|
||||
@ -240,7 +240,7 @@ TEST(WarpPerspective, Rotation)
|
||||
const Size size = randomSize(100, 400);
|
||||
|
||||
Mat src = randomMat(size, CV_32FC1, 0, 1);
|
||||
Mat M = createAffineTransfomMatrix(size, static_cast<float>(CV_PI / 4), true);
|
||||
Mat M = createAffineTransformMatrix(size, static_cast<float>(CV_PI / 4), true);
|
||||
|
||||
GpuMat_<float> d_src(src);
|
||||
GpuMat_<float> d_M;
|
||||
|
@ -489,7 +489,7 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
static Ptr<EltwiseLayer> create(const LayerParams ¶ms);
|
||||
};
|
||||
|
||||
class CV_EXPORTS BatchNormLayer : public Layer
|
||||
class CV_EXPORTS BatchNormLayer : public ActivationLayer
|
||||
{
|
||||
public:
|
||||
bool hasWeights, hasBias;
|
||||
|
@ -258,6 +258,17 @@ PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
|
||||
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", "", Mat(cv::Size(320, 240), CV_32FC3));
|
||||
}
|
||||
|
||||
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
||||
{
|
||||
if (backend == DNN_BACKEND_HALIDE ||
|
||||
(backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
|
||||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
||||
throw SkipTestException("");
|
||||
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb",
|
||||
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt", "",
|
||||
Mat(cv::Size(800, 600), CV_32FC3));
|
||||
}
|
||||
|
||||
const tuple<DNNBackend, DNNTarget> testCases[] = {
|
||||
#ifdef HAVE_HALIDE
|
||||
tuple<DNNBackend, DNNTarget>(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),
|
||||
|
@ -1408,7 +1408,7 @@ struct Net::Impl
|
||||
bool fused = ld.skip;
|
||||
|
||||
Ptr<Layer> layer = ld.layerInstance;
|
||||
if (!layer->supportBackend(preferableBackend))
|
||||
if (!fused && !layer->supportBackend(preferableBackend))
|
||||
{
|
||||
addInfEngineNetOutputs(ld);
|
||||
net = Ptr<InfEngineBackendNet>();
|
||||
@ -1471,6 +1471,8 @@ struct Net::Impl
|
||||
{
|
||||
node = layer->initInfEngine(ld.inputBlobsWrappers);
|
||||
}
|
||||
else if (node.empty())
|
||||
continue;
|
||||
|
||||
CV_Assert(!node.empty());
|
||||
ld.backendNodes[preferableBackend] = node;
|
||||
@ -1715,40 +1717,41 @@ struct Net::Impl
|
||||
if (preferableBackend != DNN_BACKEND_OPENCV)
|
||||
continue; // Go to the next layer.
|
||||
|
||||
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
|
||||
if ( !IS_DNN_OPENCL_TARGET(preferableTarget) ||
|
||||
(IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
nextData &&
|
||||
((nextData->type == "ReLU") ||
|
||||
(nextData->type == "ChannelsPReLU") ||
|
||||
(nextData->type == "ReLU6") ||
|
||||
(nextData->type == "TanH") ||
|
||||
(nextData->type == "Power"))) )
|
||||
while (nextData)
|
||||
{
|
||||
// For now, OpenCL target support fusion with activation of ReLU/ChannelsPReLU/Power/Tanh
|
||||
if (IS_DNN_OPENCL_TARGET(preferableTarget) &&
|
||||
nextData->type != "ReLU" &&
|
||||
nextData->type != "ChannelsPReLU" &&
|
||||
nextData->type != "ReLU6" &&
|
||||
nextData->type != "TanH" &&
|
||||
nextData->type != "Power")
|
||||
break;
|
||||
|
||||
Ptr<ActivationLayer> nextActivLayer;
|
||||
Ptr<ActivationLayer> nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
|
||||
if (nextActivLayer.empty())
|
||||
break;
|
||||
|
||||
if( nextData )
|
||||
nextActivLayer = nextData->layerInstance.dynamicCast<ActivationLayer>();
|
||||
|
||||
if( !nextActivLayer.empty() && pinsToKeep.count(lpNext) == 0
|
||||
&& currLayer->setActivation(nextActivLayer) )
|
||||
if (currLayer->setActivation(nextActivLayer))
|
||||
{
|
||||
LayerData *activData = nextData;
|
||||
printf_(("\tfused with %s\n", nextActivLayer->name.c_str()));
|
||||
activData->skip = true;
|
||||
nextData->skip = true;
|
||||
ld.outputBlobs = layers[lpNext.lid].outputBlobs;
|
||||
ld.outputBlobsWrappers = layers[lpNext.lid].outputBlobsWrappers;
|
||||
|
||||
if ( IS_DNN_OPENCL_TARGET(preferableTarget) )
|
||||
if (nextData->consumers.size() == 1)
|
||||
{
|
||||
if ( !activData->consumers.empty() )
|
||||
{
|
||||
nextData = &layers[activData->consumers[0].lid];
|
||||
lpNext = LayerPin(activData->consumers[0].lid, 0);
|
||||
}
|
||||
int nextLayerId = nextData->consumers[0].lid;
|
||||
nextData = &layers[nextLayerId];
|
||||
lpNext = LayerPin(nextLayerId, 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
nextData = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
else
|
||||
break;
|
||||
}
|
||||
|
||||
// fuse convolution layer followed by eltwise + relu
|
||||
@ -2050,10 +2053,10 @@ struct Net::Impl
|
||||
TickMeter tm;
|
||||
tm.start();
|
||||
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV ||
|
||||
!layer->supportBackend(preferableBackend))
|
||||
if( !ld.skip )
|
||||
{
|
||||
if( !ld.skip )
|
||||
std::map<int, Ptr<BackendNode> >::iterator it = ld.backendNodes.find(preferableBackend);
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV || it == ld.backendNodes.end() || it->second.empty())
|
||||
{
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV && IS_DNN_OPENCL_TARGET(preferableTarget))
|
||||
{
|
||||
@ -2196,24 +2199,25 @@ struct Net::Impl
|
||||
}
|
||||
}
|
||||
else
|
||||
tm.reset();
|
||||
}
|
||||
else if (!ld.skip)
|
||||
{
|
||||
Ptr<BackendNode> node = ld.backendNodes[preferableBackend];
|
||||
if (preferableBackend == DNN_BACKEND_HALIDE)
|
||||
{
|
||||
forwardHalide(ld.outputBlobsWrappers, node);
|
||||
}
|
||||
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
{
|
||||
forwardInfEngine(node);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
||||
Ptr<BackendNode> node = it->second;
|
||||
CV_Assert(!node.empty());
|
||||
if (preferableBackend == DNN_BACKEND_HALIDE)
|
||||
{
|
||||
forwardHalide(ld.outputBlobsWrappers, node);
|
||||
}
|
||||
else if (preferableBackend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
{
|
||||
forwardInfEngine(node);
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(Error::StsNotImplemented, "Unknown backend identifier");
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
tm.reset();
|
||||
|
||||
tm.stop();
|
||||
layersTimings[ld.id] = tm.getTimeTicks();
|
||||
|
@ -268,6 +268,36 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
void forwardSlice(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const CV_OVERRIDE
|
||||
{
|
||||
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
|
||||
{
|
||||
int i = 0;
|
||||
float w = weights_.at<float>(cn);
|
||||
float b = bias_.at<float>(cn);
|
||||
#if CV_SIMD128
|
||||
v_float32x4 wV = v_setall_f32(w), bV = v_setall_f32(b);
|
||||
for( ; i <= len - 16; i += 16 )
|
||||
{
|
||||
v_float32x4 x0 = v_load(srcptr + i);
|
||||
v_float32x4 x1 = v_load(srcptr + i + 4);
|
||||
v_float32x4 x2 = v_load(srcptr + i + 8);
|
||||
v_float32x4 x3 = v_load(srcptr + i + 12);
|
||||
x0 = v_muladd(x0, w, b);
|
||||
x1 = v_muladd(x1, w, b);
|
||||
x2 = v_muladd(x2, w, b);
|
||||
x3 = v_muladd(x3, w, b);
|
||||
v_store(dstptr + i, x0);
|
||||
v_store(dstptr + i + 4, x1);
|
||||
v_store(dstptr + i + 8, x2);
|
||||
v_store(dstptr + i + 12, x3);
|
||||
}
|
||||
#endif
|
||||
for( ; i < len; i++ )
|
||||
dstptr[i] = w * srcptr[i] + b;
|
||||
}
|
||||
}
|
||||
|
||||
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node) CV_OVERRIDE
|
||||
{
|
||||
switch (node->backendId)
|
||||
|
@ -296,6 +296,9 @@ public:
|
||||
|
||||
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
||||
{
|
||||
if (!activ.empty() && !layer.empty())
|
||||
return false;
|
||||
|
||||
activ = layer;
|
||||
if (activ.empty())
|
||||
reluslope.clear();
|
||||
|
@ -196,7 +196,7 @@ public:
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && !_locPredTransposed && _bboxesNormalized;
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && !_locPredTransposed && _bboxesNormalized && !_clip;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
|
@ -452,8 +452,13 @@ public:
|
||||
|
||||
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
||||
{
|
||||
activ = layer;
|
||||
return !activ.empty();
|
||||
if (activ.empty() || layer.empty())
|
||||
{
|
||||
activ = layer;
|
||||
return !activ.empty();
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
Ptr<ActivationLayer> activ;
|
||||
|
@ -135,8 +135,13 @@ public:
|
||||
|
||||
virtual bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
||||
{
|
||||
activ = layer;
|
||||
return !activ.empty();
|
||||
if (activ.empty() || layer.empty())
|
||||
{
|
||||
activ = layer;
|
||||
return !activ.empty();
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
class FullyConnected : public ParallelLoopBody
|
||||
|
@ -42,6 +42,7 @@
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
#include "../op_inf_engine.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -66,27 +67,25 @@ public:
|
||||
fuse_batch_norm = false;
|
||||
fuse_relu = false;
|
||||
relu_slope = 0.f;
|
||||
zeroDev = false;
|
||||
}
|
||||
|
||||
Mat scale, shift;
|
||||
bool fuse_batch_norm;
|
||||
|
||||
virtual bool tryFuse(Ptr<Layer>& top) CV_OVERRIDE
|
||||
{
|
||||
if (!fuse_batch_norm)
|
||||
{
|
||||
top->getScaleShift(scale, shift);
|
||||
fuse_batch_norm = !scale.empty() || !shift.empty();
|
||||
return fuse_batch_norm;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
Ptr<ReLULayer> activ_relu;
|
||||
float relu_slope;
|
||||
bool fuse_relu;
|
||||
bool zeroDev; // TODO: Doesn't considered in Intel's Inference Engine backend.
