mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Merge pull request #1025 from bitwangyaoyao:2.4_tests
This commit is contained in:
commit
4ed3d33dd7
@ -52,6 +52,8 @@ int main(int argc, const char *argv[])
|
||||
cerr << "no device found\n";
|
||||
return -1;
|
||||
}
|
||||
// set this to overwrite binary cache every time the test starts
|
||||
ocl::setBinaryDiskCache(ocl::CACHE_UPDATE);
|
||||
|
||||
int devidx = 0;
|
||||
|
||||
|
@ -15,8 +15,8 @@
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Chunpeng Zhang chunpeng@multicorewareinc.com
|
||||
//
|
||||
// Fangfang Bai, fangfang@multicorewareinc.com
|
||||
// Jin Ma, jin@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -31,7 +31,7 @@
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
@ -45,50 +45,57 @@
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <iomanip>
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
PARAM_TEST_CASE(ColumnSum, cv::Size)
|
||||
///////////// StereoMatchBM ////////////////////////
|
||||
PERFTEST(StereoMatchBM)
|
||||
{
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
Mat left_image = imread(abspath("aloeL.jpg"), cv::IMREAD_GRAYSCALE);
|
||||
Mat right_image = imread(abspath("aloeR.jpg"), cv::IMREAD_GRAYSCALE);
|
||||
Mat disp,dst;
|
||||
ocl::oclMat d_left, d_right,d_disp;
|
||||
int n_disp= 128;
|
||||
int winSize =19;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
size = GET_PARAM(0);
|
||||
}
|
||||
};
|
||||
SUBTEST << left_image.cols << 'x' << left_image.rows << "; aloeL.jpg ;"<< right_image.cols << 'x' << right_image.rows << "; aloeR.jpg ";
|
||||
|
||||
TEST_P(ColumnSum, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1);
|
||||
cv::ocl::oclMat d_dst;
|
||||
cv::ocl::oclMat d_src(src);
|
||||
StereoBM bm(0, n_disp, winSize);
|
||||
bm(left_image, right_image, dst);
|
||||
|
||||
cv::ocl::columnSum(d_src, d_dst);
|
||||
CPU_ON;
|
||||
bm(left_image, right_image, dst);
|
||||
CPU_OFF;
|
||||
|
||||
cv::Mat dst(d_dst);
|
||||
d_left.upload(left_image);
|
||||
d_right.upload(right_image);
|
||||
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(0, j);
|
||||
float res = dst.at<float>(0, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
ocl::StereoBM_OCL d_bm(0, n_disp, winSize);
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
|
||||
float res = dst.at<float>(i, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
}
|
||||
WARMUP_ON;
|
||||
d_bm(d_left, d_right, d_disp);
|
||||
WARMUP_OFF;
|
||||
|
||||
cv::Mat ocl_mat;
|
||||
d_disp.download(ocl_mat);
|
||||
ocl_mat.convertTo(ocl_mat, dst.type());
|
||||
|
||||
GPU_ON;
|
||||
d_bm(d_left, d_right, d_disp);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_left.upload(left_image);
|
||||
d_right.upload(right_image);
|
||||
d_bm(d_left, d_right, d_disp);
|
||||
d_disp.download(disp);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().setAccurate(-1, 0.);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, ColumnSum, DIFFERENT_SIZES);
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -284,6 +284,7 @@ PERFTEST(GaussianBlur)
|
||||
Mat src, dst, ocl_dst;
|
||||
int all_type[] = {CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4};
|
||||
std::string type_name[] = {"CV_8UC1", "CV_8UC4", "CV_32FC1", "CV_32FC4"};
|
||||
const int ksize = 7;
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
@ -291,29 +292,28 @@ PERFTEST(GaussianBlur)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; " << type_name[j] ;
|
||||
|
||||
gen(src, size, size, all_type[j], 5, 16);
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
|
||||
GaussianBlur(src, dst, Size(9, 9), 0);
|
||||
GaussianBlur(src, dst, Size(ksize, ksize), 0);
|
||||
|
||||
CPU_ON;
|
||||
GaussianBlur(src, dst, Size(9, 9), 0);
|
||||
GaussianBlur(src, dst, Size(ksize, ksize), 0);
|
||||
CPU_OFF;
|
||||
|
||||
ocl::oclMat d_src(src);
|
||||
ocl::oclMat d_dst(src.size(), src.type());
|
||||
ocl::oclMat d_buf;
|
||||
ocl::oclMat d_dst;
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(9, 9), 0);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
|
||||
WARMUP_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(9, 9), 0);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(9, 9), 0);
|
||||
ocl::GaussianBlur(d_src, d_dst, Size(ksize, ksize), 0);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
|
@ -46,11 +46,6 @@
|
||||
#include "precomp.hpp"
|
||||
|
||||
///////////// HOG////////////////////////
|
||||
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold)
|
||||
{
|
||||
return ((abs(r1.x - r2.x) < threshold) && (abs(r1.y - r2.y) < threshold) &&
|
||||
(abs(r1.width - r2.width) < threshold) && (abs(r1.height - r2.height) < threshold));
|
||||
}
|
||||
|
||||
PERFTEST(HOG)
|
||||
{
|
||||
@ -61,13 +56,12 @@ PERFTEST(HOG)
|
||||
throw runtime_error("can't open road.png");
|
||||
}
|
||||
|
||||
|
||||
cv::HOGDescriptor hog;
|
||||
hog.setSVMDetector(hog.getDefaultPeopleDetector());
|
||||
std::vector<cv::Rect> found_locations;
|
||||
std::vector<cv::Rect> d_found_locations;
|
||||
|
||||
SUBTEST << 768 << 'x' << 576 << "; road.png";
|
||||
SUBTEST << src.cols << 'x' << src.rows << "; road.png";
|
||||
|
||||
hog.detectMultiScale(src, found_locations);
|
||||
|
||||
@ -84,70 +78,10 @@ PERFTEST(HOG)
|
||||
ocl_hog.detectMultiScale(d_src, d_found_locations);
|
||||
WARMUP_OFF;
|
||||
|
||||
// Ground-truth rectangular people window
|
||||
cv::Rect win1_64x128(231, 190, 72, 144);
|
||||
cv::Rect win2_64x128(621, 156, 97, 194);
|
||||
cv::Rect win1_48x96(238, 198, 63, 126);
|
||||
cv::Rect win2_48x96(619, 161, 92, 185);
|
||||
cv::Rect win3_48x96(488, 136, 56, 112);
|
||||
|
||||
// Compare whether ground-truth windows are detected and compare the number of windows detected.
|
||||
std::vector<int> d_comp(4);
|
||||
std::vector<int> comp(4);
|
||||
for(int i = 0; i < (int)d_comp.size(); i++)
|
||||
{
|
||||
d_comp[i] = 0;
|
||||
comp[i] = 0;
|
||||
}
|
||||
|
||||
int threshold = 10;
|
||||
int val = 32;
|
||||
d_comp[0] = (int)d_found_locations.size();
|
||||
comp[0] = (int)found_locations.size();
|
||||
|
||||
cv::Size winSize = hog.winSize;
|
||||
|
||||
if (winSize == cv::Size(48, 96))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found_locations[i], win1_48x96, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found_locations[i], win2_48x96, threshold))
|
||||
d_comp[2] = val;
|
||||
if (match_rect(d_found_locations[i], win3_48x96, threshold))
|
||||
d_comp[3] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(found_locations[i], win1_48x96, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found_locations[i], win2_48x96, threshold))
|
||||
comp[2] = val;
|
||||
if (match_rect(found_locations[i], win3_48x96, threshold))
|
||||
comp[3] = val;
|
||||
}
|
||||
}
|
||||
else if (winSize == cv::Size(64, 128))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found_locations[i], win1_64x128, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found_locations[i], win2_64x128, threshold))
|
||||
d_comp[2] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found_locations.size(); i++)
|
||||
{
|
||||
if (match_rect(found_locations[i], win1_64x128, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found_locations[i], win2_64x128, threshold))
|
||||
comp[2] = val;
|
||||
}
|
||||
}
|
||||
|
||||
cv::Mat gpu_rst(d_comp), cpu_rst(comp);
|
||||
TestSystem::instance().ExpectedMatNear(gpu_rst, cpu_rst, 3);
|
||||
if(d_found_locations.size() == found_locations.size())
|
||||
TestSystem::instance().setAccurate(1, 0);
|
||||
else
|
||||
TestSystem::instance().setAccurate(0, abs((int)found_locations.size() - (int)d_found_locations.size()));
|
||||
|
||||
GPU_ON;
|
||||
ocl_hog.detectMultiScale(d_src, found_locations);
|
||||
|
@ -743,12 +743,12 @@ PERFTEST(meanShiftFiltering)
|
||||
WARMUP_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr);
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr, crit);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr);
|
||||
ocl::meanShiftFiltering(d_src, d_dst, sp, sr, crit);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
@ -969,3 +969,45 @@ PERFTEST(CLAHE)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////// columnSum////////////////////////
|
||||
PERFTEST(columnSum)
|
||||
{
|
||||
Mat src, dst, ocl_dst;
|
||||
ocl::oclMat d_src, d_dst;
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; CV_32FC1";
|
||||
|
||||
gen(src, size, size, CV_32FC1, 0, 256);
|
||||
|
||||
CPU_ON;
|
||||
dst.create(src.size(), src.type());
|
||||
for (int j = 0; j < src.cols; j++)
|
||||
dst.at<float>(0, j) = src.at<float>(0, j);
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
dst.at<float>(i, j) = dst.at<float>(i - 1 , j) + src.at<float>(i , j);
|
||||
CPU_OFF;
|
||||
|
||||
d_src.upload(src);
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
WARMUP_OFF;
|
||||
|
||||
GPU_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 5e-1);
|
||||
}
|
||||
}
|
||||
|
@ -44,45 +44,49 @@
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
|
||||
///////////// columnSum////////////////////////
|
||||
PERFTEST(columnSum)
|
||||
///////////// Moments ////////////////////////
|
||||
PERFTEST(Moments)
|
||||
{
|
||||
Mat src, dst, ocl_dst;
|
||||
ocl::oclMat d_src, d_dst;
|
||||
Mat src;
|
||||
bool binaryImage = 0;
|
||||
|
||||
int all_type[] = {CV_8UC1, CV_16SC1, CV_32FC1, CV_64FC1};
|
||||
std::string type_name[] = {"CV_8UC1", "CV_16SC1", "CV_32FC1", "CV_64FC1"};
|
||||
|
||||
for (int size = Min_Size; size <= Max_Size; size *= Multiple)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; CV_32FC1";
|
||||
for (size_t j = 0; j < sizeof(all_type) / sizeof(int); j++)
|
||||
{
|
||||
SUBTEST << size << 'x' << size << "; " << type_name[j];
|
||||
|
||||
gen(src, size, size, CV_32FC1, 0, 256);
|
||||
gen(src, size, size, all_type[j], 0, 256);
|
||||
|
||||
CPU_ON;
|
||||
dst.create(src.size(), src.type());
|
||||
for (int j = 0; j < src.cols; j++)
|
||||
dst.at<float>(0, j) = src.at<float>(0, j);
|
||||
cv::Moments CvMom = moments(src, binaryImage);
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
dst.at<float>(i, j) = dst.at<float>(i - 1 , j) + src.at<float>(i , j);
|
||||
CPU_OFF;
|
||||
CPU_ON;
|
||||
moments(src, binaryImage);
|
||||
CPU_OFF;
|
||||
|
||||
d_src.upload(src);
|
||||
cv::Moments oclMom;
|
||||
WARMUP_ON;
|
||||
oclMom = ocl::ocl_moments(src, binaryImage);
|
||||
WARMUP_OFF;
|
||||
|
||||
WARMUP_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
