mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
add imgproc snippets
This commit is contained in:
parent
0a6d190095
commit
4ec9afac57
@ -159,40 +159,7 @@ In OpenCV you only need applyColorMap to apply a colormap on a given image. The
|
||||
code reads the path to an image from command line, applies a Jet colormap on it and shows the
|
||||
result:
|
||||
|
||||
@code
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
using namespace cv;
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
// We need an input image. (can be grayscale or color)
|
||||
if (argc < 2)
|
||||
{
|
||||
cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl;
|
||||
return -1;
|
||||
}
|
||||
Mat img_in = imread(argv[1]);
|
||||
if(img_in.empty())
|
||||
{
|
||||
cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl;
|
||||
return -1;
|
||||
}
|
||||
// Holds the colormap version of the image:
|
||||
Mat img_color;
|
||||
// Apply the colormap:
|
||||
applyColorMap(img_in, img_color, COLORMAP_JET);
|
||||
// Show the result:
|
||||
imshow("colorMap", img_color);
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
@include snippets/imgproc_applyColorMap.cpp
|
||||
|
||||
@see #ColormapTypes
|
||||
|
||||
@ -2007,58 +1974,7 @@ The function implements the probabilistic Hough transform algorithm for line det
|
||||
in @cite Matas00
|
||||
|
||||
See the line detection example below:
|
||||
|
||||
@code
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat src, dst, color_dst;
|
||||
if( argc != 2 || !(src=imread(argv[1], 0)).data)
|
||||
return -1;
|
||||
|
||||
Canny( src, dst, 50, 200, 3 );
|
||||
cvtColor( dst, color_dst, COLOR_GRAY2BGR );
|
||||
|
||||
#if 0
|
||||
vector<Vec2f> lines;
|
||||
HoughLines( dst, lines, 1, CV_PI/180, 100 );
|
||||
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
float rho = lines[i][0];
|
||||
float theta = lines[i][1];
|
||||
double a = cos(theta), b = sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
Point pt1(cvRound(x0 + 1000*(-b)),
|
||||
cvRound(y0 + 1000*(a)));
|
||||
Point pt2(cvRound(x0 - 1000*(-b)),
|
||||
cvRound(y0 - 1000*(a)));
|
||||
line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 );
|
||||
}
|
||||
#else
|
||||
vector<Vec4i> lines;
|
||||
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
line( color_dst, Point(lines[i][0], lines[i][1]),
|
||||
Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
|
||||
}
|
||||
#endif
|
||||
namedWindow( "Source", 1 );
|
||||
imshow( "Source", src );
|
||||
|
||||
namedWindow( "Detected Lines", 1 );
|
||||
imshow( "Detected Lines", color_dst );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
@include snippets/imgproc_HoughLinesP.cpp
|
||||
This is a sample picture the function parameters have been tuned for:
|
||||
|
||||
![image](pics/building.jpg)
|
||||
@ -2114,41 +2030,7 @@ An example using the Hough circle detector
|
||||
The function finds circles in a grayscale image using a modification of the Hough transform.
|
||||
|
||||
Example: :
|
||||
@code
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <math.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat img, gray;
|
||||
if( argc != 2 || !(img=imread(argv[1], 1)).data)
|
||||
return -1;
|
||||
cvtColor(img, gray, COLOR_BGR2GRAY);
|
||||
// smooth it, otherwise a lot of false circles may be detected
|
||||
GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
|
||||
vector<Vec3f> circles;
|
||||
HoughCircles(gray, circles, HOUGH_GRADIENT,
|
||||
2, gray.rows/4, 200, 100 );
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// draw the circle center
|
||||
circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// draw the circle outline
|
||||
circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
namedWindow( "circles", 1 );
|
||||
imshow( "circles", img );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
@endcode
|
||||
@include snippets/imgproc_HoughLinesCircles.cpp
|
||||
|
||||
@note Usually the function detects the centers of circles well. However, it may fail to find correct
|
||||
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
|
||||
@ -3247,63 +3129,7 @@ An example for creating histograms of an image
|
||||
The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used
|
||||
to increment a histogram bin are taken from the corresponding input arrays at the same location. The
|
||||
sample below shows how to compute a 2D Hue-Saturation histogram for a color image. :
|
||||
@code