|
||||
bool setActivation(const Ptr<ActivationLayer>& layer) CV_OVERRIDE
|
||||
{
|
||||
if (!layer.empty() && !fuse_relu && !fuse_batch_norm)
|
||||
{
|
||||
layer->getScaleShift(scale, shift);
|
||||
fuse_batch_norm = !scale.empty() || !shift.empty();
|
||||
return fuse_batch_norm;
|
||||
}
|
||||
|
||||
if (!layer.empty() && preferableTarget == DNN_TARGET_OPENCL)
|
||||
{
|
||||
activ_relu = layer.dynamicCast<ReLULayer>();
|
||||
@ -97,6 +96,23 @@ public:
|
||||
return fuse_relu;
|
||||
}
|
||||
|
||||
void finalize(const std::vector<Mat*> &inputs, std::vector<Mat> &outputs) CV_OVERRIDE
|
||||
{
|
||||
int splitDim = (acrossChannels) ? 1 : 2;
|
||||
int i, newRows = 1;
|
||||
for( i = 0; i < splitDim; i++ )
|
||||
newRows *= inputs[0]->size[i];
|
||||
zeroDev = inputs[0]->total() == newRows;
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
return !zeroDev && (preferableTarget == DNN_TARGET_CPU || eps <= 1e-7f);
|
||||
else
|
||||
return backendId == DNN_BACKEND_OPENCV;
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
bool fast_forward_ocl(std::vector<UMat> &inputs, std::vector<UMat> &outputs)
|
||||
{
|
||||
@ -324,6 +340,22 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
InferenceEngine::LayerParams lp;
|
||||
lp.name = name;
|
||||
lp.type = "MVN";
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::MVNLayer> ieLayer(new InferenceEngine::MVNLayer(lp));
|
||||
ieLayer->params["across_channels"] = acrossChannels ? "1" : "0";
|
||||
ieLayer->params["normalize_variance"] = normVariance ? "1" : "0";
|
||||
ieLayer->params["eps"] = format("%f", eps);
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
||||
{
|
||||
|
@ -48,9 +48,8 @@ public:
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_HALIDE && haveHalide() ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine();
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && axis == 1;
|
||||
}
|
||||
|
||||
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
||||
|
@ -111,7 +111,7 @@ public:
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && sliceRanges.size() == 1;
|
||||
backendId == DNN_BACKEND_INFERENCE_ENGINE && sliceRanges.size() == 1 && sliceRanges[0].size() == 4;
|
||||
}
|
||||
|
||||
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
|
@ -307,15 +307,17 @@ public:
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
||||
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >& inputs) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]);
|
||||
|
||||
InferenceEngine::LayerParams lp;
|
||||
lp.name = name;
|
||||
lp.type = "SoftMax";
|
||||
lp.precision = InferenceEngine::Precision::FP32;
|
||||
std::shared_ptr<InferenceEngine::SoftMaxLayer> ieLayer(new InferenceEngine::SoftMaxLayer(lp));
|
||||
ieLayer->axis = axisRaw;
|
||||
ieLayer->axis = clamp(axisRaw, input->dims.size());
|
||||
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
||||
#endif // HAVE_INF_ENGINE
|
||||
return Ptr<BackendNode>();
|
||||
|
@ -248,39 +248,38 @@ convolve_simd(
|
||||
|
||||
int curr_y = or * STRIDE_Y;
|
||||
int curr_x = oc * STRIDE_X + lid;
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
int saved_y = curr_y;
|
||||
#endif
|
||||
|
||||
int in_addr = input_batch_offset
|
||||
+ (curr_y - INPUT_PAD_H) * INPUT_WIDTH // y tile offset
|
||||
+ curr_x - INPUT_PAD_W; // x tile offset
|
||||
|
||||
const int in_limit = (get_global_size(2) / ALIGNED_NUM_FILTERS) * TOTAL_INPUT_DEPTH_SIZE * INPUT_PITCH - 1;
|
||||
|
||||
Dtype in_buf[INVEC_SIZE];
|
||||
|
||||
for(int kd = 0; kd < INPUT_DEPTH; kd++)
|
||||
{
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
const bool cx_out_of_range = !(curr_x >= INPUT_PAD_W && curr_x < INPUT_WIDTH + INPUT_PAD_W);
|
||||
int in_offset = in_addr;
|
||||
__attribute__((opencl_unroll_hint(INVEC_SIZE)))
|
||||
for (int reg = 0; reg < INVEC_SIZE; reg++)
|
||||
for (int reg = 0; reg < INVEC_SIZE; reg++, in_offset += INPUT_WIDTH)
|
||||
{
|
||||
in_buf[reg] = inputs[in_offset];
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
if (!(curr_y >= INPUT_PAD_H && curr_y < INPUT_HEIGHT + INPUT_PAD_H &&
|
||||
curr_x >= INPUT_PAD_W && curr_x < INPUT_WIDTH + INPUT_PAD_W))
|
||||
{
|
||||
in_buf[reg] = 0;
|
||||
}
|
||||
#endif
|
||||
curr_y += 1;
|
||||
in_offset += INPUT_WIDTH;
|
||||
Dtype input = inputs[clamp(in_offset, 0, in_limit)];
|
||||
int cy = curr_y + reg;
|
||||
in_buf[reg] = (cx_out_of_range || cy < INPUT_PAD_H || cy >= INPUT_HEIGHT + INPUT_PAD_H) ? 0 : input;
|
||||
}
|
||||
#else
|
||||
int in_offset = in_addr;
|
||||
__attribute__((opencl_unroll_hint(INVEC_SIZE)))
|
||||
for (int reg = 0; reg < INVEC_SIZE; reg++, in_offset += INPUT_WIDTH)
|
||||
{
|
||||
in_buf[reg] = inputs[min(in_offset, in_limit)];
|
||||
}
|
||||
#endif
|
||||
|
||||
in_addr += INPUT_PITCH;
|
||||
|
||||
#if INPUT_PAD_W != 0 || INPUT_PAD_H != 0 || INPUT_PAD_BOTTOM != 0 || INPUT_PAD_RIGHT != 0
|
||||
curr_y = saved_y;
|
||||
#endif
|
||||
|
||||
Dtype weight_buf[WEIGHT_PREF];
|
||||
int w_idx=0;
|
||||
|
||||
|
@ -716,6 +716,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
// find all Const layers for params
|
||||
std::map<String, int> value_id;
|
||||
// A map with constant blobs which are shared between multiple layers.
|
||||
std::map<String, Mat> sharedWeights;
|
||||
addConstNodes(netBin, value_id, layers_to_ignore);
|
||||
addConstNodes(netTxt, value_id, layers_to_ignore);
|
||||
|
||||
@ -805,51 +807,64 @@ void TFImporter::populateNet(Net dstNet)
|
||||
}
|
||||
}
|
||||
|
||||
const tensorflow::TensorProto& kernelTensor = getConstBlob(layer, value_id);
|
||||
kernelFromTensor(kernelTensor, layerParams.blobs[0]);
|
||||
releaseTensor(const_cast<tensorflow::TensorProto*>(&kernelTensor));
|
||||
int* kshape = layerParams.blobs[0].size.p;
|
||||
const int outCh = kshape[0];
|
||||
const int inCh = kshape[1];
|
||||
const int height = kshape[2];
|
||||
const int width = kshape[3];
|
||||
if (type == "DepthwiseConv2dNative")
|
||||
int kernelTensorInpId = -1;
|
||||
const tensorflow::TensorProto& kernelTensor = getConstBlob(layer, value_id, -1, &kernelTensorInpId);
|
||||
const String kernelTensorName = layer.input(kernelTensorInpId);
|
||||
std::map<String, Mat>::iterator sharedWeightsIt = sharedWeights.find(kernelTensorName);
|
||||
if (sharedWeightsIt == sharedWeights.end())
|
||||
{
|
||||
CV_Assert(!locPredTransposed);
|
||||
const int chMultiplier = kshape[0];
|
||||
kernelFromTensor(kernelTensor, layerParams.blobs[0]);
|
||||
releaseTensor(const_cast<tensorflow::TensorProto*>(&kernelTensor));
|
||||
|
||||
Mat copy = layerParams.blobs[0].clone();
|
||||
float* src = (float*)copy.data;
|
||||
float* dst = (float*)layerParams.blobs[0].data;
|
||||
for (int i = 0; i < chMultiplier; ++i)
|
||||
for (int j = 0; j < inCh; ++j)
|
||||
for (int s = 0; s < height * width; ++s)
|
||||
{
|
||||
int src_i = (i * inCh + j) * height * width + s;
|
||||
int dst_i = (j * chMultiplier + i) * height* width + s;
|
||||
dst[dst_i] = src[src_i];
|
||||
}
|
||||
// TODO Use reshape instead
|
||||
kshape[0] = inCh * chMultiplier;
|
||||
kshape[1] = 1;
|
||||
size_t* kstep = layerParams.blobs[0].step.p;
|
||||
kstep[0] = kstep[1]; // fix steps too
|
||||
}
|
||||
layerParams.set("kernel_h", height);
|
||||
layerParams.set("kernel_w", width);
|
||||
layerParams.set("num_output", outCh);
|
||||
|
||||
// Shuffle output channels from yxYX to xyXY.