WARMUP_OFF;
|
||||
Mat gpu_dst, cpu_dst;
|
||||
HuMoments(CvMom, cpu_dst);
|
||||
HuMoments(oclMom, gpu_dst);
|
||||
|
||||
GPU_ON;
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
GPU_OFF;
|
||||
GPU_ON;
|
||||
ocl::ocl_moments(src, binaryImage);
|
||||
GPU_OFF;
|
||||
|
||||
GPU_FULL_ON;
|
||||
d_src.upload(src);
|
||||
ocl::columnSum(d_src, d_dst);
|
||||
d_dst.download(ocl_dst);
|
||||
GPU_FULL_OFF;
|
||||
GPU_FULL_ON;
|
||||
ocl::ocl_moments(src, binaryImage);
|
||||
GPU_FULL_OFF;
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(gpu_dst, cpu_dst, .5);
|
||||
|
||||
}
|
||||
|
||||
TestSystem::instance().ExpectedMatNear(dst, ocl_dst, 5e-1);
|
||||
}
|
||||
}
|
||||
}
|
@ -331,20 +331,6 @@ void TestSystem::printMetrics(int is_accurate, double cpu_time, double gpu_time,
|
||||
cout << setiosflags(ios_base::left);
|
||||
stringstream stream;
|
||||
|
||||
#if 0
|
||||
if(is_accurate == 1)
|
||||
stream << "Pass";
|
||||
else if(is_accurate_ == 0)
|
||||
stream << "Fail";
|
||||
else if(is_accurate == -1)
|
||||
stream << " ";
|
||||
else
|
||||
{
|
||||
std::cout<<"is_accurate errer: "<<is_accurate<<"\n";
|
||||
exit(-1);
|
||||
}
|
||||
#endif
|
||||
|
||||
std::stringstream &cur_subtest_description = getCurSubtestDescription();
|
||||
|
||||
#if GTEST_OS_WINDOWS&&!GTEST_OS_WINDOWS_MOBILE
|
||||
|
@ -1,180 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Sen Liu, swjutls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
#include "precomp.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
extern string workdir;
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Haar, double, int, CascadeName)
|
||||
{
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::CascadeClassifier cpucascade, cpunestedCascade;
|
||||
|
||||
double scale;
|
||||
int flags;
|
||||
std::string cascadeName;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = GET_PARAM(0);
|
||||
flags = GET_PARAM(1);
|
||||
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(2));
|
||||
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////faceDetect/////////////////////////////////////////////////
|
||||
TEST_P(Haar, FaceDetect)
|
||||
{
|
||||
string imgName = workdir + "lena.jpg";
|
||||
Mat img = imread( imgName, 1 );
|
||||
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read " << imgName << std::endl;
|
||||
return ;
|
||||
}
|
||||
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cv::ocl::oclMat image;
|
||||
CvSeq *_objects;
|
||||
image.upload(smallImg);
|
||||
_objects = cascade.oclHaarDetectObjects( image, storage, 1.1,
|
||||
3, flags, Size(30, 30), Size(0, 0) );
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
}
|
||||
|
||||
TEST_P(Haar, FaceDetectUseBuf)
|
||||
{
|
||||
string imgName = workdir + "lena.jpg";
|
||||
Mat img = imread( imgName, 1 );
|
||||
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read " << imgName << std::endl;
|
||||
return ;
|
||||
}
|
||||
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
|
||||
cv::ocl::oclMat image;
|
||||
image.upload(smallImg);
|
||||
|
||||
cv::ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
if( !cascadebuf.load( cascadeName ) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << endl;
|
||||
return;
|
||||
}
|
||||
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
|
||||
// intentionally run ocl facedetect again and check if it still works after the first run
|
||||
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30));
|
||||
cascadebuf.release();
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(FaceDetect, Haar,
|
||||
Combine(Values(1.0),
|
||||
Values(CV_HAAR_SCALE_IMAGE, 0), Values(cascade_frontalface_alt, cascade_frontalface_alt2)));
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -1573,6 +1573,47 @@ TEST_P(Convolve, Mat)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////// ColumnSum //////////////////////////////////////
|
||||
PARAM_TEST_CASE(ColumnSum, cv::Size)
|
||||
{
|
||||
cv::Size size;
|
||||
cv::Mat src;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
size = GET_PARAM(0);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(ColumnSum, Accuracy)
|
||||
{
|
||||
cv::Mat src = randomMat(size, CV_32FC1);
|
||||
cv::ocl::oclMat d_dst;
|
||||
cv::ocl::oclMat d_src(src);
|
||||
|
||||
cv::ocl::columnSum(d_src, d_dst);
|
||||
|
||||
cv::Mat dst(d_dst);
|
||||
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(0, j);
|
||||
float res = dst.at<float>(0, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
|
||||
for (int i = 1; i < src.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < src.cols; ++j)
|
||||
{
|
||||
float gold = src.at<float>(i, j) += src.at<float>(i - 1, j);
|
||||
float res = dst.at<float>(i, j);
|
||||
ASSERT_NEAR(res, gold, 1e-5);
|
||||
}
|
||||
}
|
||||
}
|
||||
/////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine(
|
||||
ONE_TYPE(CV_8UC1),
|
||||
NULL_TYPE,
|
||||
@ -1688,7 +1729,6 @@ INSTANTIATE_TEST_CASE_P(ImgProc, CLAHE, Combine(
|
||||
Values(cv::Size(128, 128), cv::Size(113, 113), cv::Size(1300, 1300)),
|
||||
Values(0.0, 40.0)));
|
||||
|
||||
//INSTANTIATE_TEST_CASE_P(ConvolveTestBase, Convolve, Combine(
|
||||
// Values(CV_32FC1, CV_32FC1),
|
||||
// Values(false))); // Values(false) is the reserved parameter
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, ColumnSum, DIFFERENT_SIZES);
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
@ -15,7 +15,7 @@
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Wenju He, wenju@multicorewareinc.com
|
||||
// Yao Wang, bitwangyaoyao@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -45,51 +45,58 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
using namespace std;
|
||||
#include "opencv2/objdetect/objdetect.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace testing;
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
extern string workdir;
|
||||
PARAM_TEST_CASE(HOG, cv::Size, int)
|
||||
|
||||
///////////////////// HOG /////////////////////////////
|
||||
PARAM_TEST_CASE(HOG, Size, int)
|
||||
{
|
||||
cv::Size winSize;
|
||||
Size winSize;
|
||||
int type;
|
||||
Mat img_rgb;
|
||||
virtual void SetUp()
|
||||
{
|
||||
winSize = GET_PARAM(0);
|
||||
type = GET_PARAM(1);
|
||||
img_rgb = readImage(workdir + "../gpu/road.png");
|
||||
if(img_rgb.empty())
|
||||
{
|
||||
std::cout << "Couldn't read road.png" << std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HOG, GetDescriptors)
|
||||
{
|
||||
// Load image
|
||||
cv::Mat img_rgb = readImage(workdir + "lena.jpg");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
// Convert image
|
||||
cv::Mat img;
|
||||
Mat img;
|
||||
switch (type)
|
||||
{
|
||||
case CV_8UC1:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
break;
|
||||
case CV_8UC4:
|
||||
default:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
break;
|
||||
}
|
||||
cv::ocl::oclMat d_img(img);
|
||||
ocl::oclMat d_img(img);
|
||||
|
||||
// HOGs
|
||||
cv::ocl::HOGDescriptor ocl_hog;
|
||||
ocl::HOGDescriptor ocl_hog;
|
||||
ocl_hog.gamma_correction = true;
|
||||
cv::HOGDescriptor hog;
|
||||
HOGDescriptor hog;
|
||||
hog.gammaCorrection = true;
|
||||
|
||||
// Compute descriptor
|
||||
cv::ocl::oclMat d_descriptors;
|
||||
ocl::oclMat d_descriptors;
|
||||
ocl_hog.getDescriptors(d_img, ocl_hog.win_size, d_descriptors, ocl_hog.DESCR_FORMAT_COL_BY_COL);
|
||||
cv::Mat down_descriptors;
|
||||
Mat down_descriptors;
|
||||
d_descriptors.download(down_descriptors);
|
||||
down_descriptors = down_descriptors.reshape(0, down_descriptors.cols * down_descriptors.rows);
|
||||
|
||||
@ -105,45 +112,34 @@ TEST_P(HOG, GetDescriptors)
|
||||
hog.compute(img_rgb, descriptors, ocl_hog.win_size);
|
||||
break;
|
||||
}
|
||||
cv::Mat cpu_descriptors(descriptors);
|
||||
Mat cpu_descriptors(descriptors);
|
||||
|
||||
EXPECT_MAT_SIMILAR(down_descriptors, cpu_descriptors, 1e-2);
|
||||
}
|
||||
|
||||
|
||||
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold)
|
||||
{
|
||||
return ((abs(r1.x - r2.x) < threshold) && (abs(r1.y - r2.y) < threshold) &&
|
||||
(abs(r1.width - r2.width) < threshold) && (abs(r1.height - r2.height) < threshold));
|
||||
}
|
||||
|
||||
TEST_P(HOG, Detect)
|
||||
{
|
||||
// Load image
|
||||
cv::Mat img_rgb = readImage(workdir + "lena.jpg");
|
||||
ASSERT_FALSE(img_rgb.empty());
|
||||
|
||||
// Convert image
|
||||
cv::Mat img;
|
||||
Mat img;
|
||||
switch (type)
|
||||
{
|
||||
case CV_8UC1:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
break;
|
||||
case CV_8UC4:
|
||||
default:
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
break;
|
||||
}
|
||||
cv::ocl::oclMat d_img(img);
|
||||
ocl::oclMat d_img(img);
|
||||
|
||||
// HOGs
|
||||
if ((winSize != cv::Size(48, 96)) && (winSize != cv::Size(64, 128)))
|
||||
winSize = cv::Size(64, 128);
|
||||
cv::ocl::HOGDescriptor ocl_hog(winSize);
|
||||
if ((winSize != Size(48, 96)) && (winSize != Size(64, 128)))
|
||||
winSize = Size(64, 128);
|
||||
ocl::HOGDescriptor ocl_hog(winSize);
|
||||
ocl_hog.gamma_correction = true;
|
||||
|
||||
cv::HOGDescriptor hog;
|
||||
HOGDescriptor hog;
|
||||
hog.winSize = winSize;
|
||||
hog.gammaCorrection = true;
|
||||
|
||||
@ -165,88 +161,117 @@ TEST_P(HOG, Detect)
|
||||
}
|
||||
|
||||
// OpenCL detection
|
||||
std::vector<cv::Rect> d_found;
|
||||
ocl_hog.detectMultiScale(d_img, d_found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
||||
std::vector<Rect> d_found;
|
||||
ocl_hog.detectMultiScale(d_img, d_found, 0, Size(8, 8), Size(0, 0), 1.05, 6);
|
||||
|
||||
// CPU detection
|
||||
std::vector<cv::Rect> found;
|
||||
std::vector<Rect> found;
|
||||
switch (type)
|
||||
{
|
||||
case CV_8UC1:
|
||||
hog.detectMultiScale(img, found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
||||
hog.detectMultiScale(img, found, 0, Size(8, 8), Size(0, 0), 1.05, 6);
|
||||
break;
|
||||
case CV_8UC4:
|
||||
default:
|
||||
hog.detectMultiScale(img_rgb, found, 0, cv::Size(8, 8), cv::Size(0, 0), 1.05, 2);
|
||||
hog.detectMultiScale(img_rgb, found, 0, Size(8, 8), Size(0, 0), 1.05, 6);
|
||||
break;
|
||||
}
|
||||
|
||||
// Ground-truth rectangular people window
|
||||
cv::Rect win1_64x128(231, 190, 72, 144);
|
||||
cv::Rect win2_64x128(621, 156, 97, 194);
|
||||
cv::Rect win1_48x96(238, 198, 63, 126);
|
||||
cv::Rect win2_48x96(619, 161, 92, 185);
|
||||
cv::Rect win3_48x96(488, 136, 56, 112);
|
||||
|
||||
// Compare whether ground-truth windows are detected and compare the number of windows detected.