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Mat src, hsv;
|
||||
if( argc != 2 || !(src=imread(argv[1], 1)).data )
|
||||
return -1;
|
||||
|
||||
cvtColor(src, hsv, COLOR_BGR2HSV);
|
||||
|
||||
// Quantize the hue to 30 levels
|
||||
// and the saturation to 32 levels
|
||||
int hbins = 30, sbins = 32;
|
||||
int histSize[] = {hbins, sbins};
|
||||
// hue varies from 0 to 179, see cvtColor
|
||||
float hranges[] = { 0, 180 };
|
||||
// saturation varies from 0 (black-gray-white) to
|
||||
// 255 (pure spectrum color)
|
||||
float sranges[] = { 0, 256 };
|
||||
const float* ranges[] = { hranges, sranges };
|
||||
MatND hist;
|
||||
// we compute the histogram from the 0-th and 1-st channels
|
||||
int channels[] = {0, 1};
|
||||
|
||||
calcHist( &hsv, 1, channels, Mat(), // do not use mask
|
||||
hist, 2, histSize, ranges,
|
||||
true, // the histogram is uniform
|
||||
false );
|
||||
double maxVal=0;
|
||||
minMaxLoc(hist, 0, &maxVal, 0, 0);
|
||||
|
||||
int scale = 10;
|
||||
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
|
||||
|
||||
for( int h = 0; h < hbins; h++ )
|
||||
for( int s = 0; s < sbins; s++ )
|
||||
{
|
||||
float binVal = hist.at<float>(h, s);
|
||||
int intensity = cvRound(binVal*255/maxVal);
|
||||
rectangle( histImg, Point(h*scale, s*scale),
|
||||
Point( (h+1)*scale - 1, (s+1)*scale - 1),
|
||||
Scalar::all(intensity),
|
||||
CV_FILLED );
|
||||
}
|
||||
|
||||
namedWindow( "Source", 1 );
|
||||
imshow( "Source", src );
|
||||
|
||||
namedWindow( "H-S Histogram", 1 );
|
||||
imshow( "H-S Histogram", histImg );
|
||||
waitKey();
|
||||
}
|
||||
@endcode
|
||||
@include snippets/imgproc_calcHist.cpp
|
||||
|
||||
@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same
|
||||
size. Each of them can have an arbitrary number of channels.
|
||||
@ -4698,47 +4524,7 @@ An example using drawContours to clean up a background segmentation result
|
||||
The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area
|
||||
bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve
|
||||
connected components from the binary image and label them: :
|
||||
@code
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Mat src;
|
||||
// the first command-line parameter must be a filename of the binary
|
||||
// (black-n-white) image
|
||||
if( argc != 2 || !(src=imread(argv[1], 0)).data)
|
||||
return -1;
|
||||
|
||||
Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
|
||||
|
||||
src = src > 1;
|
||||
namedWindow( "Source", 1 );
|
||||
imshow( "Source", src );
|
||||
|
||||
vector<vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
|
||||
findContours( src, contours, hierarchy,
|
||||
RETR_CCOMP, CHAIN_APPROX_SIMPLE );
|
||||
|
||||
// iterate through all the top-level contours,
|
||||
// draw each connected component with its own random color
|
||||
int idx = 0;
|
||||
for( ; idx >= 0; idx = hierarchy[idx][0] )
|
||||
{
|
||||
Scalar color( rand()&255, rand()&255, rand()&255 );
|
||||
drawContours( dst, contours, idx, color, FILLED, 8, hierarchy );
|
||||
}
|
||||
|
||||
namedWindow( "Components", 1 );
|
||||
imshow( "Components", dst );
|
||||
waitKey(0);
|
||||
}
|
||||
@endcode
|
||||
@include snippets/imgproc_drawContours.cpp
|
||||
|
||||
@param image Destination image.
|
||||
@param contours All the input contours. Each contour is stored as a point vector.
|
||||
|
@ -0,0 +1,33 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <math.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat img, gray;
|
||||
if( argc != 2 || !(img=imread(argv[1], 1)).data)
|
||||
return -1;
|
||||
cvtColor(img, gray, COLOR_BGR2GRAY);
|
||||
// smooth it, otherwise a lot of false circles may be detected
|
||||
GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
|
||||
vector<Vec3f> circles;
|
||||
HoughCircles(gray, circles, HOUGH_GRADIENT,
|
||||
2, gray.rows/4, 200, 100 );
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// draw the circle center
|
||||
circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// draw the circle outline
|
||||
circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
namedWindow( "circles", 1 );
|
||||
imshow( "circles", img );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
31
samples/cpp/tutorial_code/snippets/imgproc_HoughLinesP.cpp
Normal file
31
samples/cpp/tutorial_code/snippets/imgproc_HoughLinesP.cpp
Normal file
@ -0,0 +1,31 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat src, dst, color_dst;
|
||||
if( argc != 2 || !(src=imread(argv[1], 0)).data)