|
||||
if (locPredTransposed)
|
||||
{
|
||||
const int slice = height * width * inCh;
|
||||
for (int i = 0; i < outCh; i += 2)
|
||||
int* kshape = layerParams.blobs[0].size.p;
|
||||
const int outCh = kshape[0];
|
||||
const int inCh = kshape[1];
|
||||
const int height = kshape[2];
|
||||
const int width = kshape[3];
|
||||
if (type == "DepthwiseConv2dNative")
|
||||
{
|
||||
cv::Mat src(1, slice, CV_32F, layerParams.blobs[0].ptr<float>(i));
|
||||
cv::Mat dst(1, slice, CV_32F, layerParams.blobs[0].ptr<float>(i + 1));
|
||||
std::swap_ranges(src.begin<float>(), src.end<float>(), dst.begin<float>());
|
||||
CV_Assert(!locPredTransposed);
|
||||
const int chMultiplier = kshape[0];
|
||||
|
||||
Mat copy = layerParams.blobs[0].clone();
|
||||
float* src = (float*)copy.data;
|
||||
float* dst = (float*)layerParams.blobs[0].data;
|
||||
for (int i = 0; i < chMultiplier; ++i)
|
||||
for (int j = 0; j < inCh; ++j)
|
||||
for (int s = 0; s < height * width; ++s)
|
||||
{
|
||||
int src_i = (i * inCh + j) * height * width + s;
|
||||
int dst_i = (j * chMultiplier + i) * height* width + s;
|
||||
dst[dst_i] = src[src_i];
|
||||
}
|
||||
// TODO Use reshape instead
|
||||
kshape[0] = inCh * chMultiplier;
|
||||
kshape[1] = 1;
|
||||
size_t* kstep = layerParams.blobs[0].step.p;
|
||||
kstep[0] = kstep[1]; // fix steps too
|
||||
}
|
||||
|
||||
// Shuffle output channels from yxYX to xyXY.
|
||||
if (locPredTransposed)
|
||||
{
|
||||
const int slice = height * width * inCh;
|
||||
for (int i = 0; i < outCh; i += 2)
|
||||
{
|
||||
cv::Mat src(1, slice, CV_32F, layerParams.blobs[0].ptr<float>(i));
|
||||
cv::Mat dst(1, slice, CV_32F, layerParams.blobs[0].ptr<float>(i + 1));
|
||||
std::swap_ranges(src.begin<float>(), src.end<float>(), dst.begin<float>());
|
||||
}
|
||||
}
|
||||
sharedWeights[kernelTensorName] = layerParams.blobs[0];
|
||||
}
|
||||
else
|
||||
{
|
||||
layerParams.blobs[0] = sharedWeightsIt->second;
|
||||
}
|
||||
|
||||
layerParams.set("kernel_h", layerParams.blobs[0].size[2]);
|
||||
layerParams.set("kernel_w", layerParams.blobs[0].size[3]);
|
||||
layerParams.set("num_output", layerParams.blobs[0].size[0]);
|
||||
|
||||
setStrides(layerParams, layer);
|
||||
setPadding(layerParams, layer);
|
||||
@ -954,6 +969,13 @@ void TFImporter::populateNet(Net dstNet)
|
||||
{
|
||||
CV_Assert(layer.input_size() == 2);
|
||||
|
||||
// For the object detection networks, TensorFlow Object Detection API
|
||||
// predicts deltas for bounding boxes in yxYX (ymin, xmin, ymax, xmax)
|
||||
// order. We can manage it at DetectionOutput layer parsing predictions
|
||||
// or shuffle last Faster-RCNN's matmul weights.
|
||||
bool locPredTransposed = hasLayerAttr(layer, "loc_pred_transposed") &&
|
||||
getLayerAttr(layer, "loc_pred_transposed").b();
|
||||
|
||||
layerParams.set("bias_term", false);
|
||||
layerParams.blobs.resize(1);
|
||||
|
||||
@ -970,6 +992,17 @@ void TFImporter::populateNet(Net dstNet)
|
||||
blobFromTensor(getConstBlob(net.node(weights_layer_index), value_id), layerParams.blobs[1]);
|
||||
ExcludeLayer(net, weights_layer_index, 0, false);
|
||||
layers_to_ignore.insert(next_layers[0].first);
|
||||
|
||||
if (locPredTransposed)
|
||||
{
|
||||
const int numWeights = layerParams.blobs[1].total();
|
||||
float* biasData = reinterpret_cast<float*>(layerParams.blobs[1].data);
|
||||
CV_Assert(numWeights % 4 == 0);
|
||||
for (int i = 0; i < numWeights; i += 2)
|
||||
{
|
||||
std::swap(biasData[i], biasData[i + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int kernel_blob_index = -1;
|
||||
@ -983,6 +1016,16 @@ void TFImporter::populateNet(Net dstNet)
|
||||
}
|
||||
|
||||
layerParams.set("num_output", layerParams.blobs[0].size[0]);
|
||||
if (locPredTransposed)
|
||||
{
|
||||
CV_Assert(layerParams.blobs[0].dims == 2);
|
||||
for (int i = 0; i < layerParams.blobs[0].size[0]; i += 2)
|
||||
{
|
||||
cv::Mat src = layerParams.blobs[0].row(i);
|
||||
cv::Mat dst = layerParams.blobs[0].row(i + 1);
|
||||
std::swap_ranges(src.begin<float>(), src.end<float>(), dst.begin<float>());
|
||||
}
|
||||
}
|
||||
|
||||
int id = dstNet.addLayer(name, "InnerProduct", layerParams);
|
||||
layer_id[name] = id;
|
||||
@ -1010,6 +1053,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
inpLayout = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
else if (newShape.total() == 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
@ -1024,7 +1068,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
// one input only
|
||||
connect(layer_id, dstNet, inpId, id, 0);
|
||||
data_layouts[name] = newShape.total() == 2 ? DATA_LAYOUT_PLANAR : DATA_LAYOUT_UNKNOWN;
|
||||
data_layouts[name] = newShape.total() == 2 ? DATA_LAYOUT_PLANAR : inpLayout;
|
||||
}
|
||||
else if (type == "Flatten" || type == "Squeeze")
|
||||
{
|
||||
@ -1696,41 +1740,6 @@ void TFImporter::populateNet(Net dstNet)
|
||||
connect(layer_id, dstNet, parsePin(layer.input(1)), id, 1);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "DetectionOutput")
|
||||
{
|
||||
// op: "DetectionOutput"
|
||||
// input_0: "locations"
|
||||
// input_1: "classifications"
|
||||
// input_2: "prior_boxes"
|
||||
if (hasLayerAttr(layer, "num_classes"))
|
||||
layerParams.set("num_classes", getLayerAttr(layer, "num_classes").i());
|
||||
if (hasLayerAttr(layer, "share_location"))
|
||||
layerParams.set("share_location", getLayerAttr(layer, "share_location").b());
|
||||
if (hasLayerAttr(layer, "background_label_id"))
|
||||
layerParams.set("background_label_id", getLayerAttr(layer, "background_label_id").i());
|
||||
if (hasLayerAttr(layer, "nms_threshold"))
|
||||
layerParams.set("nms_threshold", getLayerAttr(layer, "nms_threshold").f());
|
||||
if (hasLayerAttr(layer, "top_k"))
|
||||
layerParams.set("top_k", getLayerAttr(layer, "top_k").i());
|
||||
if (hasLayerAttr(layer, "code_type"))
|
||||
layerParams.set("code_type", getLayerAttr(layer, "code_type").s());
|
||||
if (hasLayerAttr(layer, "keep_top_k"))
|
||||
layerParams.set("keep_top_k", getLayerAttr(layer, "keep_top_k").i());
|
||||
if (hasLayerAttr(layer, "confidence_threshold"))
|
||||
layerParams.set("confidence_threshold", getLayerAttr(layer, "confidence_threshold").f());
|
||||
if (hasLayerAttr(layer, "loc_pred_transposed"))
|
||||
layerParams.set("loc_pred_transposed", getLayerAttr(layer, "loc_pred_transposed").b());
|
||||
if (hasLayerAttr(layer, "clip"))
|
||||
layerParams.set("clip", getLayerAttr(layer, "clip").b());
|
||||
if (hasLayerAttr(layer, "variance_encoded_in_target"))
|
||||
layerParams.set("variance_encoded_in_target", getLayerAttr(layer, "variance_encoded_in_target").b());
|
||||
|
||||
int id = dstNet.addLayer(name, "DetectionOutput", layerParams);
|
||||
layer_id[name] = id;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
connect(layer_id, dstNet, parsePin(layer.input(i)), id, i);
|
||||
data_layouts[name] = DATA_LAYOUT_UNKNOWN;
|
||||
}
|
||||
else if (type == "Softmax")
|
||||
{
|
||||
if (hasLayerAttr(layer, "axis"))
|
||||
|
@ -165,12 +165,6 @@ TEST_P(Test_TensorFlow_layers, batch_norm)
|
||||
runTensorFlowNet("unfused_batch_norm");
|
||||
runTensorFlowNet("fused_batch_norm_no_gamma");
|
||||
runTensorFlowNet("unfused_batch_norm_no_gamma");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, mvn_batch_norm)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
throw SkipTestException("");
|
||||
runTensorFlowNet("mvn_batch_norm");
|
||||
runTensorFlowNet("mvn_batch_norm_1x1");
|
||||
}
|
||||
@ -323,7 +317,7 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
|
||||
TEST_P(Test_TensorFlow_nets, Inception_v2_Faster_RCNN)
|
||||
{
|
||||
checkBackend();
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE ||
|
||||
if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) ||
|
||||
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
||||
throw SkipTestException("");
|
||||
|
||||
@ -343,6 +337,26 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_Faster_RCNN)
|
||||
normAssertDetections(ref, out, "", 0.3);
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN)
|
||||
{
|
||||
checkBackend();
|
||||
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pbtxt", false);
|
||||
std::string model = findDataFile("dnn/ssd_mobilenet_v1_ppn_coco.pb", false);
|
||||
|
||||
Net net = readNetFromTensorflow(model, proto);
|
||||
Mat img = imread(findDataFile("dnn/dog416.png", false));
|
||||
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_ppn_coco.detection_out.npy", false));
|
||||
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false);
|
||||
|
||||
net.setPreferableBackend(backend);
|
||||
net.setPreferableTarget(target);
|
||||
|
||||
net.setInput(blob);
|
||||
Mat out = net.forward();
|
||||
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.006 : default_l1;
|
||||
normAssertDetections(ref, out, "", 0.4, scoreDiff, default_lInf);
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
|
||||
{
|
||||
checkBackend();
|
||||
|
@ -131,7 +131,7 @@ my $success_structured;
|
||||
}
|
||||
close $in2 or die "Can't close $filein: $!";
|
||||
}
|
||||
#find next else and interprete it
|
||||
#find next else and interpret it
|
||||
open(my $in3, "<", $filein) or die "Can't open $filein: $!";
|
||||
$i3=1;
|
||||
$ifcount3=0;
|
||||
|
@ -119,7 +119,7 @@ my $is_a_corner;
|
||||
}
|
||||
close $in2 or die "Can't close $filein: $!";
|
||||
}
|
||||
#find next else and interprete it
|
||||
#find next else and interpret it
|
||||
open(my $in3, "<", $filein) or die "Can't open $filein: $!";
|
||||
$i3=1;
|
||||
$ifcount3=0;
|
||||
|
@ -1861,7 +1861,7 @@ gradient term \f$G\f$ and the second gradient term \f$b\f$ gives:
|
||||
The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates
|
||||
until the center stays within a set threshold.