|
||||
std::vector<int> d_comp(4);
|
||||
std::vector<int> comp(4);
|
||||
for(int i = 0; i < (int)d_comp.size(); i++)
|
||||
{
|
||||
d_comp[i] = 0;
|
||||
comp[i] = 0;
|
||||
}
|
||||
|
||||
int threshold = 10;
|
||||
int val = 32;
|
||||
d_comp[0] = (int)d_found.size();
|
||||
comp[0] = (int)found.size();
|
||||
if (winSize == cv::Size(48, 96))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found[i], win1_48x96, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found[i], win2_48x96, threshold))
|
||||
d_comp[2] = val;
|
||||
if (match_rect(d_found[i], win3_48x96, threshold))
|
||||
d_comp[3] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found.size(); i++)
|
||||
{
|
||||
if (match_rect(found[i], win1_48x96, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found[i], win2_48x96, threshold))
|
||||
comp[2] = val;
|
||||
if (match_rect(found[i], win3_48x96, threshold))
|
||||
comp[3] = val;
|
||||
}
|
||||
}
|
||||
else if (winSize == cv::Size(64, 128))
|
||||
{
|
||||
for(int i = 0; i < (int)d_found.size(); i++)
|
||||
{
|
||||
if (match_rect(d_found[i], win1_64x128, threshold))
|
||||
d_comp[1] = val;
|
||||
if (match_rect(d_found[i], win2_64x128, threshold))
|
||||
d_comp[2] = val;
|
||||
}
|
||||
for(int i = 0; i < (int)found.size(); i++)
|
||||
{
|
||||
if (match_rect(found[i], win1_64x128, threshold))
|
||||
comp[1] = val;
|
||||
if (match_rect(found[i], win2_64x128, threshold))
|
||||
comp[2] = val;
|
||||
}
|
||||
}
|
||||
|
||||
EXPECT_MAT_NEAR(cv::Mat(d_comp), cv::Mat(comp), 3);
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), found, d_found), 1.0);
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine(
|
||||
testing::Values(cv::Size(64, 128), cv::Size(48, 96)),
|
||||
testing::Values(Size(64, 128), Size(48, 96)),
|
||||
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4))));
|
||||
|
||||
///////////////////////////// Haar //////////////////////////////
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
{
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
|
||||
#endif //HAVE_OPENCL
|
||||
PARAM_TEST_CASE(Haar, int, CascadeName)
|
||||
{
|
||||
ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
CascadeClassifier cpucascade, cpunestedCascade;
|
||||
|
||||
int flags;
|
||||
std::string cascadeName;
|
||||
vector<Rect> faces, oclfaces;
|
||||
Mat img;
|
||||
ocl::oclMat d_img;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
flags = GET_PARAM(0);
|
||||
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(1));
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
|
||||
{
|
||||
std::cout << "ERROR: Could not load classifier cascade" << std::endl;
|
||||
return;
|
||||
}
|
||||
img = readImage(workdir + "lena.jpg", IMREAD_GRAYSCALE);
|
||||
if(img.empty())
|
||||
{
|
||||
std::cout << "Couldn't read lena.jpg" << std::endl;
|
||||
return ;
|
||||
}
|
||||
equalizeHist(img, img);
|
||||
d_img.upload(img);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Haar, FaceDetect)
|
||||
{
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
CvSeq *_objects;
|
||||
_objects = cascade.oclHaarDetectObjects(d_img, storage, 1.1, 3,
|
||||
flags, Size(30, 30), Size(0, 0));
|
||||
vector<CvAvgComp> vecAvgComp;
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
cpucascade.detectMultiScale(img, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
|
||||
}
|
||||
|
||||
TEST_P(Haar, FaceDetectUseBuf)
|
||||
{
|
||||
ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
if(!cascadebuf.load(cascadeName))
|
||||
{
|
||||
std::cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << std::endl;
|
||||
return;
|
||||
}
|
||||
cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
cpucascade.detectMultiScale(img, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0));
|
||||
|
||||
// intentionally run ocl facedetect again and check if it still works after the first run
|
||||
cascadebuf.detectMultiScale(d_img, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30));
|
||||
cascadebuf.release();
|
||||
|
||||
EXPECT_LT(checkRectSimilarity(img.size(), faces, oclfaces), 1.0);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, Haar,
|
||||
Combine(Values(CV_HAAR_SCALE_IMAGE, 0),
|
||||
Values(cascade_frontalface_alt/*, cascade_frontalface_alt2*/)));
|
||||
|
||||
#endif //HAVE_OPENCL
|
@ -15,7 +15,6 @@
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Dachuan Zhao, dachuan@multicorewareinc.com
|
||||
// Yao Wang yao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -56,11 +55,12 @@ using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
PARAM_TEST_CASE(PyrDown, MatType, int)
|
||||
PARAM_TEST_CASE(PyrBase, MatType, int)
|
||||
{
|
||||
int type;
|
||||
int channels;
|
||||
|
||||
Mat dst_cpu;
|
||||
oclMat gdst;
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
@ -69,19 +69,19 @@ PARAM_TEST_CASE(PyrDown, MatType, int)
|
||||
|
||||
};
|
||||
|
||||
/////////////////////// PyrDown //////////////////////////
|
||||
struct PyrDown : PyrBase {};
|
||||
|
||||
TEST_P(PyrDown, Mat)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
cv::Size size(MWIDTH, MHEIGHT);
|
||||
cv::RNG &rng = TS::ptr()->get_rng();
|
||||
cv::Mat src = randomMat(rng, size, CV_MAKETYPE(type, channels), 0, 100, false);
|
||||
|
||||
cv::ocl::oclMat gsrc(src), gdst;
|
||||
cv::Mat dst_cpu;
|
||||
cv::pyrDown(src, dst_cpu);
|
||||
cv::ocl::pyrDown(gsrc, gdst);
|
||||
Size size(MWIDTH, MHEIGHT);
|
||||
Mat src = randomMat(size, CV_MAKETYPE(type, channels));
|
||||
oclMat gsrc(src);
|
||||
|
||||
pyrDown(src, dst_cpu);
|
||||
pyrDown(gsrc, gdst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_cpu, Mat(gdst), type == CV_32F ? 1e-4f : 1.0f);
|
||||
}
|
||||
@ -90,5 +90,27 @@ TEST_P(PyrDown, Mat)
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrDown, Combine(
|
||||
Values(CV_8U, CV_32F), Values(1, 3, 4)));
|
||||
|
||||
/////////////////////// PyrUp //////////////////////////
|
||||
|
||||
struct PyrUp : PyrBase {};
|
||||
|
||||
TEST_P(PyrUp, Accuracy)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
Size size(MWIDTH, MHEIGHT);
|
||||
Mat src = randomMat(size, CV_MAKETYPE(type, channels));
|
||||
oclMat gsrc(src);
|
||||
|
||||
pyrUp(src, dst_cpu);
|
||||
pyrUp(gsrc, gdst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_cpu, Mat(gdst), (type == CV_32F ? 1e-4f : 1.0));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrUp, testing::Combine(
|
||||
Values(CV_8U, CV_32F), Values(1, 3, 4)));
|
||||
#endif // HAVE_OPENCL
|
@ -1,91 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Zhang Chunpeng chunpeng@multicorewareinc.com
|
||||
// Yao Wang yao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/core.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
using namespace cv;
|
||||
using namespace cvtest;
|
||||
using namespace testing;
|
||||
using namespace std;
|
||||
|
||||
PARAM_TEST_CASE(PyrUp, MatType, int)
|
||||
{
|
||||
int type;
|
||||
int channels;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
type = GET_PARAM(0);
|
||||
channels = GET_PARAM(1);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(PyrUp, Accuracy)
|
||||
{
|
||||
for(int j = 0; j < LOOP_TIMES; j++)
|
||||
{
|
||||
Size size(MWIDTH, MHEIGHT);
|
||||
Mat src = randomMat(size, CV_MAKETYPE(type, channels));
|
||||
Mat dst_gold;
|
||||
pyrUp(src, dst_gold);
|
||||
ocl::oclMat dst;
|
||||
ocl::oclMat srcMat(src);
|
||||
ocl::pyrUp(srcMat, dst);
|
||||
|
||||
EXPECT_MAT_NEAR(dst_gold, Mat(dst), (type == CV_32F ? 1e-4f : 1.0));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, PyrUp, testing::Combine(
|
||||
Values(CV_8U, CV_32F), Values(1, 3, 4)));
|
||||
|
||||
|
||||
#endif // HAVE_OPENCL
|
@ -100,12 +100,6 @@ Mat randomMat(Size size, int type, double minVal, double maxVal)
|
||||
return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
void showDiff(InputArray gold_, InputArray actual_, double eps)
|
||||
{
|
||||
@ -137,58 +131,7 @@ void showDiff(InputArray gold_, InputArray actual_, double eps)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
bool supportFeature(const DeviceInfo& info, FeatureSet feature)
|
||||
{
|
||||
return TargetArchs::builtWith(feature) && info.supports(feature);
|
||||
}
|
||||
|
||||
const vector<DeviceInfo>& devices()
|
||||
{
|
||||
static vector<DeviceInfo> devs;
|
||||
static bool first = true;
|
||||
|
||||
if (first)
|
||||
{
|
||||
int deviceCount = getCudaEnabledDeviceCount();
|
||||
|
||||
devs.reserve(deviceCount);
|
||||
|
||||
for (int i = 0; i < deviceCount; ++i)
|
||||
{
|
||||
DeviceInfo info(i);
|
||||
if (info.isCompatible())
|
||||
devs.push_back(info);
|
||||
}
|
||||
|
||||
first = false;
|
||||
}
|
||||
|
||||
return devs;
|
||||
}
|
||||
|
||||
vector<DeviceInfo> devices(FeatureSet feature)
|
||||
{
|
||||
const vector<DeviceInfo>& d = devices();
|
||||
|
||||
vector<DeviceInfo> devs_filtered;
|
||||
|
||||
if (TargetArchs::builtWith(feature))
|
||||
{
|
||||
devs_filtered.reserve(d.size());
|
||||
|
||||
for (size_t i = 0, size = d.size(); i < size; ++i)
|
||||
{
|
||||
const DeviceInfo& info = d[i];
|
||||
|
||||
if (info.supports(feature))
|
||||
devs_filtered.push_back(info);
|
||||
}
|
||||
}
|
||||
|
||||
return devs_filtered;
|
||||
}
|
||||
*/
|
||||
|
||||
vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end)
|
||||
{
|
||||
@ -264,3 +207,48 @@ void PrintTo(const Inverse &inverse, std::ostream *os)
|
||||
(*os) << "direct";
|
||||
}
|
||||
|
||||
double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& ob2)
|
||||
{
|
||||
double final_test_result = 0.0;
|
||||
size_t sz1 = ob1.size();
|
||||
size_t sz2 = ob2.size();
|
||||
|
||||
if(sz1 != sz2)
|
||||
{
|
||||
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
|
||||
}
|
||||
else
|
||||
{
|
||||
if(sz1==0 && sz2==0)
|
||||
return 0;
|
||||
cv::Mat cpu_result(sz, CV_8UC1);
|
||||
cpu_result.setTo(0);
|
||||
|
||||
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
|
||||
{
|
||||
cv::Mat cpu_result_roi(cpu_result, *r);
|
||||
cpu_result_roi.setTo(1);
|
||||
cpu_result.copyTo(cpu_result);
|
||||
}
|
||||
int cpu_area = cv::countNonZero(cpu_result > 0);
|
||||
|
||||
cv::Mat gpu_result(sz, CV_8UC1);
|
||||
gpu_result.setTo(0);
|
||||
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
|
||||
{
|
||||
cv::Mat gpu_result_roi(gpu_result, *r2);
|
||||
gpu_result_roi.setTo(1);
|
||||
gpu_result.copyTo(gpu_result);
|
||||
}
|
||||
|
||||
cv::Mat result_;
|
||||
multiply(cpu_result, gpu_result, result_);
|
||||
int result = cv::countNonZero(result_ > 0);
|
||||
if(cpu_area!=0 && result!=0)
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
else if(cpu_area==0 && result!=0)
|
||||
final_test_result = -1;
|
||||
}
|
||||
return final_test_result;
|
||||
}
|
||||
|
||||
|
@ -55,13 +55,12 @@ cv::Mat randomMat(cv::Size size, int type, double minVal = 0.0, double maxVal =
|
||||
|
||||
void showDiff(cv::InputArray gold, cv::InputArray actual, double eps);
|
||||
|
||||
//! return true if device supports specified feature and gpu module was built with support the feature.
|
||||
//bool supportFeature(const cv::gpu::DeviceInfo& info, cv::gpu::FeatureSet feature);
|
||||
// This function test if gpu_rst matches cpu_rst.
|
||||
// If the two vectors are not equal, it will return the difference in vector size
|
||||
// Else it will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
// The smaller, the better matched
|
||||
double checkRectSimilarity(cv::Size sz, std::vector<cv::Rect>& ob1, std::vector<cv::Rect>& ob2);
|
||||
|
||||
//! return all devices compatible with current gpu module build.
|
||||
//const std::vector<cv::ocl::DeviceInfo>& devices();
|
||||
//! return all devices compatible with current gpu module build which support specified feature.
|
||||
//std::vector<cv::ocl::DeviceInfo> devices(cv::gpu::FeatureSet feature);
|
||||
|
||||
//! read image from testdata folder.
|
||||
cv::Mat readImage(const std::string &fileName, int flags = cv::IMREAD_COLOR);
|
||||
|
@ -7,55 +7,67 @@
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
#define LOOP_NUM 10
|
||||
#define LOOP_NUM 10
|
||||
|
||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)} ;
|
||||
CV_RGB(0,128,255),
|
||||
CV_RGB(0,255,255),
|
||||
CV_RGB(0,255,0),
|
||||
CV_RGB(255,128,0),
|
||||
CV_RGB(255,255,0),
|
||||
CV_RGB(255,0,0),
|
||||
CV_RGB(255,0,255)
|
||||
} ;
|
||||
|
||||
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
string outputName;
|
||||
|
||||
static void workBegin()
|
||||
{
|
||||
static void workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
static void workEnd()
|
||||
{
|
||||
work_end += (getTickCount() - work_begin);
|
||||
}
|
||||
static double getTime(){
|
||||
static double getTime()
|
||||
{
|
||||
return work_end /((double)cvGetTickFrequency() * 1000.);
|
||||
}
|
||||
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
cv::ocl::OclCascadeClassifierBuf& cascade,
|
||||
double scale, bool calTime);
|
||||
|
||||
void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
CascadeClassifier& cascade,
|
||||
double scale, bool calTime);
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
ocl::OclCascadeClassifierBuf& cascade,
|
||||
double scale, bool calTime);
|
||||
|
||||
|
||||
void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
CascadeClassifier& cascade,
|
||||
double scale, bool calTime);
|
||||
|
||||
|
||||
void Draw(Mat& img, vector<Rect>& faces, double scale);
|
||||
|
||||
|
||||
// This function test if gpu_rst matches cpu_rst.