|
||||
return -1;
|
||||
|
||||
Canny( src, dst, 50, 200, 3 );
|
||||
cvtColor( dst, color_dst, COLOR_GRAY2BGR );
|
||||
|
||||
vector<Vec4i> lines;
|
||||
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
line( color_dst, Point(lines[i][0], lines[i][1]),
|
||||
Point( lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 );
|
||||
}
|
||||
namedWindow( "Source", 1 );
|
||||
imshow( "Source", src );
|
||||
|
||||
namedWindow( "Detected Lines", 1 );
|
||||
imshow( "Detected Lines", color_dst );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
32
samples/cpp/tutorial_code/snippets/imgproc_applyColorMap.cpp
Normal file
32
samples/cpp/tutorial_code/snippets/imgproc_applyColorMap.cpp
Normal file
@ -0,0 +1,32 @@
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
using namespace cv;
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
// We need an input image. (can be grayscale or color)
|
||||
if (argc < 2)
|
||||
{
|
||||
cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl;
|
||||
return -1;
|
||||
}
|
||||
Mat img_in = imread(argv[1]);
|
||||
if(img_in.empty())
|
||||
{
|
||||
cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl;
|
||||
return -1;
|
||||
}
|
||||
// Holds the colormap version of the image:
|
||||
Mat img_color;
|
||||
// Apply the colormap:
|
||||
applyColorMap(img_in, img_color, COLORMAP_JET);
|
||||
// Show the result:
|
||||
imshow("colorMap", img_color);
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
55
samples/cpp/tutorial_code/snippets/imgproc_calcHist.cpp
Normal file
55
samples/cpp/tutorial_code/snippets/imgproc_calcHist.cpp
Normal file
@ -0,0 +1,55 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Mat src, hsv;
|
||||
if( argc != 2 || !(src=imread(argv[1], 1)).data )
|
||||
return -1;
|
||||
|
||||
cvtColor(src, hsv, COLOR_BGR2HSV);
|
||||
|
||||
// Quantize the hue to 30 levels
|
||||
// and the saturation to 32 levels
|
||||
int hbins = 30, sbins = 32;
|
||||
int histSize[] = {hbins, sbins};
|
||||
// hue varies from 0 to 179, see cvtColor
|
||||
float hranges[] = { 0, 180 };
|
||||
// saturation varies from 0 (black-gray-white) to
|
||||
// 255 (pure spectrum color)
|
||||
float sranges[] = { 0, 256 };
|
||||
const float* ranges[] = { hranges, sranges };
|
||||
MatND hist;
|
||||
// we compute the histogram from the 0-th and 1-st channels
|
||||
int channels[] = {0, 1};
|
||||
|
||||
calcHist( &hsv, 1, channels, Mat(), // do not use mask
|
||||
hist, 2, histSize, ranges,
|
||||
true, // the histogram is uniform
|
||||
false );
|
||||
double maxVal=0;
|
||||
minMaxLoc(hist, 0, &maxVal, 0, 0);
|
||||
|
||||
int scale = 10;
|
||||
Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
|
||||
|
||||
for( int h = 0; h < hbins; h++ )
|
||||
for( int s = 0; s < sbins; s++ )
|
||||
{
|
||||
float binVal = hist.at<float>(h, s);
|
||||
int intensity = cvRound(binVal*255/maxVal);
|
||||
rectangle( histImg, Point(h*scale, s*scale),
|
||||
Point( (h+1)*scale - 1, (s+1)*scale - 1),
|
||||
Scalar::all(intensity),
|
||||
-1 );
|
||||
}
|
||||
|
||||
namedWindow( "Source", 1 );
|
||||
imshow( "Source", src );
|
||||
|
||||
namedWindow( "H-S Histogram", 1 );
|
||||
imshow( "H-S Histogram", histImg );
|
||||
waitKey();
|
||||
}
|
39
samples/cpp/tutorial_code/snippets/imgproc_drawContours.cpp
Normal file
39
samples/cpp/tutorial_code/snippets/imgproc_drawContours.cpp
Normal file
@ -0,0 +1,39 @@
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
Mat src;
|
||||
// the first command-line parameter must be a filename of the binary
|
||||
// (black-n-white) image
|
||||
if( argc != 2 || !(src=imread(argv[1], 0)).data)
|
||||
return -1;
|
||||
|
||||
Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3);
|
||||
|
||||
src = src > 1;
|
||||
namedWindow( "Source", 1 );
|
||||
imshow( "Source", src );
|
||||
|
||||
vector<vector<Point> > contours;
|
||||
vector<Vec4i> hierarchy;
|
||||
|
||||
findContours( src, contours, hierarchy,
|
||||
RETR_CCOMP, CHAIN_APPROX_SIMPLE );
|
||||
|
||||
// iterate through all the top-level contours,
|
||||
// draw each connected component with its own random color
|
||||
int idx = 0;
|
||||
for( ; idx >= 0; idx = hierarchy[idx][0] )
|
||||
{
|
||||
Scalar color( rand()&255, rand()&255, rand()&255 );
|
||||
drawContours( dst, contours, idx, color, FILLED, 8, hierarchy );
|
||||
}
|
||||
|
||||
namedWindow( "Components", 1 );
|
||||
imshow( "Components", dst );
|
||||
waitKey(0);
|
||||
}
|
Loading…
Reference in New Issue
Block a user