|
||||
|
||||
@param image Input image.
|
||||
@param image Input single-channel, 8-bit or float image.
|
||||
@param corners Initial coordinates of the input corners and refined coordinates provided for
|
||||
output.
|
||||
@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
|
||||
|
@ -2048,7 +2048,7 @@ public:
|
||||
svmType == NU_SVC ? "NU_SVC" :
|
||||
svmType == ONE_CLASS ? "ONE_CLASS" :
|
||||
svmType == EPS_SVR ? "EPS_SVR" :
|
||||
svmType == NU_SVR ? "NU_SVR" : format("Uknown_%d", svmType);
|
||||
svmType == NU_SVR ? "NU_SVR" : format("Unknown_%d", svmType);
|
||||
String kernel_type_str =
|
||||
kernelType == LINEAR ? "LINEAR" :
|
||||
kernelType == POLY ? "POLY" :
|
||||
|
@ -255,8 +255,8 @@ void HOGDescriptor::computeGradient(const Mat& img, Mat& grad, Mat& qangle,
|
||||
Mat_<float> _lut(1, 256);
|
||||
const float* const lut = &_lut(0,0);
|
||||
#if CV_SSE2
|
||||
const int indeces[] = { 0, 1, 2, 3 };
|
||||
__m128i idx = _mm_loadu_si128((const __m128i*)indeces);
|
||||
const int indices[] = { 0, 1, 2, 3 };
|
||||
__m128i idx = _mm_loadu_si128((const __m128i*)indices);
|
||||
__m128i ifour = _mm_set1_epi32(4);
|
||||
|
||||
float* const _data = &_lut(0, 0);
|
||||
@ -273,8 +273,8 @@ void HOGDescriptor::computeGradient(const Mat& img, Mat& grad, Mat& qangle,
|
||||
idx = _mm_add_epi32(idx, ifour);
|
||||
}
|
||||
#elif CV_NEON
|
||||
const int indeces[] = { 0, 1, 2, 3 };
|
||||
uint32x4_t idx = *(uint32x4_t*)indeces;
|
||||
const int indices[] = { 0, 1, 2, 3 };
|
||||
uint32x4_t idx = *(uint32x4_t*)indices;
|
||||
uint32x4_t ifour = vdupq_n_u32(4);
|
||||
|
||||
float* const _data = &_lut(0, 0);
|
||||
|
@ -7,7 +7,6 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
// #include "opencv2/calib3d.hpp"
|
||||
|
||||
#include <limits>
|
||||
#include <cmath>
|
||||
@ -21,7 +20,6 @@ class QRDecode
|
||||
{
|
||||
public:
|
||||
void init(Mat src, double eps_vertical_ = 0.2, double eps_horizontal_ = 0.1);
|
||||
void binarization();
|
||||
bool localization();
|
||||
bool transformation();
|
||||
Mat getBinBarcode() { return bin_barcode; }
|
||||
@ -35,9 +33,7 @@ protected:
|
||||
Point2f intersectionLines(Point2f a1, Point2f a2, Point2f b1, Point2f b2);
|
||||
vector<Point2f> getQuadrilateral(vector<Point2f> angle_list);
|
||||
bool testBypassRoute(vector<Point2f> hull, int start, int finish);
|
||||
double getTriangleArea(Point2f a, Point2f b, Point2f c);
|
||||
double getPolygonArea(vector<Point2f> points);
|
||||
double getCosVectors(Point2f a, Point2f b, Point2f c);
|
||||
inline double getCosVectors(Point2f a, Point2f b, Point2f c);
|
||||
|
||||
Mat barcode, bin_barcode, straight_barcode;
|
||||
vector<Point2f> localization_points, transformation_points;
|
||||
@ -63,13 +59,7 @@ void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_)
|
||||
}
|
||||
eps_vertical = eps_vertical_;
|
||||
eps_horizontal = eps_horizontal_;
|
||||
}
|
||||
|
||||
void QRDecode::binarization()
|
||||
{
|
||||
Mat filter_barcode;
|
||||
GaussianBlur(barcode, filter_barcode, Size(3, 3), 0);
|
||||
threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU);
|
||||
adaptiveThreshold(barcode, bin_barcode, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 71, 2);
|
||||
}
|
||||
|
||||
vector<Vec3d> QRDecode::searchVerticalLines()
|
||||
@ -139,7 +129,7 @@ vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
|
||||
|
||||
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
|
||||
{
|
||||
int x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2);
|
||||
int x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] * 0.5);
|
||||
int y = static_cast<int>(list_lines[pnt][1]);
|
||||
|
||||
// --------------- Search horizontal up-lines --------------- //
|
||||
@ -203,7 +193,7 @@ vector<Point2f> QRDecode::separateHorizontalLines(vector<Vec3d> list_lines)
|
||||
{
|
||||
point2f_result.push_back(
|
||||
Point2f(static_cast<float>(result[i][1]),
|
||||
static_cast<float>(result[i][0] + result[i][2] / 2)));
|
||||
static_cast<float>(result[i][0] + result[i][2] * 0.5)));
|
||||
}
|
||||
return point2f_result;
|
||||
}
|
||||
@ -345,16 +335,23 @@ bool QRDecode::computeTransformationPoints()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (down_left_edge_point == Point2f(0, 0) ||
|
||||
up_right_edge_point == Point2f(0, 0)) { return false; }
|
||||
up_right_edge_point == Point2f(0, 0) ||
|
||||
new_non_zero_elem[0].size() == 0) { return false; }
|
||||
|
||||
double max_area = -1;
|
||||
up_left_edge_point = new_non_zero_elem[0][0];
|
||||
|
||||
for (size_t i = 0; i < new_non_zero_elem[0].size(); i++)
|
||||
{
|
||||
double temp_area = getTriangleArea(new_non_zero_elem[0][i],
|
||||
down_left_edge_point,
|
||||
up_right_edge_point);
|
||||
vector<Point2f> list_edge_points;
|
||||
list_edge_points.push_back(new_non_zero_elem[0][i]);
|
||||
list_edge_points.push_back(down_left_edge_point);
|
||||
list_edge_points.push_back(up_right_edge_point);
|
||||
|
||||
double temp_area = fabs(contourArea(list_edge_points));
|
||||
|
||||
if (max_area < temp_area)
|
||||
{
|
||||
up_left_edge_point = new_non_zero_elem[0][i];
|
||||
@ -375,6 +372,7 @@ bool QRDecode::computeTransformationPoints()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
for (size_t i = 0; i < new_non_zero_elem[2].size(); i++)
|
||||
{
|
||||
double temp_norm_delta = norm(up_left_edge_point - new_non_zero_elem[2][i])
|
||||
@ -485,7 +483,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
hull[i] = Point2f(x, y);
|
||||
}
|
||||
|
||||
const double experimental_area = getPolygonArea(hull);
|
||||
const double experimental_area = fabs(contourArea(hull));
|
||||
|
||||
vector<Point2f> result_hull_point(angle_size);
|
||||
double min_norm;
|
||||
@ -539,7 +537,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
|
||||
if (min_norm > temp_norm &&
|
||||
norm(hull[index_hull] - hull[next_index_hull]) >
|
||||
norm(angle_list[1] - angle_list[2]) / 10)
|
||||
norm(angle_list[1] - angle_list[2]) * 0.1)
|
||||
{
|
||||
min_norm = temp_norm;
|
||||
result_side_begin[0] = hull[index_hull];
|
||||
@ -577,7 +575,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
double temp_norm = getCosVectors(hull[index_hull], intrsc_line_hull, angle_closest_pnt);
|
||||
if (min_norm > temp_norm &&
|
||||
norm(hull[index_hull] - hull[next_index_hull]) >
|
||||
norm(angle_list[0] - angle_list[1]) / 20)
|
||||
norm(angle_list[0] - angle_list[1]) * 0.05)
|
||||
{
|
||||
min_norm = temp_norm;
|
||||
result_side_begin[1] = hull[index_hull];
|
||||
@ -611,7 +609,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
if (next_index_hull == hull_size) { next_index_hull = 0; }
|
||||
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
|
||||
|
||||
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm / 10.0)
|
||||
if (norm(hull[index_hull] - hull[next_index_hull]) < standart_norm * 0.1)
|
||||
{ index_hull = next_index_hull; continue; }
|
||||
|
||||
extra_index_hull = finish_line[1];
|
||||
@ -623,7 +621,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
|
||||
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
|
||||
|
||||
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm / 10.0)
|
||||
if (norm(hull[extra_index_hull] - hull[extra_next_index_hull]) < standart_norm * 0.1)
|
||||
{ extra_index_hull = extra_next_index_hull; continue; }
|
||||
|
||||
test_result_angle_list[0]
|
||||
@ -639,7 +637,7 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
= intersectionLines(hull[index_hull], hull[next_index_hull],