|
||||
// If the two vectors are not equal, it will return the difference in vector size
|
||||
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
double checkRectSimilarity(Size sz, std::vector<Rect>& cpu_rst, std::vector<Rect>& gpu_rst);
|
||||
double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst);
|
||||
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
{
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ i | input | | specify input image }"
|
||||
"{ t | template | ../../../data/haarcascades/haarcascade_frontalface_alt.xml | specify template file }"
|
||||
"{ t | template | haarcascade_frontalface_alt.xml |"
|
||||
" specify template file path }"
|
||||
"{ c | scale | 1.0 | scale image }"
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }";
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ o | output | facedetect_output.jpg |"
|
||||
" specify output image save path(only works when input is images) }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.get<bool>("help"))
|
||||
@ -69,9 +81,10 @@ int main( int argc, const char** argv )
|
||||
|
||||
bool useCPU = cmd.get<bool>("s");
|
||||
string inputName = cmd.get<string>("i");
|
||||
outputName = cmd.get<string>("o");
|
||||
string cascadeName = cmd.get<string>("t");
|
||||
double scale = cmd.get<double>("c");
|
||||
cv::ocl::OclCascadeClassifierBuf cascade;
|
||||
ocl::OclCascadeClassifierBuf cascade;
|
||||
CascadeClassifier cpu_cascade;
|
||||
|
||||
if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
|
||||
@ -83,7 +96,7 @@ int main( int argc, const char** argv )
|
||||
if( inputName.empty() )
|
||||
{
|
||||
capture = cvCaptureFromCAM(0);
|
||||
if(!capture)
|
||||
if(!capture)
|
||||
cout << "Capture from CAM 0 didn't work" << endl;
|
||||
}
|
||||
else if( inputName.size() )
|
||||
@ -92,7 +105,7 @@ int main( int argc, const char** argv )
|
||||
if( image.empty() )
|
||||
{
|
||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
||||
if(!capture)
|
||||
if(!capture)
|
||||
cout << "Capture from AVI didn't work" << endl;
|
||||
return -1;
|
||||
}
|
||||
@ -100,14 +113,15 @@ int main( int argc, const char** argv )
|
||||
else
|
||||
{
|
||||
image = imread( "lena.jpg", 1 );
|
||||
if(image.empty())
|
||||
if(image.empty())
|
||||
cout << "Couldn't read lena.jpg" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
cvNamedWindow( "result", 1 );
|
||||
std::vector<cv::ocl::Info> oclinfo;
|
||||
int devnums = cv::ocl::getDevice(oclinfo);
|
||||
vector<ocl::Info> oclinfo;
|
||||
int devnums = ocl::getDevice(oclinfo);
|
||||
if( devnums < 1 )
|
||||
{
|
||||
std::cout << "no device found\n";
|
||||
@ -130,19 +144,23 @@ int main( int argc, const char** argv )
|
||||
frame.copyTo( frameCopy );
|
||||
else
|
||||
flip( frame, frameCopy, 0 );
|
||||
if(useCPU){
|
||||
if(useCPU)
|
||||
{
|
||||
detectCPU(frameCopy, faces, cpu_cascade, scale, false);
|
||||
}
|
||||
else{
|
||||
detect(frameCopy, faces, cascade, scale, false);
|
||||
else
|
||||
{
|
||||
detect(frameCopy, faces, cascade, scale, false);
|
||||
}
|
||||
Draw(frameCopy, faces, scale);
|
||||
if( waitKey( 10 ) >= 0 )
|
||||
goto _cleanup_;
|
||||
}
|
||||
|
||||
|
||||
waitKey(0);
|
||||
|
||||
|
||||
_cleanup_:
|
||||
cvReleaseCapture( &capture );
|
||||
}
|
||||
@ -152,18 +170,21 @@ _cleanup_:
|
||||
vector<Rect> faces;
|
||||
vector<Rect> ref_rst;
|
||||
double accuracy = 0.;
|
||||
for(int i = 0; i <= LOOP_NUM;i ++)
|
||||
for(int i = 0; i <= LOOP_NUM; i ++)
|
||||
{
|
||||
cout << "loop" << i << endl;
|
||||
if(useCPU){
|
||||
detectCPU(image, faces, cpu_cascade, scale, i==0?false:true);
|
||||
if(useCPU)
|
||||
{
|
||||
detectCPU(image, faces, cpu_cascade, scale, i==0?false:true);
|
||||
}
|
||||
else{
|
||||
else
|
||||
{
|
||||
detect(image, faces, cascade, scale, i==0?false:true);
|
||||
if(i == 0){
|
||||
if(i == 0)
|
||||
{
|
||||
detectCPU(image, ref_rst, cpu_cascade, scale, false);
|
||||
accuracy = checkRectSimilarity(image.size(), ref_rst, faces);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (i == LOOP_NUM)
|
||||
{
|
||||
@ -180,31 +201,31 @@ _cleanup_:
|
||||
}
|
||||
|
||||
cvDestroyWindow("result");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
cv::ocl::OclCascadeClassifierBuf& cascade,
|
||||
double scale, bool calTime)
|
||||
void detect( Mat& img, vector<Rect>& faces,
|
||||
ocl::OclCascadeClassifierBuf& cascade,
|
||||
double scale, bool calTime)
|
||||
{
|
||||
cv::ocl::oclMat image(img);
|
||||
cv::ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
ocl::oclMat image(img);
|
||||
ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
if(calTime) workBegin();
|
||||
cv::ocl::cvtColor( image, gray, CV_BGR2GRAY );
|
||||
cv::ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
cv::ocl::equalizeHist( smallImg, smallImg );
|
||||
ocl::cvtColor( image, gray, CV_BGR2GRAY );
|
||||
ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
ocl::equalizeHist( smallImg, smallImg );
|
||||
|
||||
cascade.detectMultiScale( smallImg, faces, 1.1,
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
3, 0
|
||||
|CV_HAAR_SCALE_IMAGE
|
||||
, Size(30,30), Size(0, 0) );
|
||||
if(calTime) workEnd();
|
||||
}
|
||||
|
||||
void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
CascadeClassifier& cascade,
|
||||
double scale, bool calTime)
|
||||
|
||||
void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
CascadeClassifier& cascade,
|
||||
double scale, bool calTime)
|
||||
{
|
||||
if(calTime) workBegin();
|
||||
Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
||||
@ -212,11 +233,12 @@ void detectCPU( Mat& img, vector<Rect>& faces,
|
||||
resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR);
|
||||
equalizeHist(cpu_smallImg, cpu_smallImg);
|
||||
cascade.detectMultiScale(cpu_smallImg, faces, 1.1,
|
||||
3, 0 | CV_HAAR_SCALE_IMAGE,
|
||||
Size(30, 30), Size(0, 0));
|
||||
if(calTime) workEnd();
|
||||
3, 0 | CV_HAAR_SCALE_IMAGE,
|
||||
Size(30, 30), Size(0, 0));
|
||||
if(calTime) workEnd();
|
||||
}
|
||||
|
||||
|
||||
void Draw(Mat& img, vector<Rect>& faces, double scale)
|
||||
{
|
||||
int i = 0;
|
||||
@ -230,31 +252,38 @@ void Draw(Mat& img, vector<Rect>& faces, double scale)
|
||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
||||
circle( img, center, radius, color, 3, 8, 0 );
|
||||
}
|
||||
cv::imshow( "result", img );
|
||||
imshow( "result", img );
|
||||
imwrite( outputName, img );
|
||||
}
|
||||
|
||||
double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& ob2)
|
||||
|
||||
double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2)
|
||||
{
|
||||
double final_test_result = 0.0;
|
||||
size_t sz1 = ob1.size();
|
||||
size_t sz2 = ob2.size();
|
||||
|
||||
if(sz1 != sz2)
|
||||
{
|
||||
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat cpu_result(sz, CV_8UC1);
|
||||
if(sz1==0 && sz2==0)
|
||||
return 0;
|
||||
Mat cpu_result(sz, CV_8UC1);
|
||||
cpu_result.setTo(0);
|
||||
|
||||
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
|
||||
{
|
||||
cv::Mat cpu_result_roi(cpu_result, *r);
|
||||
{
|
||||
Mat cpu_result_roi(cpu_result, *r);
|
||||
cpu_result_roi.setTo(1);
|
||||
cpu_result.copyTo(cpu_result);
|
||||
}
|
||||
int cpu_area = cv::countNonZero(cpu_result > 0);
|
||||
int cpu_area = countNonZero(cpu_result > 0);
|
||||
|
||||
cv::Mat gpu_result(sz, CV_8UC1);
|
||||
|
||||
Mat gpu_result(sz, CV_8UC1);
|
||||
gpu_result.setTo(0);
|
||||
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
|
||||
{
|
||||
@ -263,11 +292,13 @@ double checkRectSimilarity(Size sz, std::vector<Rect>& ob1, std::vector<Rect>& o
|
||||
gpu_result.copyTo(gpu_result);
|
||||
}
|
||||
|
||||
cv::Mat result_;
|
||||
Mat result_;
|
||||
multiply(cpu_result, gpu_result, result_);
|
||||
int result = cv::countNonZero(result_ > 0);
|
||||
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
int result = countNonZero(result_ > 0);
|
||||
if(cpu_area!=0 && result!=0)
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
else if(cpu_area==0 && result!=0)
|
||||
final_test_result = -1;
|
||||
}
|
||||
return final_test_result;
|
||||
}
|
||||
|
@ -10,75 +10,39 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
bool help_showed = false;
|
||||
|
||||
class Args
|
||||
{
|
||||
public:
|
||||
Args();
|
||||
static Args read(int argc, char** argv);
|
||||
|
||||
string src;
|
||||
bool src_is_video;
|
||||
bool src_is_camera;
|
||||
int camera_id;
|
||||
|
||||
bool write_video;
|
||||
string dst_video;
|
||||
double dst_video_fps;
|
||||
|
||||
bool make_gray;
|
||||
|
||||
bool resize_src;
|
||||
int width, height;
|
||||
|
||||
double scale;
|
||||
int nlevels;
|
||||
int gr_threshold;
|
||||
|
||||
double hit_threshold;
|
||||
bool hit_threshold_auto;
|
||||
|
||||
int win_width;
|
||||
int win_stride_width, win_stride_height;
|
||||
|
||||
bool gamma_corr;
|
||||
};
|
||||
|
||||
class App
|
||||
{
|
||||
public:
|
||||
App(const Args& s);
|
||||
App(CommandLineParser& cmd);
|
||||
void run();
|
||||
|
||||
void handleKey(char key);
|
||||
|
||||
void hogWorkBegin();
|
||||
void hogWorkEnd();
|
||||
string hogWorkFps() const;
|
||||
|
||||
void workBegin();
|
||||
void workEnd();
|
||||
string workFps() const;
|
||||
|
||||
string message() const;
|
||||
|
||||
|
||||
// This function test if gpu_rst matches cpu_rst.