|
||||
result_side_begin[0], result_side_end[0]);
|
||||
|
||||
test_diff_area = fabs(getPolygonArea(test_result_angle_list) - experimental_area);
|
||||
test_diff_area = fabs(fabs(contourArea(test_result_angle_list)) - experimental_area);
|
||||
if (min_diff_area > test_diff_area)
|
||||
{
|
||||
min_diff_area = test_diff_area;
|
||||
@ -656,53 +654,22 @@ vector<Point2f> QRDecode::getQuadrilateral(vector<Point2f> angle_list)
|
||||
index_hull = next_index_hull;
|
||||
}
|
||||
while(index_hull != unstable_pnt);
|
||||
|
||||
if (norm(result_angle_list[0] - angle_list[1]) > 2) { result_angle_list[0] = angle_list[1]; }
|
||||
if (norm(result_angle_list[1] - angle_list[0]) > 2) { result_angle_list[1] = angle_list[0]; }
|
||||
if (norm(result_angle_list[3] - angle_list[2]) > 2) { result_angle_list[3] = angle_list[2]; }
|
||||
|
||||
return result_angle_list;
|
||||
}
|
||||
|
||||
// b
|
||||
// / |
|
||||
// / |
|
||||
// / |
|
||||
// / S |
|
||||
// / |
|
||||
// a ----- c
|
||||
|
||||
double QRDecode::getTriangleArea(Point2f a, Point2f b, Point2f c)
|
||||
{
|
||||
double norm_sides[] = { norm(a - b), norm(b - c), norm(c - a) };
|
||||
double half_perimeter = (norm_sides[0] + norm_sides[1] + norm_sides[2]) / 2.0;
|
||||
double triangle_area = sqrt(half_perimeter *
|
||||
(half_perimeter - norm_sides[0]) *
|
||||
(half_perimeter - norm_sides[1]) *
|
||||
(half_perimeter - norm_sides[2]));
|
||||
return triangle_area;
|
||||
}
|
||||
|
||||
double QRDecode::getPolygonArea(vector<Point2f> points)
|
||||
{
|
||||
CV_Assert(points.size() >= 3);
|
||||
if (points.size() == 3)
|
||||
{ return getTriangleArea(points[0], points[1], points[2]); }
|
||||
else
|
||||
{
|
||||
double result_area = 0.0;
|
||||
for (size_t i = 1; i < points.size() - 1; i++)
|
||||
{
|
||||
result_area += getTriangleArea(points[0], points[i], points[i + 1]);
|
||||
}
|
||||
return result_area;
|
||||
}
|
||||
}
|
||||
|
||||
// / | b
|
||||
// / |
|
||||
// / |
|
||||
// a/ | c
|
||||
|
||||
double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c)
|
||||
inline double QRDecode::getCosVectors(Point2f a, Point2f b, Point2f c)
|
||||
{
|
||||
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y)
|
||||
/ (norm(a - b) * norm(c - b));
|
||||
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
|
||||
}
|
||||
|
||||
bool QRDecode::transformation()
|
||||
@ -764,7 +731,6 @@ bool QRCodeDetector::detect(InputArray in, OutputArray points) const
|
||||
CV_Assert(inarr.type() == CV_8UC1);
|
||||
QRDecode qrdec;
|
||||
qrdec.init(inarr, p->epsX, p->epsY);
|
||||
qrdec.binarization();
|
||||
if (!qrdec.localization()) { return false; }
|
||||
if (!qrdec.transformation()) { return false; }
|
||||
vector<Point2f> pnts2f = qrdec.getTransformationPoints();
|
||||
|
@ -159,12 +159,12 @@ void Decolor::gradvector(const Mat &img, vector <double> &grad) const
|
||||
|
||||
for(int i=0;i<height;i++)
|
||||
for(int j=0;j<width;j++)
|
||||
grad[i*height + j] = d_trans.at<float>(i, j);
|
||||
grad[i*width + j] = d_trans.at<float>(i, j);
|
||||
|
||||
const int offset = width * height;
|
||||
for(int i=0;i<height;i++)
|
||||
for(int j=0;j<width;j++)
|
||||
grad[offset + i * height + j] = d1_trans.at<float>(i, j);
|
||||
grad[offset + i * width + j] = d1_trans.at<float>(i, j);
|
||||
}
|
||||
|
||||
void Decolor::colorGrad(const Mat &img, vector <double> &Cg) const
|
||||
@ -204,14 +204,19 @@ void Decolor::add_to_vector_poly(vector < vector <double> > &polyGrad, const vec
|
||||
idx1++;
|
||||
}
|
||||
|
||||
void Decolor::weak_order(const Mat &img, vector <double> &alf) const
|
||||
void Decolor::weak_order(const Mat &im, vector <double> &alf) const
|
||||
{
|
||||
const int h = img.size().height;
|
||||
const int w = img.size().width;
|
||||
Mat img;
|
||||
const int h = im.size().height;
|
||||
const int w = im.size().width;
|
||||
if((h + w) > 800)
|
||||
{
|
||||
const double sizefactor = double(800)/(h+w);
|
||||
resize(img, img, Size(cvRound(h*sizefactor), cvRound(w*sizefactor)));
|
||||
resize(im, img, Size(cvRound(w*sizefactor), cvRound(h*sizefactor)));
|
||||
}
|
||||
else
|
||||
{
|
||||
img = im;
|
||||
}
|
||||
|
||||
Mat curIm = Mat(img.size(),CV_32FC1);
|
||||
@ -246,16 +251,20 @@ void Decolor::weak_order(const Mat &img, vector <double> &alf) const
|
||||
alf[i] -= tmp1[i] * tmp2[i] * tmp3[i];
|
||||
}
|
||||
|
||||
void Decolor::grad_system(const Mat &img, vector < vector < double > > &polyGrad,
|
||||
void Decolor::grad_system(const Mat &im, vector < vector < double > > &polyGrad,
|
||||
vector < double > &Cg, vector <Vec3i>& comb) const
|
||||
{
|
||||
int h = img.size().height;
|
||||
int w = img.size().width;
|
||||
|
||||
Mat img;
|
||||
int h = im.size().height;
|
||||
int w = im.size().width;
|
||||
if((h + w) > 800)
|
||||
{
|
||||
const double sizefactor = double(800)/(h+w);
|
||||
resize(img, img, Size(cvRound(h*sizefactor), cvRound(w*sizefactor)));
|
||||
resize(im, img, Size(cvRound(w*sizefactor), cvRound(h*sizefactor)));
|
||||
}
|
||||
else
|
||||
{
|
||||
img = im;
|
||||
}
|
||||
|
||||
h = img.size().height;
|
||||
|
@ -137,6 +137,21 @@ private:
|
||||
Ptr<Feature2D> surf;
|
||||
};
|
||||
|
||||
|
||||
/** @brief SIFT features finder.
|
||||
|
||||
@sa detail::FeaturesFinder, SIFT
|
||||
*/
|
||||
class CV_EXPORTS SiftFeaturesFinder : public FeaturesFinder
|
||||
{
|
||||
public:
|
||||
SiftFeaturesFinder();
|
||||
|
||||
private:
|
||||
void find(InputArray image, ImageFeatures &features) CV_OVERRIDE;
|
||||
Ptr<Feature2D> sift;
|
||||
};
|
||||
|
||||
/** @brief ORB features finder. :
|
||||
|
||||
@sa detail::FeaturesFinder, ORB
|
||||
|
@ -51,6 +51,7 @@ using namespace cv::cuda;
|
||||
#ifdef HAVE_OPENCV_XFEATURES2D
|
||||
#include "opencv2/xfeatures2d.hpp"
|
||||
using xfeatures2d::SURF;
|
||||
using xfeatures2d::SIFT;
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_OPENCV_CUDAIMGPROC
|
||||
@ -475,6 +476,35 @@ void SurfFeaturesFinder::find(InputArray image, ImageFeatures &features)
|
||||
}
|
||||
}
|
||||
|
||||
SiftFeaturesFinder::SiftFeaturesFinder()
|
||||
{
|
||||
#ifdef HAVE_OPENCV_XFEATURES2D
|
||||
Ptr<SIFT> sift_ = SIFT::create();
|
||||
if( !sift_ )
|
||||
CV_Error( Error::StsNotImplemented, "OpenCV was built without SIFT support" );
|
||||
sift = sift_;
|
||||
#else
|
||||
CV_Error( Error::StsNotImplemented, "OpenCV was built without SIFT support" );
|
||||
#endif
|
||||
}
|
||||
|
||||
void SiftFeaturesFinder::find(InputArray image, ImageFeatures &features)
|
||||
{
|
||||
UMat gray_image;
|
||||
CV_Assert((image.type() == CV_8UC3) || (image.type() == CV_8UC1));
|
||||
if(image.type() == CV_8UC3)
|
||||
{
|
||||
cvtColor(image, gray_image, COLOR_BGR2GRAY);
|
||||
}
|
||||
else
|
||||
{
|
||||
gray_image = image.getUMat();
|
||||
}
|
||||
UMat descriptors;
|
||||
sift->detectAndCompute(gray_image, Mat(), features.keypoints, descriptors);
|
||||
features.descriptors = descriptors.reshape(1, (int)features.keypoints.size());
|
||||
}
|
||||
|
||||
OrbFeaturesFinder::OrbFeaturesFinder(Size _grid_size, int n_features, float scaleFactor, int nlevels)
|
||||
{
|
||||
grid_size = _grid_size;
|
||||
|
@ -9013,7 +9013,7 @@ class NativeArray {
|
||||
|
||||
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
|
||||
// either a boolean expression or an AssertionResult. text is a textual
|
||||
// represenation of expression as it was passed into the EXPECT_TRUE.
|
||||
// representation of expression as it was passed into the EXPECT_TRUE.
|
||||
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
|
||||
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||||
if (const ::testing::AssertionResult gtest_ar_ = \
|
||||
|
@ -613,10 +613,12 @@ int GStreamerCapture::getCaptureDomain() { return CAP_GSTREAMER; }
|
||||
*/
|
||||
bool GStreamerCapture::open(int id)
|
||||
{
|
||||
gst_initializer::init();
|
||||
|
||||
if (!is_gst_element_exists("v4l2src"))
|
||||
return false;
|
||||
std::ostringstream desc;
|
||||
desc << "v4l2src device-name=/dev/video" << id
|
||||
desc << "v4l2src device=/dev/video" << id
|
||||
<< " ! " << COLOR_ELEM
|
||||
<< " ! appsink";
|
||||
return open(desc.str());
|
||||
|
@ -146,6 +146,9 @@ bool MotionJpegCapture::grabFrame()
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m_frame_iterator == m_mjpeg_frames.end())
|
||||
return false;
|
||||
|
||||
++m_frame_iterator;
|
||||
}
|
||||
}
|
||||
|
@ -431,6 +431,7 @@ static int autosetup_capture_mode_v4l2(CvCaptureCAM_V4L* capture) {
|
||||
V4L2_PIX_FMT_BGR24,
|
||||
V4L2_PIX_FMT_RGB24,
|
||||
V4L2_PIX_FMT_YVU420,
|
||||
V4L2_PIX_FMT_YUV420,
|
||||
V4L2_PIX_FMT_YUV411P,
|
||||
V4L2_PIX_FMT_YUYV,
|
||||
V4L2_PIX_FMT_UYVY,
|
||||
@ -532,6 +533,7 @@ static int v4l2_set_fps(CvCaptureCAM_V4L* capture) {
|
||||
static int v4l2_num_channels(__u32 palette) {
|
||||
switch(palette) {
|
||||
case V4L2_PIX_FMT_YVU420:
|
||||
case V4L2_PIX_FMT_YUV420:
|
||||
case V4L2_PIX_FMT_MJPEG:
|
||||
case V4L2_PIX_FMT_JPEG:
|
||||
case V4L2_PIX_FMT_Y16:
|
||||
@ -562,6 +564,7 @@ static void v4l2_create_frame(CvCaptureCAM_V4L *capture) {
|
||||
size = CvSize(capture->buffers[capture->bufferIndex].length, 1);
|
||||
break;
|
||||
case V4L2_PIX_FMT_YVU420:
|
||||
case V4L2_PIX_FMT_YUV420:
|
||||
size.height = size.height * 3 / 2; // "1.5" channels
|
||||
break;
|
||||
case V4L2_PIX_FMT_Y16:
|
||||
@ -1021,10 +1024,10 @@ move_411_block(int yTL, int yTR, int yBL, int yBR, int u, int v,
|
||||
|
||||
/* Converts from planar YUV420P to RGB24. */
|
||||
static inline void
|
||||
yuv420p_to_rgb24(int width, int height, uchar* src, uchar* dst)
|
||||
yuv420p_to_rgb24(int width, int height, uchar* src, uchar* dst, bool isYUV)
|
||||
{
|
||||
cvtColor(Mat(height * 3 / 2, width, CV_8U, src), Mat(height, width, CV_8UC3, dst),
|
||||
COLOR_YUV2BGR_YV12);
|
||||
isYUV ? COLOR_YUV2BGR_IYUV : COLOR_YUV2BGR_YV12);
|
||||
}
|
||||
|
||||
// Consider a YUV411P image of 8x2 pixels.
|
||||
@ -1490,10 +1493,12 @@ static IplImage* icvRetrieveFrameCAM_V4L( CvCaptureCAM_V4L* capture, int) {
|
||||
break;
|
||||
|
||||
case V4L2_PIX_FMT_YVU420:
|
||||
case V4L2_PIX_FMT_YUV420:
|
||||
yuv420p_to_rgb24(capture->form.fmt.pix.width,
|
||||
capture->form.fmt.pix.height,
|
||||
(unsigned char*)(capture->buffers[capture->bufferIndex].start),
|
||||
(unsigned char*)capture->frame.imageData);
|
||||
(unsigned char*)capture->frame.imageData,
|
||||
capture->palette == V4L2_PIX_FMT_YUV420);
|
||||
break;
|
||||
|
||||
case V4L2_PIX_FMT_YUV411P:
|
||||
|
@ -70,9 +70,7 @@ endif()
|
||||
|
||||
ocv_install_example_src("." CMakeLists.txt)
|
||||
if(INSTALL_C_EXAMPLES)
|
||||
install(DIRECTORY data
|
||||
DESTINATION "${OPENCV_SAMPLES_SRC_INSTALL_PATH}/data"
|
||||
COMPONENT samples_data)
|
||||
install(DIRECTORY data DESTINATION "${OPENCV_SAMPLES_SRC_INSTALL_PATH}" COMPONENT samples_data)
|
||||
endif()
|
||||
|
||||
else()
|
||||
|
@ -82,7 +82,7 @@ static void printUsage()
|
||||
"\nMotion Estimation Flags:\n"
|
||||
" --work_megapix <float>\n"
|
||||
" Resolution for image registration step. The default is 0.6 Mpx.\n"
|
||||
" --features (surf|orb)\n"
|
||||
" --features (surf|orb|sift)\n"
|
||||
" Type of features used for images matching. The default is surf.\n"
|
||||
" --matcher (homography|affine)\n"
|
||||
" Matcher used for pairwise image matching.\n"
|
||||
@ -430,6 +430,9 @@ int main(int argc, char* argv[])
|
||||
{
|
||||
finder = makePtr<OrbFeaturesFinder>();
|
||||
}
|
||||
else if (features_type == "sift") {
|
||||
finder = makePtr<SiftFeaturesFinder>();
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "Unknown 2D features type: '" << features_type << "'.\n";
|
||||
|
@ -204,7 +204,7 @@ int main( int argc, char** argv )
|
||||
const char* keys =
|
||||
{
|
||||
"{help h| | show help message}"
|
||||
"{pd | | path of directory contains possitive images}"
|
||||
"{pd | | path of directory contains positive images}"
|
||||
"{nd | | path of directory contains negative images}"
|
||||
"{td | | path of directory contains test images}"
|
||||
"{tv | | test video file name}"
|
||||
|
@ -1,6 +1,6 @@
|
||||
/**
|
||||
* @file introduction_to_pca.cpp
|
||||
* @brief This program demonstrates how to use OpenCV PCA to extract the orienation of an object
|
||||
* @brief This program demonstrates how to use OpenCV PCA to extract the orientation of an object
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
|
@ -26,7 +26,7 @@ static void help(char** argv)
|
||||
"\tESC, q - quit the program\n"
|
||||
"\tr - change order of points to rotate transformation\n"
|
||||
"\tc - delete selected points\n"
|
||||
"\ti - change order of points to invers transformation \n"
|
||||
"\ti - change order of points to inverse transformation \n"
|
||||
"\nUse your mouse to select a point and move it to see transformation changes" << endl;
|
||||
}
|
||||
|
||||
|
@ -13,32 +13,6 @@ if(NOT BUILD_EXAMPLES OR NOT OCV_DEPENDENCIES_FOUND)
|
||||
return()
|
||||
endif()
|
||||
|
||||
function(download_net name commit hash)
|
||||
set(DNN_FACE_DETECTOR_MODEL_DOWNLOAD_DIR "${CMAKE_CURRENT_LIST_DIR}/face_detector")
|
||||
if(COMMAND ocv_download)
|
||||
ocv_download(FILENAME ${name}
|
||||
HASH ${hash}
|
||||
URL
|
||||
"$ENV{OPENCV_DNN_MODELS_URL}"
|
||||
"${OPENCV_DNN_MODELS_URL}"
|
||||
"https://raw.githubusercontent.com/opencv/opencv_3rdparty/${commit}/"
|
||||
DESTINATION_DIR ${DNN_FACE_DETECTOR_MODEL_DOWNLOAD_DIR}
|
||||
ID DNN_FACE_DETECTOR
|
||||
RELATIVE_URL
|
||||
STATUS res)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
# Model branch name: dnn_samples_face_detector_20180205_fp16
|
||||
download_net("res10_300x300_ssd_iter_140000_fp16.caffemodel"
|
||||
"19512576c112aa2c7b6328cb0e8d589a4a90a26d"
|
||||
"f737f886e33835410c69e3ccfe0720a1")
|
||||
|
||||
# Model branch name: dnn_samples_face_detector_20180220_uint8
|
||||
download_net("opencv_face_detector_uint8.pb"
|
||||
"7b425df276ba2161b8edaab0f0756f4a735d61b9"
|
||||
"56acf81f55d9b9e96c3347bc65409b9e")
|
||||
|
||||
project(dnn_samples)
|
||||
ocv_include_modules_recurse(${OPENCV_DNN_SAMPLES_REQUIRED_DEPS})
|
||||
file(GLOB_RECURSE dnn_samples RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} *.cpp)
|
||||
|
@ -198,7 +198,7 @@ private:
|
||||
//! [ResizeBilinearLayer]
|
||||
|
||||
//
|
||||
// The folowing code is used only to generate tutorials documentation.
|
||||
// The following code is used only to generate tutorials documentation.