|
||||
// If the two vectors are not equal, it will return the difference in vector size
|
||||
// Else if will return
|
||||
// Else if will return
|
||||
// (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
|
||||
double checkRectSimilarity(Size sz,
|
||||
std::vector<Rect>& cpu_rst,
|
||||
double checkRectSimilarity(Size sz,
|
||||
std::vector<Rect>& cpu_rst,
|
||||
std::vector<Rect>& gpu_rst);
|
||||
private:
|
||||
App operator=(App&);
|
||||
|
||||
Args args;
|
||||
//Args args;
|
||||
bool running;
|
||||
|
||||
bool use_gpu;
|
||||
bool make_gray;
|
||||
double scale;
|
||||
double resize_scale;
|
||||
int win_width;
|
||||
int win_stride_width, win_stride_height;
|
||||
int gr_threshold;
|
||||
int nlevels;
|
||||
double hit_threshold;
|
||||
@ -86,119 +50,49 @@ private:
|
||||
|
||||
int64 hog_work_begin;
|
||||
double hog_work_fps;
|
||||
|
||||
int64 work_begin;
|
||||
double work_fps;
|
||||
};
|
||||
|
||||
static void printHelp()
|
||||
{
|
||||
cout << "Histogram of Oriented Gradients descriptor and detector sample.\n"
|
||||
<< "\nUsage: hog_gpu\n"
|
||||
<< " (<image>|--video <vide>|--camera <camera_id>) # frames source\n"
|
||||
<< " [--make_gray <true/false>] # convert image to gray one or not\n"
|
||||
<< " [--resize_src <true/false>] # do resize of the source image or not\n"
|
||||
<< " [--width <int>] # resized image width\n"
|
||||
<< " [--height <int>] # resized image height\n"
|
||||
<< " [--hit_threshold <double>] # classifying plane distance threshold (0.0 usually)\n"
|
||||
<< " [--scale <double>] # HOG window scale factor\n"
|
||||
<< " [--nlevels <int>] # max number of HOG window scales\n"
|
||||
<< " [--win_width <int>] # width of the window (48 or 64)\n"
|
||||
<< " [--win_stride_width <int>] # distance by OX axis between neighbour wins\n"
|
||||
<< " [--win_stride_height <int>] # distance by OY axis between neighbour wins\n"
|
||||
<< " [--gr_threshold <int>] # merging similar rects constant\n"
|
||||
<< " [--gamma_correct <int>] # do gamma correction or not\n"
|
||||
<< " [--write_video <bool>] # write video or not\n"
|
||||
<< " [--dst_video <path>] # output video path\n"
|
||||
<< " [--dst_video_fps <double>] # output video fps\n";
|
||||
help_showed = true;
|
||||
}
|
||||
string img_source;
|
||||
string vdo_source;
|
||||
string output;
|
||||
int camera_id;
|
||||
};
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ i | input | | specify input image}"
|
||||
"{ c | camera | -1 | enable camera capturing }"
|
||||
"{ v | video | | use video as input }"
|
||||
"{ g | gray | false | convert image to gray one or not}"
|
||||
"{ s | scale | 1.0 | resize the image before detect}"
|
||||
"{ l |larger_win| false | use 64x128 window}"
|
||||
"{ o | output | | specify output path when input is images}";
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
App app(cmd);
|
||||
try
|
||||
{
|
||||
if (argc < 2)
|
||||
printHelp();
|
||||
Args args = Args::read(argc, argv);
|
||||
if (help_showed)
|
||||
return -1;
|
||||
App app(args);
|
||||
app.run();
|
||||
}
|
||||
catch (const Exception& e) { return cout << "error: " << e.what() << endl, 1; }
|
||||
catch (const exception& e) { return cout << "error: " << e.what() << endl, 1; }
|
||||
catch(...) { return cout << "unknown exception" << endl, 1; }
|
||||
catch (const Exception& e)
|
||||
{
|
||||
return cout << "error: " << e.what() << endl, 1;
|
||||
}
|
||||
catch (const exception& e)
|
||||
{
|
||||
return cout << "error: " << e.what() << endl, 1;
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
return cout << "unknown exception" << endl, 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
Args::Args()
|
||||
App::App(CommandLineParser& cmd)
|
||||
{
|
||||
src_is_video = false;
|
||||
src_is_camera = false;
|
||||
camera_id = 0;
|
||||
|
||||
write_video = false;
|
||||
dst_video_fps = 24.;
|
||||
|
||||
make_gray = false;
|
||||
|
||||
resize_src = false;
|
||||
width = 640;
|
||||
height = 480;
|
||||
|
||||
scale = 1.05;
|
||||
nlevels = 13;
|
||||
gr_threshold = 8;
|
||||
hit_threshold = 1.4;
|
||||
hit_threshold_auto = true;
|
||||
|
||||
win_width = 48;
|
||||
win_stride_width = 8;
|
||||
win_stride_height = 8;
|
||||
|
||||
gamma_corr = true;
|
||||
}
|
||||
|
||||
|
||||
Args Args::read(int argc, char** argv)
|
||||
{
|
||||
Args args;
|
||||
for (int i = 1; i < argc; i++)
|
||||
{
|
||||
if (string(argv[i]) == "--make_gray") args.make_gray = (string(argv[++i]) == "true");
|
||||
else if (string(argv[i]) == "--resize_src") args.resize_src = (string(argv[++i]) == "true");
|
||||
else if (string(argv[i]) == "--width") args.width = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--height") args.height = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--hit_threshold")
|
||||
{
|
||||
args.hit_threshold = atof(argv[++i]);
|
||||
args.hit_threshold_auto = false;
|
||||
}
|
||||
else if (string(argv[i]) == "--scale") args.scale = atof(argv[++i]);
|
||||
else if (string(argv[i]) == "--nlevels") args.nlevels = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--win_width") args.win_width = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--win_stride_width") args.win_stride_width = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--win_stride_height") args.win_stride_height = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--gr_threshold") args.gr_threshold = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--gamma_correct") args.gamma_corr = (string(argv[++i]) == "true");
|
||||
else if (string(argv[i]) == "--write_video") args.write_video = (string(argv[++i]) == "true");
|
||||
else if (string(argv[i]) == "--dst_video") args.dst_video = argv[++i];
|
||||
else if (string(argv[i]) == "--dst_video_fps") args.dst_video_fps = atof(argv[++i]);
|
||||
else if (string(argv[i]) == "--help") printHelp();
|
||||
else if (string(argv[i]) == "--video") { args.src = argv[++i]; args.src_is_video = true; }
|
||||
else if (string(argv[i]) == "--camera") { args.camera_id = atoi(argv[++i]); args.src_is_camera = true; }
|
||||
else if (args.src.empty()) args.src = argv[i];
|
||||
else throw runtime_error((string("unknown key: ") + argv[i]));
|
||||
}
|
||||
return args;
|
||||
}
|
||||
|
||||
|
||||
App::App(const Args& s)
|
||||
{
|
||||
args = s;
|
||||
cout << "\nControls:\n"
|
||||
<< "\tESC - exit\n"
|
||||
<< "\tm - change mode GPU <-> CPU\n"
|
||||
@ -209,56 +103,56 @@ App::App(const Args& s)
|
||||
<< "\t4/r - increase/decrease hit threshold\n"
|
||||
<< endl;
|
||||
|
||||
|
||||
use_gpu = true;
|
||||
make_gray = args.make_gray;
|
||||
scale = args.scale;
|
||||
gr_threshold = args.gr_threshold;
|
||||
nlevels = args.nlevels;
|
||||
make_gray = cmd.get<bool>("g");
|
||||
resize_scale = cmd.get<double>("s");
|
||||
win_width = cmd.get<bool>("l") == true ? 64 : 48;
|
||||
vdo_source = cmd.get<string>("v");
|
||||
img_source = cmd.get<string>("i");
|
||||
output = cmd.get<string>("o");
|
||||
camera_id = cmd.get<int>("c");
|
||||
|
||||
if (args.hit_threshold_auto)
|
||||
args.hit_threshold = args.win_width == 48 ? 1.4 : 0.;
|
||||
hit_threshold = args.hit_threshold;
|
||||
win_stride_width = 8;
|
||||
win_stride_height = 8;
|
||||
gr_threshold = 8;
|
||||
nlevels = 13;
|
||||
hit_threshold = win_width == 48 ? 1.4 : 0.;
|
||||
scale = 1.05;
|
||||
gamma_corr = true;
|
||||
|
||||
gamma_corr = args.gamma_corr;
|
||||
|
||||
if (args.win_width != 64 && args.win_width != 48)
|
||||
args.win_width = 64;
|
||||
|
||||
cout << "Scale: " << scale << endl;
|
||||
if (args.resize_src)
|
||||
cout << "Resized source: (" << args.width << ", " << args.height << ")\n";
|
||||
cout << "Group threshold: " << gr_threshold << endl;
|
||||
cout << "Levels number: " << nlevels << endl;
|
||||
cout << "Win width: " << args.win_width << endl;
|
||||
cout << "Win stride: (" << args.win_stride_width << ", " << args.win_stride_height << ")\n";
|
||||
cout << "Win width: " << win_width << endl;
|
||||
cout << "Win stride: (" << win_stride_width << ", " << win_stride_height << ")\n";
|
||||
cout << "Hit threshold: " << hit_threshold << endl;
|
||||
cout << "Gamma correction: " << gamma_corr << endl;
|
||||
cout << endl;
|
||||
}
|
||||
|
||||
|
||||
void App::run()
|
||||
{
|
||||
std::vector<ocl::Info> oclinfo;
|
||||
vector<ocl::Info> oclinfo;
|
||||
ocl::getDevice(oclinfo);
|
||||
running = true;
|
||||
cv::VideoWriter video_writer;
|
||||
VideoWriter video_writer;
|
||||
|
||||
Size win_size(args.win_width, args.win_width * 2); //(64, 128) or (48, 96)
|
||||
Size win_stride(args.win_stride_width, args.win_stride_height);
|
||||
Size win_size(win_width, win_width * 2);
|
||||
Size win_stride(win_stride_width, win_stride_height);
|
||||
|
||||
// Create HOG descriptors and detectors here
|
||||
vector<float> detector;
|
||||
if (win_size == Size(64, 128))
|
||||
detector = cv::ocl::HOGDescriptor::getPeopleDetector64x128();
|
||||
detector = ocl::HOGDescriptor::getPeopleDetector64x128();
|
||||
else
|
||||
detector = cv::ocl::HOGDescriptor::getPeopleDetector48x96();
|
||||
detector = ocl::HOGDescriptor::getPeopleDetector48x96();
|
||||
|
||||
cv::ocl::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9,
|
||||
cv::ocl::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
|
||||
cv::ocl::HOGDescriptor::DEFAULT_NLEVELS);
|
||||
cv::HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1,
|
||||
HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS);
|
||||
|
||||
ocl::HOGDescriptor gpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9,
|
||||
ocl::HOGDescriptor::DEFAULT_WIN_SIGMA, 0.2, gamma_corr,
|
||||
ocl::HOGDescriptor::DEFAULT_NLEVELS);
|
||||
HOGDescriptor cpu_hog(win_size, Size(16, 16), Size(8, 8), Size(8, 8), 9, 1, -1,
|
||||
HOGDescriptor::L2Hys, 0.2, gamma_corr, cv::HOGDescriptor::DEFAULT_NLEVELS);
|
||||
gpu_hog.setSVMDetector(detector);
|
||||
cpu_hog.setSVMDetector(detector);
|
||||
|
||||
@ -267,29 +161,29 @@ void App::run()
|
||||
VideoCapture vc;
|
||||
Mat frame;
|
||||
|
||||
if (args.src_is_video)
|
||||
if (vdo_source!="")
|
||||
{
|
||||
vc.open(args.src.c_str());
|
||||
vc.open(vdo_source.c_str());
|
||||
if (!vc.isOpened())
|
||||
throw runtime_error(string("can't open video file: " + args.src));
|
||||
throw runtime_error(string("can't open video file: " + vdo_source));
|
||||
vc >> frame;
|
||||
}
|
||||
else if (args.src_is_camera)
|
||||
else if (camera_id != -1)
|
||||
{
|
||||
vc.open(args.camera_id);
|
||||
vc.open(camera_id);
|
||||
if (!vc.isOpened())
|
||||
{
|
||||
stringstream msg;
|
||||
msg << "can't open camera: " << args.camera_id;
|
||||
msg << "can't open camera: " << camera_id;
|
||||
throw runtime_error(msg.str());
|
||||
}
|
||||
vc >> frame;
|
||||
}
|
||||
else
|
||||
{
|
||||
frame = imread(args.src);
|
||||
frame = imread(img_source);
|
||||
if (frame.empty())
|
||||
throw runtime_error(string("can't open image file: " + args.src));
|
||||
throw runtime_error(string("can't open image file: " + img_source));
|
||||
}
|
||||
|
||||
Mat img_aux, img, img_to_show;
|
||||
@ -307,13 +201,15 @@ void App::run()
|
||||
else frame.copyTo(img_aux);
|
||||
|
||||
// Resize image
|
||||
if (args.resize_src) resize(img_aux, img, Size(args.width, args.height));
|
||||
if (abs(scale-1.0)>0.001)
|
||||
{
|
||||
Size sz((int)((double)img_aux.cols/resize_scale), (int)((double)img_aux.rows/resize_scale));
|
||||
resize(img_aux, img, sz);
|
||||
}
|
||||
else img = img_aux;
|
||||
img_to_show = img;
|
||||
|
||||
gpu_hog.nlevels = nlevels;
|
||||
cpu_hog.nlevels = nlevels;
|
||||
|
||||
vector<Rect> found;
|
||||
|
||||
// Perform HOG classification
|
||||
@ -330,15 +226,16 @@ void App::run()
|
||||
vector<Rect> ref_rst;
|
||||
cvtColor(img, img, CV_BGRA2BGR);
|
||||
cpu_hog.detectMultiScale(img, ref_rst, hit_threshold, win_stride,
|
||||
Size(0, 0), scale, gr_threshold-2);
|
||||
Size(0, 0), scale, gr_threshold-2);
|
||||
double accuracy = checkRectSimilarity(img.size(), ref_rst, found);
|
||||
cout << "\naccuracy value: " << accuracy << endl;
|
||||
}
|
||||
}
|
||||
cout << "\naccuracy value: " << accuracy << endl;
|
||||
}
|
||||
}
|
||||
else cpu_hog.detectMultiScale(img, found, hit_threshold, win_stride,
|
||||
Size(0, 0), scale, gr_threshold);
|
||||
Size(0, 0), scale, gr_threshold);
|
||||
hogWorkEnd();
|
||||
|
||||
|
||||
// Draw positive classified windows
|
||||