|
||||
//
|
||||
|
||||
//! [A custom layer interface]
|
||||
|
74
samples/dnn/face_detector/download_weights.py
Executable file
74
samples/dnn/face_detector/download_weights.py
Executable file
@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from __future__ import print_function
|
||||
import hashlib
|
||||
import time
|
||||
import sys
|
||||
import xml.etree.ElementTree as ET
|
||||
if sys.version_info[0] < 3:
|
||||
from urllib2 import urlopen
|
||||
else:
|
||||
from urllib.request import urlopen
|
||||
|
||||
class HashMismatchException(Exception):
|
||||
def __init__(self, expected, actual):
|
||||
Exception.__init__(self)
|
||||
self.expected = expected
|
||||
self.actual = actual
|
||||
def __str__(self):
|
||||
return 'Hash mismatch: {} vs {}'.format(self.expected, self.actual)
|
||||
|
||||
class MetalinkDownloader(object):
|
||||
BUFSIZE = 10*1024*1024
|
||||
NS = {'ml': 'urn:ietf:params:xml:ns:metalink'}
|
||||
tick = 0
|
||||
|
||||
def download(self, metalink_file):
|
||||
status = True
|
||||
for file_elem in ET.parse(metalink_file).getroot().findall('ml:file', self.NS):
|
||||
url = file_elem.find('ml:url', self.NS).text
|
||||
fname = file_elem.attrib['name']
|
||||
hash_sum = file_elem.find('ml:hash', self.NS).text
|
||||
print('*** {}'.format(fname))
|
||||
try:
|
||||
self.verify(hash_sum, fname)
|
||||
except Exception as ex:
|
||||
print(' {}'.format(ex))
|
||||
try:
|
||||
print(' {}'.format(url))
|
||||
with open(fname, 'wb') as file_stream:
|
||||
self.buffered_read(urlopen(url), file_stream.write)
|
||||
self.verify(hash_sum, fname)
|
||||
except Exception as ex:
|
||||
print(' {}'.format(ex))
|
||||
print(' FAILURE')
|
||||
status = False
|
||||
continue
|
||||
print(' SUCCESS')
|
||||
return status
|
||||
|
||||
def print_progress(self, msg, timeout = 0):
|
||||
if time.time() - self.tick > timeout:
|
||||
print(msg, end='')
|
||||
sys.stdout.flush()
|
||||
self.tick = time.time()
|
||||
|
||||
def buffered_read(self, in_stream, processing):
|
||||
self.print_progress(' >')
|
||||
while True:
|
||||
buf = in_stream.read(self.BUFSIZE)
|
||||
if not buf:
|
||||
break
|
||||
processing(buf)
|
||||
self.print_progress('>', 5)
|
||||
print(' done')
|
||||
|
||||
def verify(self, hash_sum, fname):
|
||||
sha = hashlib.sha1()
|
||||
with open(fname, 'rb') as file_stream:
|
||||
self.buffered_read(file_stream, sha.update)
|
||||
if hash_sum != sha.hexdigest():
|
||||
raise HashMismatchException(hash_sum, sha.hexdigest())
|
||||
|
||||
if __name__ == '__main__':
|
||||
sys.exit(0 if MetalinkDownloader().download('weights.meta4') else 1)
|
13
samples/dnn/face_detector/weights.meta4
Normal file
13
samples/dnn/face_detector/weights.meta4
Normal file
@ -0,0 +1,13 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<metalink xmlns="urn:ietf:params:xml:ns:metalink">
|
||||
<file name="res10_300x300_ssd_iter_140000_fp16.caffemodel">
|
||||
<identity>OpenCV face detector FP16 weights</identity>
|
||||
<hash type="sha-1">31fc22bfdd907567a04bb45b7cfad29966caddc1</hash>
|
||||
<url>https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel</url>
|
||||
</file>
|
||||
<file name="opencv_face_detector_uint8.pb">
|
||||
<identity>OpenCV face detector UINT8 weights</identity>
|
||||
<hash type="sha-1">4f2fdf6f231d759d7bbdb94353c5a68690f3d2ae</hash>
|
||||
<url>https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180220_uint8/opencv_face_detector_uint8.pb</url>
|
||||
</file>
|
||||
</metalink>
|
25
samples/dnn/tf_text_graph_common.py
Normal file
25
samples/dnn/tf_text_graph_common.py
Normal file
@ -0,0 +1,25 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow.core.framework.node_def_pb2 import NodeDef
|
||||
from google.protobuf import text_format
|
||||
|
||||
def tensorMsg(values):
|
||||
if all([isinstance(v, float) for v in values]):
|
||||
dtype = 'DT_FLOAT'
|
||||
field = 'float_val'
|
||||
elif all([isinstance(v, int) for v in values]):
|
||||
dtype = 'DT_INT32'
|
||||
field = 'int_val'
|
||||
else:
|
||||
raise Exception('Wrong values types')
|
||||
|
||||
msg = 'tensor { dtype: ' + dtype + ' tensor_shape { dim { size: %d } }' % len(values)
|
||||
for value in values:
|
||||
msg += '%s: %s ' % (field, str(value))
|
||||
return msg + '}'
|
||||
|
||||
def addConstNode(name, values, graph_def):
|
||||
node = NodeDef()
|
||||
node.name = name
|
||||
node.op = 'Const'
|
||||
text_format.Merge(tensorMsg(values), node.attr["value"])
|
||||
graph_def.node.extend([node])
|
@ -6,6 +6,8 @@ from tensorflow.core.framework.node_def_pb2 import NodeDef
|
||||
from tensorflow.tools.graph_transforms import TransformGraph
|
||||
from google.protobuf import text_format
|
||||
|
||||
from tf_text_graph_common import tensorMsg, addConstNode
|
||||
|
||||
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
|
||||
'SSD model from TensorFlow Object Detection API. '
|
||||
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
|
||||
@ -93,21 +95,6 @@ while True:
|
||||
if node.op == 'CropAndResize':
|
||||
break
|
||||
|
||||
def tensorMsg(values):
|
||||
if all([isinstance(v, float) for v in values]):
|
||||
dtype = 'DT_FLOAT'
|
||||
field = 'float_val'
|
||||
elif all([isinstance(v, int) for v in values]):
|
||||
dtype = 'DT_INT32'
|
||||
field = 'int_val'
|
||||
else:
|
||||
raise Exception('Wrong values types')
|
||||
|
||||
msg = 'tensor { dtype: ' + dtype + ' tensor_shape { dim { size: %d } }' % len(values)
|
||||
for value in values:
|
||||
msg += '%s: %s ' % (field, str(value))
|
||||
return msg + '}'
|
||||
|
||||
def addSlice(inp, out, begins, sizes):
|
||||
beginsNode = NodeDef()
|
||||
beginsNode.name = out + '/begins'
|
||||
@ -151,17 +138,25 @@ def addSoftMax(inp, out):
|
||||
softmax.input.append(inp)
|
||||
graph_def.node.extend([softmax])
|
||||
|
||||
def addFlatten(inp, out):
|
||||
flatten = NodeDef()
|
||||
flatten.name = out
|
||||
flatten.op = 'Flatten'
|
||||
flatten.input.append(inp)
|
||||
graph_def.node.extend([flatten])
|
||||
|
||||
addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd',
|
||||
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2])
|
||||
|
||||
addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1',
|
||||
'FirstStageBoxPredictor/ClassPredictor/softmax') # Compare with Reshape_4
|
||||
|
||||
flatten = NodeDef()
|
||||
flatten.name = 'FirstStageBoxPredictor/BoxEncodingPredictor/flatten' # Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
|
||||
flatten.op = 'Flatten'
|
||||
flatten.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd')
|
||||
graph_def.node.extend([flatten])
|
||||
addFlatten('FirstStageBoxPredictor/ClassPredictor/softmax',
|
||||
'FirstStageBoxPredictor/ClassPredictor/softmax/flatten')
|
||||
|
||||
# Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
|
||||
addFlatten('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd',
|
||||
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten')
|
||||
|
||||
proposals = NodeDef()
|
||||
proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized)
|
||||
@ -194,7 +189,7 @@ detectionOut.name = 'detection_out'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
|
||||
detectionOut.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/flatten')
|
||||
detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax')
|
||||
detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax/flatten')
|
||||
detectionOut.input.append('proposals')
|
||||
|
||||
text_format.Merge('i: 2', detectionOut.attr['num_classes'])
|
||||
@ -204,11 +199,21 @@ text_format.Merge('f: 0.7', detectionOut.attr['nms_threshold'])
|
||||
text_format.Merge('i: 6000', detectionOut.attr['top_k'])
|
||||
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
|
||||
text_format.Merge('i: 100', detectionOut.attr['keep_top_k'])
|
||||
text_format.Merge('b: true', detectionOut.attr['clip'])
|
||||
text_format.Merge('b: true', detectionOut.attr['loc_pred_transposed'])
|
||||
text_format.Merge('b: false', detectionOut.attr['clip'])
|
||||
|
||||
graph_def.node.extend([detectionOut])
|
||||
|
||||
addConstNode('clip_by_value/lower', [0.0], graph_def)
|
||||
addConstNode('clip_by_value/upper', [1.0], graph_def)
|
||||
|
||||
clipByValueNode = NodeDef()
|
||||
clipByValueNode.name = 'detection_out/clip_by_value'
|
||||
clipByValueNode.op = 'ClipByValue'
|
||||
clipByValueNode.input.append('detection_out')
|
||||
clipByValueNode.input.append('clip_by_value/lower')
|
||||
clipByValueNode.input.append('clip_by_value/upper')
|
||||
graph_def.node.extend([clipByValueNode])
|
||||
|
||||
# Save as text.
|
||||
for node in reversed(topNodes):
|
||||
graph_def.node.extend([node])