for (size_t i = 0; i < found.size(); i++)
|
||||
{
|
||||
@ -353,25 +250,31 @@ void App::run()
|
||||
putText(img_to_show, "FPS (HOG only): " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
|
||||
putText(img_to_show, "FPS (total): " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
|
||||
imshow("opencv_gpu_hog", img_to_show);
|
||||
|
||||
if (args.src_is_video || args.src_is_camera) vc >> frame;
|
||||
if (vdo_source!="" || camera_id!=-1) vc >> frame;
|
||||
|
||||
workEnd();
|
||||
|
||||
if (args.write_video)
|
||||
if (output!="")
|
||||
{
|
||||
if (!video_writer.isOpened())
|
||||
if (img_source!="") // wirte image
|
||||
{
|
||||
video_writer.open(args.dst_video, CV_FOURCC('x','v','i','d'), args.dst_video_fps,
|
||||
img_to_show.size(), true);
|
||||
if (!video_writer.isOpened())
|
||||
throw std::runtime_error("can't create video writer");
|
||||
imwrite(output, img_to_show);
|
||||
}
|
||||
else //write video
|
||||
{
|
||||
if (!video_writer.isOpened())
|
||||
{
|
||||
video_writer.open(output, CV_FOURCC('x','v','i','d'), 24,
|
||||
img_to_show.size(), true);
|
||||
if (!video_writer.isOpened())
|
||||
throw std::runtime_error("can't create video writer");
|
||||
}
|
||||
|
||||
if (make_gray) cvtColor(img_to_show, img, CV_GRAY2BGR);
|
||||
else cvtColor(img_to_show, img, CV_BGRA2BGR);
|
||||
if (make_gray) cvtColor(img_to_show, img, CV_GRAY2BGR);
|
||||
else cvtColor(img_to_show, img, CV_BGRA2BGR);
|
||||
|
||||
video_writer << img;
|
||||
video_writer << img;
|
||||
}
|
||||
}
|
||||
|
||||
handleKey((char)waitKey(3));
|
||||
@ -379,7 +282,6 @@ void App::run()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void App::handleKey(char key)
|
||||
{
|
||||
switch (key)
|
||||
@ -442,7 +344,10 @@ void App::handleKey(char key)
|
||||
}
|
||||
|
||||
|
||||
inline void App::hogWorkBegin() { hog_work_begin = getTickCount(); }
|
||||
inline void App::hogWorkBegin()
|
||||
{
|
||||
hog_work_begin = getTickCount();
|
||||
}
|
||||
|
||||
inline void App::hogWorkEnd()
|
||||
{
|
||||
@ -458,8 +363,10 @@ inline string App::hogWorkFps() const
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
inline void App::workBegin() { work_begin = getTickCount(); }
|
||||
inline void App::workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
|
||||
inline void App::workEnd()
|
||||
{
|
||||
@ -475,8 +382,9 @@ inline string App::workFps() const
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
double App::checkRectSimilarity(Size sz,
|
||||
std::vector<Rect>& ob1,
|
||||
|
||||
double App::checkRectSimilarity(Size sz,
|
||||
std::vector<Rect>& ob1,
|
||||
std::vector<Rect>& ob2)
|
||||
{
|
||||
double final_test_result = 0.0;
|
||||
@ -484,20 +392,26 @@ double App::checkRectSimilarity(Size sz,
|
||||
size_t sz2 = ob2.size();
|
||||
|
||||
if(sz1 != sz2)
|
||||
{
|
||||
return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
|
||||
}
|
||||
else
|
||||
{
|
||||
if(sz1==0 && sz2==0)
|
||||
return 0;
|
||||
cv::Mat cpu_result(sz, CV_8UC1);
|
||||
cpu_result.setTo(0);
|
||||
|
||||
|
||||
for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
|
||||
{
|
||||
{
|
||||
cv::Mat cpu_result_roi(cpu_result, *r);
|
||||
cpu_result_roi.setTo(1);
|
||||
cpu_result.copyTo(cpu_result);
|
||||
}
|
||||
int cpu_area = cv::countNonZero(cpu_result > 0);
|
||||
|
||||
|
||||
cv::Mat gpu_result(sz, CV_8UC1);
|
||||
gpu_result.setTo(0);
|
||||
for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
|
||||
@ -510,10 +424,11 @@ double App::checkRectSimilarity(Size sz,
|
||||
cv::Mat result_;
|
||||
multiply(cpu_result, gpu_result, result_);
|
||||
int result = cv::countNonZero(result_ > 0);
|
||||
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
if(cpu_area!=0 && result!=0)
|
||||
final_test_result = 1.0 - (double)result/(double)cpu_area;
|
||||
else if(cpu_area==0 && result!=0)
|
||||
final_test_result = -1;
|
||||
}
|
||||
return final_test_result;
|
||||
|
||||
}
|
||||
|
||||
|
@ -11,19 +11,20 @@ using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
typedef unsigned char uchar;
|
||||
#define LOOP_NUM 10
|
||||
#define LOOP_NUM 10
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
|
||||
static void workBegin()
|
||||
{
|
||||
static void workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
static void workEnd()
|
||||
{
|
||||
work_end += (getTickCount() - work_begin);
|
||||
}
|
||||
static double getTime(){
|
||||
static double getTime()
|
||||
{
|
||||
return work_end * 1000. / getTickFrequency();
|
||||
}
|
||||
|
||||
@ -93,14 +94,15 @@ int main(int argc, const char* argv[])
|
||||
//set this to save kernel compile time from second time you run
|
||||
ocl::setBinpath("./");
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ c | camera | 0 | enable camera capturing }"
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ v | video | | use video as input }"
|
||||
"{ points | points | 1000 | specify points count [GoodFeatureToTrack] }"
|
||||
"{ min_dist | min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ c | camera | 0 | specify camera id }"
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ v | video | | use video as input }"
|
||||
"{ o | output | pyrlk_output.jpg| specify output save path when input is images }"
|
||||
"{ p | points | 1000 | specify points count [GoodFeatureToTrack] }"
|
||||
"{ m | min_dist | 0 | specify minimal distance between points [GoodFeatureToTrack] }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
|
||||
@ -113,13 +115,13 @@ int main(int argc, const char* argv[])
|
||||
}
|
||||
|
||||
bool defaultPicturesFail = false;
|
||||
string fname0 = cmd.get<string>("left");
|
||||
string fname1 = cmd.get<string>("right");
|
||||
string vdofile = cmd.get<string>("video");
|
||||
int points = cmd.get<int>("points");
|
||||
double minDist = cmd.get<double>("min_dist");
|
||||
string fname0 = cmd.get<string>("l");
|
||||
string fname1 = cmd.get<string>("r");
|
||||
string vdofile = cmd.get<string>("v");
|
||||
string outfile = cmd.get<string>("o");
|
||||
int points = cmd.get<int>("p");
|
||||
double minDist = cmd.get<double>("m");
|
||||
bool useCPU = cmd.get<bool>("s");
|
||||
bool useCamera = cmd.get<bool>("c");
|
||||
int inputName = cmd.get<int>("c");
|
||||
|
||||
oclMat d_nextPts, d_status;
|
||||
@ -132,22 +134,9 @@ int main(int argc, const char* argv[])
|
||||
vector<unsigned char> status(points);
|
||||
vector<float> err;
|
||||
|
||||
if (frame0.empty() || frame1.empty())
|
||||
{
|
||||
useCamera = true;
|
||||
defaultPicturesFail = true;
|
||||
CvCapture* capture = 0;
|
||||
capture = cvCaptureFromCAM( inputName );
|
||||
if (!capture)
|
||||
{
|
||||
cout << "Can't load input images" << endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
cout << "Points count : " << points << endl << endl;
|
||||
|
||||
if (useCamera)
|
||||
if (frame0.empty() || frame1.empty())
|
||||
{
|
||||
CvCapture* capture = 0;
|
||||
Mat frame, frameCopy;
|
||||
@ -241,10 +230,10 @@ _cleanup_:
|
||||
else
|
||||
{
|
||||
nocamera:
|
||||
for(int i = 0; i <= LOOP_NUM;i ++)
|
||||
for(int i = 0; i <= LOOP_NUM; i ++)
|
||||
{
|
||||
cout << "loop" << i << endl;
|
||||
if (i > 0) workBegin();
|
||||
if (i > 0) workBegin();
|
||||
|
||||
if (useCPU)
|
||||
{
|
||||
@ -274,8 +263,8 @@ nocamera:
|
||||
cout << getTime() / LOOP_NUM << " ms" << endl;
|
||||
|
||||
drawArrows(frame0, pts, nextPts, status, Scalar(255, 0, 0));
|
||||
|
||||
imshow("PyrLK [Sparse]", frame0);
|
||||
imwrite(outfile, frame0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -6,7 +6,6 @@
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
@ -14,23 +13,50 @@
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout <<
|
||||
"\nA program using OCL module pyramid scaling, Canny, dilate functions, threshold, split; cpu contours, contour simpification and\n"
|
||||
"memory storage (it's got it all folks) to find\n"
|
||||
"squares in a list of images pic1-6.png\n"
|
||||
"Returns sequence of squares detected on the image.\n"
|
||||
"the sequence is stored in the specified memory storage\n"
|
||||
"Call:\n"
|
||||
"./squares\n"
|
||||
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
|
||||
}
|
||||
#define ACCURACY_CHECK 1
|
||||
|
||||
#if ACCURACY_CHECK
|
||||
// check if two vectors of vector of points are near or not
|
||||
// prior assumption is that they are in correct order
|
||||
static bool checkPoints(
|
||||
vector< vector<Point> > set1,
|
||||
vector< vector<Point> > set2,
|
||||
int maxDiff = 5)
|
||||
{
|
||||
if(set1.size() != set2.size())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
for(vector< vector<Point> >::iterator it1 = set1.begin(), it2 = set2.begin();
|
||||
it1 < set1.end() && it2 < set2.end(); it1 ++, it2 ++)
|
||||
{
|
||||
vector<Point> pts1 = *it1;
|
||||
vector<Point> pts2 = *it2;
|
||||
|
||||
|
||||
if(pts1.size() != pts2.size())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
for(size_t i = 0; i < pts1.size(); i ++)
|
||||
{
|
||||
Point pt1 = pts1[i], pt2 = pts2[i];
|
||||
if(std::abs(pt1.x - pt2.x) > maxDiff ||
|
||||
std::abs(pt1.y - pt2.y) > maxDiff)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
int thresh = 50, N = 11;
|
||||
const char* wndname = "OpenCL Square Detection Demo";
|
||||
|
||||
|
||||
// helper function:
|
||||
// finds a cosine of angle between vectors
|
||||
// from pt0->pt1 and from pt0->pt2
|
||||
@ -43,9 +69,92 @@ static double angle( Point pt1, Point pt2, Point pt0 )
|
||||
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
|
||||
}
|
||||
|
||||
|
||||
// returns sequence of squares detected on the image.
|
||||
// the sequence is stored in the specified memory storage
|
||||
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
|
||||
{
|
||||
squares.clear();
|
||||
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
|
||||
|
||||
// down-scale and upscale the image to filter out the noise
|
||||
pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
|
||||
pyrUp(pyr, timg, image.size());
|
||||
vector<vector<Point> > contours;
|
||||
|
||||
// find squares in every color plane of the image
|
||||
for( int c = 0; c < 3; c++ )
|
||||
{
|
||||
int ch[] = {c, 0};
|
||||
mixChannels(&timg, 1, &gray0, 1, ch, 1);
|
||||
|
||||
// try several threshold levels
|
||||
for( int l = 0; l < N; l++ )
|
||||
{
|
||||
// hack: use Canny instead of zero threshold level.
|
||||
// Canny helps to catch squares with gradient shading
|
||||
if( l == 0 )
|
||||
{
|
||||
// apply Canny. Take the upper threshold from slider
|
||||
// and set the lower to 0 (which forces edges merging)
|
||||
Canny(gray0, gray, 0, thresh, 5);
|
||||
// dilate canny output to remove potential
|
||||
// holes between edge segments
|
||||
dilate(gray, gray, Mat(), Point(-1,-1));
|
||||
}
|
||||
else
|
||||
{
|
||||
// apply threshold if l!=0:
|
||||
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
|
||||
cv::threshold(gray0, gray, (l+1)*255/N, 255, THRESH_BINARY);
|
||||
}
|
||||
|
||||
// find contours and store them all as a list
|
||||
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
vector<Point> approx;
|
||||
|
||||
// test each contour
|
||||
for( size_t i = 0; i < contours.size(); i++ )
|
||||
{
|
||||
// approximate contour with accuracy proportional
|
||||
// to the contour perimeter
|
||||
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
|
||||
|
||||
// square contours should have 4 vertices after approximation
|
||||
// relatively large area (to filter out noisy contours)
|
||||
// and be convex.
|
||||
// Note: absolute value of an area is used because
|
||||
// area may be positive or negative - in accordance with the
|
||||
// contour orientation
|
||||
if( approx.size() == 4 &&
|
||||
fabs(contourArea(Mat(approx))) > 1000 &&
|
||||
isContourConvex(Mat(approx)) )
|
||||
{
|
||||
double maxCosine = 0;
|
||||
|
||||
for( int j = 2; j < 5; j++ )
|
||||
{
|
||||
// find the maximum cosine of the angle between joint edges
|
||||
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
|
||||
maxCosine = MAX(maxCosine, cosine);
|
||||
}
|
||||
|
||||
// if cosines of all angles are small
|
||||
// (all angles are ~90 degree) then write quandrange
|
||||
// vertices to resultant sequence
|
||||
if( maxCosine < 0.3 )
|
||||
squares.push_back(approx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// returns sequence of squares detected on the image.
|
||||
// the sequence is stored in the specified memory storage
|
||||
static void findSquares_ocl( const Mat& image, vector<vector<Point> >& squares )
|
||||
{
|
||||
squares.clear();
|
||||
|
||||
@ -91,7 +200,6 @@ static void findSquares( const Mat& image, vector<vector<Point> >& squares )
|
||||
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
vector<Point> approx;
|
||||
|
||||
// test each contour
|
||||
for( size_t i = 0; i < contours.size(); i++ )
|
||||
{
|
||||
@ -106,11 +214,10 @@ static void findSquares( const Mat& image, vector<vector<Point> >& squares )
|
||||
// area may be positive or negative - in accordance with the
|
||||
// contour orientation
|
||||
if( approx.size() == 4 &&
|
||||
fabs(contourArea(Mat(approx))) > 1000 &&
|
||||
isContourConvex(Mat(approx)) )
|
||||
fabs(contourArea(Mat(approx))) > 1000 &&
|
||||
isContourConvex(Mat(approx)) )
|
||||
{
|
||||
double maxCosine = 0;
|
||||
|
||||
for( int j = 2; j < 5; j++ )
|
||||
{
|
||||
// find the maximum cosine of the angle between joint edges
|
||||
@ -139,40 +246,93 @@ static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
|
||||
int n = (int)squares[i].size();
|
||||
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
|
||||
}
|
||||
|
||||
imshow(wndname, image);
|
||||
}
|
||||
|
||||
|
||||
int main(int /*argc*/, char** /*argv*/)
|
||||
// draw both pure-C++ and ocl square results onto a single image
|
||||
static Mat drawSquaresBoth( const Mat& image,
|
||||
const vector<vector<Point> >& sqsCPP,
|
||||
const vector<vector<Point> >& sqsOCL
|
||||
)
|
||||
{
|
||||
Mat imgToShow(Size(image.cols * 2, image.rows), image.type());
|
||||
Mat lImg = imgToShow(Rect(Point(0, 0), image.size()));
|
||||
Mat rImg = imgToShow(Rect(Point(image.cols, 0), image.size()));
|
||||
image.copyTo(lImg);
|
||||
image.copyTo(rImg);
|
||||
drawSquares(lImg, sqsCPP);
|
||||
drawSquares(rImg, sqsOCL);
|
||||
float fontScale = 0.8f;
|
||||
Scalar white = Scalar::all(255), black = Scalar::all(0);
|
||||
|
||||
putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2);
|
||||
putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, black, 2);
|
||||
putText(lImg, "C++", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1);
|
||||
putText(rImg, "OCL", Point(10, 20), FONT_HERSHEY_COMPLEX_SMALL, fontScale, white, 1);
|
||||
|
||||
return imgToShow;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const char* keys =
|
||||
"{ i | input | | specify input image }"
|
||||
"{ o | output | squares_output.jpg | specify output save path}";
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
string inputName = cmd.get<string>("i");
|
||||
string outfile = cmd.get<string>("o");
|
||||
if(inputName.empty())
|
||||
{
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
|
||||
//ocl::setBinpath("F:/kernel_bin");
|
||||
vector<ocl::Info> info;
|
||||
CV_Assert(ocl::getDevice(info));
|
||||
|
||||
static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
|
||||
"pic4.png", "pic5.png", "pic6.png", 0 };
|
||||
help();
|
||||
int iterations = 10;
|
||||
namedWindow( wndname, 1 );
|
||||
vector<vector<Point> > squares;
|
||||
vector<vector<Point> > squares_cpu, squares_ocl;
|
||||
|
||||
for( int i = 0; names[i] != 0; i++ )
|
||||
Mat image = imread(inputName, 1);
|
||||
if( image.empty() )
|
||||
{
|
||||
Mat image = imread(names[i], 1);
|
||||
if( image.empty() )
|
||||
{
|
||||
cout << "Couldn't load " << names[i] << endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
findSquares(image, squares);
|
||||
drawSquares(image, squares);
|
||||
|
||||
int c = waitKey();
|
||||
if( (char)c == 27 )
|
||||
break;
|
||||
cout << "Couldn't load " << inputName << endl;
|
||||
return -1;
|
||||
}
|
||||
int j = iterations;
|
||||
int64 t_ocl = 0, t_cpp = 0;
|
||||
//warm-ups
|
||||
cout << "warming up ..." << endl;
|
||||
findSquares(image, squares_cpu);
|
||||
findSquares_ocl(image, squares_ocl);
|
||||
|
||||
|
||||
#if ACCURACY_CHECK
|
||||
cout << "Checking ocl accuracy ... " << endl;
|
||||
cout << (checkPoints(squares_cpu, squares_ocl) ? "Pass" : "Failed") << endl;
|
||||
#endif
|
||||
do
|
||||
{
|
||||
int64 t_start = cv::getTickCount();
|
||||
findSquares(image, squares_cpu);
|
||||
t_cpp += cv::getTickCount() - t_start;
|
||||
|
||||
|
||||
t_start = cv::getTickCount();
|
||||
findSquares_ocl(image, squares_ocl);
|
||||
t_ocl += cv::getTickCount() - t_start;
|
||||
cout << "run loop: " << j << endl;
|
||||
}
|
||||
while(--j);
|
||||
cout << "cpp average time: " << 1000.0f * (double)t_cpp / getTickFrequency() / iterations << "ms" << endl;
|
||||
cout << "ocl average time: " << 1000.0f * (double)t_ocl / getTickFrequency() / iterations << "ms" << endl;
|
||||
|
||||
Mat result = drawSquaresBoth(image, squares_cpu, squares_ocl);
|
||||
imshow(wndname, result);
|
||||
imwrite(outfile, result);
|
||||
cvWaitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -10,56 +10,45 @@ using namespace cv;
|
||||
using namespace std;
|
||||
using namespace ocl;
|
||||
|
||||
bool help_showed = false;
|
||||
|
||||
struct Params
|
||||
{
|
||||
Params();
|
||||
static Params read(int argc, char** argv);
|
||||
|
||||
string left;
|
||||
string right;
|
||||
|
||||
string method_str() const
|
||||
{
|
||||
switch (method)
|
||||
{
|
||||
case BM: return "BM";
|
||||
case BP: return "BP";
|
||||
case CSBP: return "CSBP";
|
||||
}
|
||||
return "";
|
||||
}
|
||||
enum {BM, BP, CSBP} method;
|
||||
int ndisp; // Max disparity + 1
|
||||
enum {GPU, CPU} type;
|
||||
};
|
||||
|
||||
|
||||
struct App
|
||||
{
|
||||
App(const Params& p);
|
||||
App(CommandLineParser& cmd);
|
||||
void run();
|
||||
void handleKey(char key);
|
||||
void printParams() const;
|
||||
|
||||
void workBegin() { work_begin = getTickCount(); }
|
||||
void workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
void workEnd()
|
||||
{
|
||||
int64 d = getTickCount() - work_begin;
|
||||
double f = getTickFrequency();
|
||||
work_fps = f / d;
|
||||
}
|
||||
|
||||
string method_str() const
|
||||
{
|
||||
switch (method)
|
||||
{
|
||||
case BM:
|
||||
return "BM";
|
||||
case BP:
|
||||
return "BP";
|
||||
case CSBP:
|
||||
return "CSBP";
|
||||
}
|
||||
return "";
|
||||
}
|
||||
string text() const
|
||||
{
|
||||
stringstream ss;
|
||||
ss << "(" << p.method_str() << ") FPS: " << setiosflags(ios::left)
|
||||
<< setprecision(4) << work_fps;
|
||||
ss << "(" << method_str() << ") FPS: " << setiosflags(ios::left)
|
||||
<< setprecision(4) << work_fps;
|
||||
return ss.str();
|
||||
}
|
||||
private:
|
||||
Params p;
|
||||
bool running;
|
||||
|
||||
Mat left_src, right_src;
|
||||
@ -72,42 +61,45 @@ private:
|
||||
|
||||
int64 work_begin;
|
||||
double work_fps;
|
||||
};
|
||||
|
||||
static void printHelp()
|
||||
{
|
||||
cout << "Usage: stereo_match_gpu\n"
|
||||
<< "\t--left <left_view> --right <right_view> # must be rectified\n"
|
||||
<< "\t--method <stereo_match_method> # BM | BP | CSBP\n"
|
||||
<< "\t--ndisp <number> # number of disparity levels\n"
|
||||
<< "\t--type <device_type> # cpu | CPU | gpu | GPU\n";
|
||||
help_showed = true;
|
||||
}
|
||||
string l_img, r_img;
|
||||
string out_img;
|
||||
enum {BM, BP, CSBP} method;
|
||||
int ndisp; // Max disparity + 1
|
||||
enum {GPU, CPU} type;
|
||||
};
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ m | method | BM | specify match method(BM/BP/CSBP) }"
|
||||
"{ n | ndisp | 64 | specify number of disparity levels }"
|
||||
"{ s | cpu_ocl | false | use cpu or gpu as ocl device to process the image }"
|
||||
"{ o | output | stereo_match_output.jpg | specify output path when input is images}";
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
try
|
||||
{
|
||||
if (argc < 2)
|
||||
{
|
||||
printHelp();
|
||||
return 1;
|
||||
}
|
||||
App app(cmd);
|
||||
int flag = CVCL_DEVICE_TYPE_GPU;
|
||||
if(cmd.get<bool>("s") == true)
|
||||
flag = CVCL_DEVICE_TYPE_CPU;
|
||||
|
||||
Params args = Params::read(argc, argv);
|
||||
if (help_showed)
|
||||
return -1;
|
||||
|
||||
int flags[2] = { CVCL_DEVICE_TYPE_GPU, CVCL_DEVICE_TYPE_CPU };
|
||||
vector<Info> info;
|
||||
|
||||
if(getDevice(info, flags[args.type]) == 0)
|
||||
if(getDevice(info, flag) == 0)
|
||||
{
|
||||
throw runtime_error("Error: Did not find a valid OpenCL device!");
|
||||
}
|
||||
cout << "Device name:" << info[0].DeviceName[0] << endl;
|
||||
|
||||
App app(args);
|
||||
app.run();
|
||||
}
|
||||
catch (const exception& e)
|
||||
@ -117,77 +109,39 @@ int main(int argc, char** argv)
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
Params::Params()
|
||||
{
|
||||
method = BM;
|
||||
ndisp = 64;
|
||||
type = GPU;
|
||||
}
|
||||
|
||||
|
||||
Params Params::read(int argc, char** argv)
|
||||
{
|
||||
Params p;
|
||||
|
||||
for (int i = 1; i < argc; i++)
|
||||
{
|
||||
if (string(argv[i]) == "--left") p.left = argv[++i];
|
||||
else if (string(argv[i]) == "--right") p.right = argv[++i];
|
||||
else if (string(argv[i]) == "--method")
|
||||
{
|
||||
if (string(argv[i + 1]) == "BM") p.method = BM;
|
||||
else if (string(argv[i + 1]) == "BP") p.method = BP;
|
||||
else if (string(argv[i + 1]) == "CSBP") p.method = CSBP;
|
||||
else throw runtime_error("unknown stereo match method: " + string(argv[i + 1]));
|
||||
i++;
|
||||
}
|
||||
else if (string(argv[i]) == "--ndisp") p.ndisp = atoi(argv[++i]);
|
||||
else if (string(argv[i]) == "--type")
|
||||
{
|
||||
string t(argv[++i]);
|
||||
if (t == "cpu" || t == "CPU")
|
||||
{
|
||||
p.type = CPU;
|
||||
}
|
||||
else if (t == "gpu" || t == "GPU")
|
||||
{
|
||||
p.type = GPU;
|
||||
}
|
||||
else throw runtime_error("unknown device type: " + t);
|
||||
}
|
||||
else if (string(argv[i]) == "--help") printHelp();
|
||||
else throw runtime_error("unknown key: " + string(argv[i]));
|
||||
}
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
App::App(const Params& params)
|
||||
: p(params), running(false)
|
||||
App::App(CommandLineParser& cmd)
|
||||
: running(false),method(BM)
|
||||
{
|
||||
cout << "stereo_match_ocl sample\n";
|
||||
cout << "\nControls:\n"
|
||||
<< "\tesc - exit\n"
|
||||
<< "\tp - print current parameters\n"
|
||||
<< "\tg - convert source images into gray\n"
|
||||
<< "\tm - change stereo match method\n"
|
||||
<< "\ts - change Sobel prefiltering flag (for BM only)\n"
|
||||
<< "\t1/q - increase/decrease maximum disparity\n"
|
||||
<< "\t2/w - increase/decrease window size (for BM only)\n"
|
||||
<< "\t3/e - increase/decrease iteration count (for BP and CSBP only)\n"
|
||||
<< "\t4/r - increase/decrease level count (for BP and CSBP only)\n";
|
||||
<< "\tesc - exit\n"
|
||||
<< "\tp - print current parameters\n"
|
||||
<< "\tg - convert source images into gray\n"
|
||||
<< "\tm - change stereo match method\n"
|
||||
<< "\ts - change Sobel prefiltering flag (for BM only)\n"
|
||||
<< "\t1/q - increase/decrease maximum disparity\n"
|
||||
<< "\t2/w - increase/decrease window size (for BM only)\n"
|
||||
<< "\t3/e - increase/decrease iteration count (for BP and CSBP only)\n"
|
||||
<< "\t4/r - increase/decrease level count (for BP and CSBP only)\n";
|
||||
l_img = cmd.get<string>("l");
|
||||
r_img = cmd.get<string>("r");
|
||||
string mstr = cmd.get<string>("m");
|
||||
if(mstr == "BM") method = BM;
|
||||
else if(mstr == "BP") method = BP;
|
||||
else if(mstr == "CSBP") method = CSBP;
|
||||
else cout << "unknown method!\n";
|
||||
ndisp = cmd.get<int>("n");
|
||||
out_img = cmd.get<string>("o");
|
||||
}
|
||||
|
||||
|
||||