|
||||
@ -225,17 +230,13 @@ addReshape('SecondStageBoxPredictor/Reshape_1/slice',
|
||||
# Replace Flatten subgraph onto a single node.
|
||||
for i in reversed(range(len(graph_def.node))):
|
||||
if graph_def.node[i].op == 'CropAndResize':
|
||||
graph_def.node[i].input.insert(1, 'detection_out')
|
||||
graph_def.node[i].input.insert(1, 'detection_out/clip_by_value')
|
||||
|
||||
if graph_def.node[i].name == 'SecondStageBoxPredictor/Reshape':
|
||||
shapeNode = NodeDef()
|
||||
shapeNode.name = 'SecondStageBoxPredictor/Reshape/shape2'
|
||||
shapeNode.op = 'Const'
|
||||
text_format.Merge(tensorMsg([1, -1, 4]), shapeNode.attr["value"])
|
||||
graph_def.node.extend([shapeNode])
|
||||
addConstNode('SecondStageBoxPredictor/Reshape/shape2', [1, -1, 4], graph_def)
|
||||
|
||||
graph_def.node[i].input.pop()
|
||||
graph_def.node[i].input.append(shapeNode.name)
|
||||
graph_def.node[i].input.append('SecondStageBoxPredictor/Reshape/shape2')
|
||||
|
||||
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape',
|
||||
'SecondStageBoxPredictor/Flatten/flatten/strided_slice',
|
||||
@ -246,12 +247,15 @@ for node in graph_def.node:
|
||||
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape':
|
||||
node.op = 'Flatten'
|
||||
node.input.pop()
|
||||
break
|
||||
|
||||
if node.name in ['FirstStageBoxPredictor/BoxEncodingPredictor/Conv2D',
|
||||
'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']:
|
||||
text_format.Merge('b: true', node.attr["loc_pred_transposed"])
|
||||
|
||||
################################################################################
|
||||
### Postprocessing
|
||||
################################################################################
|
||||
addSlice('detection_out', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4])
|
||||
addSlice('detection_out/clip_by_value', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4])
|
||||
|
||||
variance = NodeDef()
|
||||
variance.name = 'proposals/variance'
|
||||
@ -268,12 +272,13 @@ text_format.Merge('i: 2', varianceEncoder.attr["axis"])
|
||||
graph_def.node.extend([varianceEncoder])
|
||||
|
||||
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1])
|
||||
addFlatten('variance_encoded', 'variance_encoded/flatten')
|
||||
|
||||
detectionOut = NodeDef()
|
||||
detectionOut.name = 'detection_out_final'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
|
||||
detectionOut.input.append('variance_encoded')
|
||||
detectionOut.input.append('variance_encoded/flatten')
|
||||
detectionOut.input.append('SecondStageBoxPredictor/Reshape_1/Reshape')
|
||||
detectionOut.input.append('detection_out/slice/reshape')
|
||||
|
||||
@ -283,7 +288,6 @@ text_format.Merge('i: %d' % (args.num_classes + 1), detectionOut.attr['backgroun
|
||||
text_format.Merge('f: 0.6', detectionOut.attr['nms_threshold'])
|
||||
text_format.Merge('s: "CENTER_SIZE"', detectionOut.attr['code_type'])
|
||||
text_format.Merge('i: 100', detectionOut.attr['keep_top_k'])
|
||||
text_format.Merge('b: true', detectionOut.attr['loc_pred_transposed'])
|
||||
text_format.Merge('b: true', detectionOut.attr['clip'])
|
||||
text_format.Merge('b: true', detectionOut.attr['variance_encoded_in_target'])
|
||||
graph_def.node.extend([detectionOut])
|
||||
|
@ -15,6 +15,7 @@ from math import sqrt
|
||||
from tensorflow.core.framework.node_def_pb2 import NodeDef
|
||||
from tensorflow.tools.graph_transforms import TransformGraph
|
||||
from google.protobuf import text_format
|
||||
from tf_text_graph_common import tensorMsg, addConstNode
|
||||
|
||||
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
|
||||
'SSD model from TensorFlow Object Detection API. '
|
||||
@ -29,6 +30,11 @@ parser.add_argument('--aspect_ratios', default=[1.0, 2.0, 0.5, 3.0, 0.333], type
|
||||
help='Hyper-parameter of ssd_anchor_generator from config file.')
|
||||
parser.add_argument('--image_width', default=300, type=int, help='Training images width.')
|
||||
parser.add_argument('--image_height', default=300, type=int, help='Training images height.')
|
||||
parser.add_argument('--not_reduce_boxes_in_lowest_layer', default=False, action='store_true',
|
||||
help='A boolean to indicate whether the fixed 3 boxes per '
|
||||
'location is used in the lowest achors generation layer.')
|
||||
parser.add_argument('--box_predictor', default='convolutional', type=str,
|
||||
choices=['convolutional', 'weight_shared_convolutional'])
|
||||
args = parser.parse_args()
|
||||
|
||||
# Nodes that should be kept.
|
||||
@ -160,28 +166,6 @@ graph_def.node[1].input.append(weights)
|
||||
# Create SSD postprocessing head ###############################################
|
||||
|
||||
# Concatenate predictions of classes, predictions of bounding boxes and proposals.
|
||||
def tensorMsg(values):
|
||||
if all([isinstance(v, float) for v in values]):
|
||||
dtype = 'DT_FLOAT'
|
||||
field = 'float_val'
|
||||
elif all([isinstance(v, int) for v in values]):
|
||||
dtype = 'DT_INT32'
|
||||
field = 'int_val'
|
||||
else:
|
||||
raise Exception('Wrong values types')
|
||||
|
||||
msg = 'tensor { dtype: ' + dtype + ' tensor_shape { dim { size: %d } }' % len(values)
|
||||
for value in values:
|
||||
msg += '%s: %s ' % (field, str(value))
|
||||
return msg + '}'
|
||||
|
||||
def addConstNode(name, values):
|
||||
node = NodeDef()
|
||||
node.name = name
|
||||
node.op = 'Const'
|
||||
text_format.Merge(tensorMsg(values), node.attr["value"])
|
||||
graph_def.node.extend([node])
|
||||
|
||||
def addConcatNode(name, inputs, axisNodeName):
|
||||
concat = NodeDef()
|
||||
concat.name = name
|
||||
@ -194,12 +178,18 @@ def addConcatNode(name, inputs, axisNodeName):
|
||||
addConstNode('concat/axis_flatten', [-1])
|
||||
addConstNode('PriorBox/concat/axis', [-2])
|
||||
|
||||
for label in ['ClassPredictor', 'BoxEncodingPredictor']:
|
||||
for label in ['ClassPredictor', 'BoxEncodingPredictor' if args.box_predictor is 'convolutional' else 'BoxPredictor']:
|
||||
concatInputs = []
|
||||
for i in range(args.num_layers):
|
||||
# Flatten predictions
|
||||
flatten = NodeDef()
|
||||
inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label)
|
||||
if args.box_predictor is 'convolutional':
|
||||
inpName = 'BoxPredictor_%d/%s/BiasAdd' % (i, label)
|
||||
else:
|
||||
if i == 0:
|
||||
inpName = 'WeightSharedConvolutionalBoxPredictor/%s/BiasAdd' % label
|
||||
else:
|
||||
inpName = 'WeightSharedConvolutionalBoxPredictor_%d/%s/BiasAdd' % (i, label)
|
||||
flatten.input.append(inpName)
|
||||
flatten.name = inpName + '/Flatten'
|
||||
flatten.op = 'Flatten'
|
||||
@ -210,7 +200,9 @@ for label in ['ClassPredictor', 'BoxEncodingPredictor']:
|
||||
|
||||
idx = 0
|
||||
for node in graph_def.node:
|
||||
if node.name == ('BoxPredictor_%d/BoxEncodingPredictor/Conv2D' % idx):
|
||||
if node.name == ('BoxPredictor_%d/BoxEncodingPredictor/Conv2D' % idx) or \
|
||||
node.name == ('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/Conv2D' % idx) or \
|
||||
node.name == 'WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D':
|
||||
text_format.Merge('b: true', node.attr["loc_pred_transposed"])
|
||||
idx += 1
|
||||
assert(idx == args.num_layers)
|
||||
@ -224,13 +216,19 @@ for i in range(args.num_layers):
|
||||
priorBox = NodeDef()
|
||||
priorBox.name = 'PriorBox_%d' % i
|
||||
priorBox.op = 'PriorBox'
|
||||
priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i)
|
||||
if args.box_predictor is 'convolutional':
|
||||
priorBox.input.append('BoxPredictor_%d/BoxEncodingPredictor/BiasAdd' % i)
|
||||
else:
|
||||
if i == 0:
|
||||
priorBox.input.append('WeightSharedConvolutionalBoxPredictor/BoxPredictor/Conv2D')
|
||||
else:
|
||||
priorBox.input.append('WeightSharedConvolutionalBoxPredictor_%d/BoxPredictor/BiasAdd' % i)
|
||||
priorBox.input.append(graph_def.node[0].name) # image_tensor
|
||||
|
||||
text_format.Merge('b: false', priorBox.attr["flip"])
|
||||
text_format.Merge('b: false', priorBox.attr["clip"])
|
||||
|
||||
if i == 0:
|
||||
if i == 0 and not args.not_reduce_boxes_in_lowest_layer:
|
||||
widths = [0.1, args.min_scale * sqrt(2.0), args.min_scale * sqrt(0.5)]
|
||||
heights = [0.1, args.min_scale / sqrt(2.0), args.min_scale / sqrt(0.5)]
|
||||
else:
|
||||
@ -261,7 +259,10 @@ detectionOut = NodeDef()
|
||||
detectionOut.name = 'detection_out'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
|
||||
detectionOut.input.append('BoxEncodingPredictor/concat')
|
||||
if args.box_predictor == 'convolutional':
|
||||
detectionOut.input.append('BoxEncodingPredictor/concat')
|
||||
else:
|
||||
detectionOut.input.append('BoxPredictor/concat')
|
||||
detectionOut.input.append(sigmoid.name)
|
||||
detectionOut.input.append('PriorBox/concat')
|
||||
|
||||
|
@ -1091,7 +1091,7 @@ Style x:Key="SkipBackAppBarButtonStyle" TargetType="ButtonBase" BasedOn="{Static
|
||||
</Style>
|
||||
<Style x:Key="PermissionsAppBarButtonStyle" TargetType="ButtonBase" BasedOn="{StaticResource AppBarButtonStyle}">
|
||||
<Setter Property="AutomationProperties.AutomationId" Value="PermissionsAppBarButton"/>
|
||||
<Setter Property="AutomationProperties.Name" Value="Permisions"/>
|
||||
<Setter Property="AutomationProperties.Name" Value="Permissions"/>
|
||||
<Setter Property="Content" Value=""/>
|
||||
</Style>
|
||||
<Style x:Key="HighlightAppBarButtonStyle" TargetType="ButtonBase" BasedOn="{StaticResource AppBarButtonStyle}">
|
||||
|
Loading…
Reference in New Issue
Block a user