void App::run()
|
||||
{
|
||||
// Load images
|
||||
left_src = imread(p.left);
|
||||
right_src = imread(p.right);
|
||||
if (left_src.empty()) throw runtime_error("can't open file \"" + p.left + "\"");
|
||||
if (right_src.empty()) throw runtime_error("can't open file \"" + p.right + "\"");
|
||||
left_src = imread(l_img);
|
||||
right_src = imread(r_img);
|
||||
if (left_src.empty()) throw runtime_error("can't open file \"" + l_img + "\"");
|
||||
if (right_src.empty()) throw runtime_error("can't open file \"" + r_img + "\"");
|
||||
|
||||
cvtColor(left_src, left, CV_BGR2GRAY);
|
||||
cvtColor(right_src, right, CV_BGR2GRAY);
|
||||
@ -199,14 +153,15 @@ void App::run()
|
||||
imshow("right", right);
|
||||
|
||||
// Set common parameters
|
||||
bm.ndisp = p.ndisp;
|
||||
bp.ndisp = p.ndisp;
|
||||
csbp.ndisp = p.ndisp;
|
||||
bm.ndisp = ndisp;
|
||||
bp.ndisp = ndisp;
|
||||
csbp.ndisp = ndisp;
|
||||
|
||||
cout << endl;
|
||||
printParams();
|
||||
|
||||
running = true;
|
||||
bool written = false;
|
||||
while (running)
|
||||
{
|
||||
|
||||
@ -214,9 +169,9 @@ void App::run()
|
||||
Mat disp;
|
||||
oclMat d_disp;
|
||||
workBegin();
|
||||
switch (p.method)
|
||||
switch (method)
|
||||
{
|
||||
case Params::BM:
|
||||
case BM:
|
||||
if (d_left.channels() > 1 || d_right.channels() > 1)
|
||||
{
|
||||
cout << "BM doesn't support color images\n";
|
||||
@ -230,25 +185,27 @@ void App::run()
|
||||
}
|
||||
bm(d_left, d_right, d_disp);
|
||||
break;
|
||||
case Params::BP:
|
||||
case BP:
|
||||
bp(d_left, d_right, d_disp);
|
||||
break;
|
||||
case Params::CSBP:
|
||||
case CSBP:
|
||||
csbp(d_left, d_right, d_disp);
|
||||
break;
|
||||
}
|
||||
ocl::finish();
|
||||
workEnd();
|
||||
|
||||
// Show results
|
||||
d_disp.download(disp);
|
||||
if (p.method != Params::BM)
|
||||
workEnd();
|
||||
if (method != BM)
|
||||
{
|
||||
disp.convertTo(disp, 0);
|
||||
}
|
||||
putText(disp, text(), Point(5, 25), FONT_HERSHEY_SIMPLEX, 1.0, Scalar::all(255));
|
||||
imshow("disparity", disp);
|
||||
|
||||
if(!written)
|
||||
{
|
||||
imwrite(out_img, disp);
|
||||
written = true;
|
||||
}
|
||||
handleKey((char)waitKey(3));
|
||||
}
|
||||
}
|
||||
@ -259,19 +216,19 @@ void App::printParams() const
|
||||
cout << "--- Parameters ---\n";
|
||||
cout << "image_size: (" << left.cols << ", " << left.rows << ")\n";
|
||||
cout << "image_channels: " << left.channels() << endl;
|
||||
cout << "method: " << p.method_str() << endl
|
||||
<< "ndisp: " << p.ndisp << endl;
|
||||
switch (p.method)
|
||||
cout << "method: " << method_str() << endl
|
||||
<< "ndisp: " << ndisp << endl;
|
||||
switch (method)
|
||||
{
|
||||
case Params::BM:
|
||||
case BM:
|
||||
cout << "win_size: " << bm.winSize << endl;
|
||||
cout << "prefilter_sobel: " << bm.preset << endl;
|
||||
break;
|
||||
case Params::BP:
|
||||
case BP:
|
||||
cout << "iter_count: " << bp.iters << endl;
|
||||
cout << "level_count: " << bp.levels << endl;
|
||||
break;
|
||||
case Params::CSBP:
|
||||
case CSBP:
|
||||
cout << "iter_count: " << csbp.iters << endl;
|
||||
cout << "level_count: " << csbp.levels << endl;
|
||||
break;
|
||||
@ -287,11 +244,13 @@ void App::handleKey(char key)
|
||||
case 27:
|
||||
running = false;
|
||||
break;
|
||||
case 'p': case 'P':
|
||||
case 'p':
|
||||
case 'P':
|
||||
printParams();
|
||||
break;
|
||||
case 'g': case 'G':
|
||||
if (left.channels() == 1 && p.method != Params::BM)
|
||||
case 'g':
|
||||
case 'G':
|
||||
if (left.channels() == 1 && method != BM)
|
||||
{
|
||||
left = left_src;
|
||||
right = right_src;
|
||||
@ -307,23 +266,25 @@ void App::handleKey(char key)
|
||||
imshow("left", left);
|
||||
imshow("right", right);
|
||||
break;
|
||||
case 'm': case 'M':
|
||||
switch (p.method)
|
||||
case 'm':
|
||||
case 'M':
|
||||
switch (method)
|
||||
{
|
||||
case Params::BM:
|
||||
p.method = Params::BP;
|
||||
case BM:
|
||||
method = BP;
|
||||
break;
|
||||
case Params::BP:
|
||||
p.method = Params::CSBP;
|
||||
case BP:
|
||||
method = CSBP;
|
||||
break;
|
||||
case Params::CSBP:
|
||||
p.method = Params::BM;
|
||||
case CSBP:
|
||||
method = BM;
|
||||
break;
|
||||
}
|
||||
cout << "method: " << p.method_str() << endl;
|
||||
cout << "method: " << method_str() << endl;
|
||||
break;
|
||||
case 's': case 'S':
|
||||
if (p.method == Params::BM)
|
||||
case 's':
|
||||
case 'S':
|
||||
if (method == BM)
|
||||
{
|
||||
switch (bm.preset)
|
||||
{
|
||||
@ -338,76 +299,80 @@ void App::handleKey(char key)
|
||||
}
|
||||
break;
|
||||
case '1':
|
||||
p.ndisp = p.ndisp == 1 ? 8 : p.ndisp + 8;
|
||||
cout << "ndisp: " << p.ndisp << endl;
|
||||
bm.ndisp = p.ndisp;
|
||||
bp.ndisp = p.ndisp;
|
||||
csbp.ndisp = p.ndisp;
|
||||
ndisp == 1 ? ndisp = 8 : ndisp += 8;
|
||||
cout << "ndisp: " << ndisp << endl;
|
||||
bm.ndisp = ndisp;
|
||||
bp.ndisp = ndisp;
|
||||
csbp.ndisp = ndisp;
|
||||
break;
|
||||
case 'q': case 'Q':
|
||||
p.ndisp = max(p.ndisp - 8, 1);
|
||||
cout << "ndisp: " << p.ndisp << endl;
|
||||
bm.ndisp = p.ndisp;
|
||||
bp.ndisp = p.ndisp;
|
||||
csbp.ndisp = p.ndisp;
|
||||
case 'q':
|
||||
case 'Q':
|
||||
ndisp = max(ndisp - 8, 1);
|
||||
cout << "ndisp: " << ndisp << endl;
|
||||
bm.ndisp = ndisp;
|
||||
bp.ndisp = ndisp;
|
||||
csbp.ndisp = ndisp;
|
||||
break;
|
||||
case '2':
|
||||
if (p.method == Params::BM)
|
||||
if (method == BM)
|
||||
{
|
||||
bm.winSize = min(bm.winSize + 1, 51);
|
||||
cout << "win_size: " << bm.winSize << endl;
|
||||
}
|
||||
break;
|
||||
case 'w': case 'W':
|
||||
if (p.method == Params::BM)
|
||||
case 'w':
|
||||
case 'W':
|
||||
if (method == BM)
|
||||
{
|
||||
bm.winSize = max(bm.winSize - 1, 2);
|
||||
cout << "win_size: " << bm.winSize << endl;
|
||||
}
|
||||
break;
|
||||
case '3':
|
||||
if (p.method == Params::BP)
|
||||
if (method == BP)
|
||||
{
|
||||
bp.iters += 1;
|
||||
cout << "iter_count: " << bp.iters << endl;
|
||||
}
|
||||
else if (p.method == Params::CSBP)
|
||||
else if (method == CSBP)
|
||||
{
|
||||
csbp.iters += 1;
|
||||
cout << "iter_count: " << csbp.iters << endl;
|
||||
}
|
||||
break;
|
||||
case 'e': case 'E':
|
||||
if (p.method == Params::BP)
|
||||
case 'e':
|
||||
case 'E':
|
||||
if (method == BP)
|
||||
{
|
||||
bp.iters = max(bp.iters - 1, 1);
|
||||
cout << "iter_count: " << bp.iters << endl;
|
||||
}
|
||||
else if (p.method == Params::CSBP)
|
||||
else if (method == CSBP)
|
||||
{
|
||||
csbp.iters = max(csbp.iters - 1, 1);
|
||||
cout << "iter_count: " << csbp.iters << endl;
|
||||
}
|
||||
break;
|
||||
case '4':
|
||||
if (p.method == Params::BP)
|
||||
if (method == BP)
|
||||
{
|
||||
bp.levels += 1;
|
||||
cout << "level_count: " << bp.levels << endl;
|
||||
}
|
||||
else if (p.method == Params::CSBP)
|
||||
else if (method == CSBP)
|
||||
{
|
||||
csbp.levels += 1;
|
||||
cout << "level_count: " << csbp.levels << endl;
|
||||
}
|
||||
break;
|
||||
case 'r': case 'R':
|
||||
if (p.method == Params::BP)
|
||||
case 'r':
|
||||
case 'R':
|
||||
if (method == BP)
|
||||
{
|
||||
bp.levels = max(bp.levels - 1, 1);
|
||||
cout << "level_count: " << bp.levels << endl;
|
||||
}
|
||||
else if (p.method == Params::CSBP)
|
||||
else if (method == CSBP)
|
||||
{
|
||||
csbp.levels = max(csbp.levels - 1, 1);
|
||||
cout << "level_count: " << csbp.levels << endl;
|
||||
|
@ -1,48 +1,3 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Peng Xiao, pengxiao@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other oclMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include "opencv2/core/core.hpp"
|
||||
@ -61,27 +16,20 @@ const float GOOD_PORTION = 0.15f;
|
||||
|
||||
namespace
|
||||
{
|
||||
void help();
|
||||
|
||||
void help()
|
||||
{
|
||||
std::cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << std::endl;
|
||||
std::cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2> [-c]" << std::endl;
|
||||
std::cout << "\nExample:\n\tsurf_matcher --left box.png --right box_in_scene.png" << std::endl;
|
||||
}
|
||||
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
|
||||
void workBegin()
|
||||
{
|
||||
void workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
void workEnd()
|
||||
{
|
||||
work_end = getTickCount() - work_begin;
|
||||
}
|
||||
double getTime(){
|
||||
double getTime()
|
||||
{
|
||||
return work_end /((double)cvGetTickFrequency() * 1000.);
|
||||
}
|
||||
|
||||
@ -114,17 +62,17 @@ struct SURFMatcher
|
||||
Mat drawGoodMatches(
|
||||
const Mat& cpu_img1,
|
||||
const Mat& cpu_img2,
|
||||
const vector<KeyPoint>& keypoints1,
|
||||
const vector<KeyPoint>& keypoints2,
|
||||
const vector<KeyPoint>& keypoints1,
|
||||
const vector<KeyPoint>& keypoints2,
|
||||
vector<DMatch>& matches,
|
||||
vector<Point2f>& scene_corners_
|
||||
)
|
||||
)
|
||||
{
|
||||
//-- Sort matches and preserve top 10% matches
|
||||
//-- Sort matches and preserve top 10% matches
|
||||
std::sort(matches.begin(), matches.end());
|
||||
std::vector< DMatch > good_matches;
|
||||
double minDist = matches.front().distance,
|
||||
maxDist = matches.back().distance;
|
||||
maxDist = matches.back().distance;
|
||||
|
||||
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
|
||||
for( int i = 0; i < ptsPairs; i++ )
|
||||
@ -139,8 +87,8 @@ Mat drawGoodMatches(
|
||||
// drawing the results
|
||||
Mat img_matches;
|
||||
drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2,
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
|
||||
//-- Localize the object
|
||||
std::vector<Point2f> obj;
|
||||
@ -154,28 +102,30 @@ Mat drawGoodMatches(
|
||||
}
|
||||
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||||
std::vector<Point2f> obj_corners(4);
|
||||
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( cpu_img1.cols, 0 );
|
||||
obj_corners[2] = cvPoint( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = cvPoint( 0, cpu_img1.rows );
|
||||
obj_corners[0] = cvPoint(0,0);
|
||||
obj_corners[1] = cvPoint( cpu_img1.cols, 0 );
|
||||
obj_corners[2] = cvPoint( cpu_img1.cols, cpu_img1.rows );
|
||||
obj_corners[3] = cvPoint( 0, cpu_img1.rows );
|
||||
std::vector<Point2f> scene_corners(4);
|
||||
|
||||
|
||||
Mat H = findHomography( obj, scene, CV_RANSAC );
|
||||
perspectiveTransform( obj_corners, scene_corners, H);
|
||||
|
||||
scene_corners_ = scene_corners;
|
||||
|
||||
|
||||
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||||
line( img_matches,
|
||||
scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
return img_matches;
|
||||
}
|
||||
|
||||
@ -185,6 +135,21 @@ Mat drawGoodMatches(
|
||||
// use cpu findHomography interface to calculate the transformation matrix
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ o | output | SURF_output.jpg | specify output save path (only works in CPU or GPU only mode) }"
|
||||
"{ c | use_cpu | false | use CPU algorithms }"
|
||||
"{ a | use_all | false | use both CPU and GPU algorithms}";
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
std::cout << "Avaible options:" << std::endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
|
||||
vector<cv::ocl::Info> info;
|
||||
if(cv::ocl::getDevice(info) == 0)
|
||||
{
|
||||
@ -195,54 +160,38 @@ int main(int argc, char* argv[])
|
||||
|
||||
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey;
|
||||
oclMat img1, img2;
|
||||
bool useCPU = false;
|
||||
bool useCPU = cmd.get<bool>("c");
|
||||
bool useGPU = false;
|
||||
bool useALL = false;
|
||||
bool useALL = cmd.get<bool>("a");
|
||||
|
||||
for (int i = 1; i < argc; ++i)
|
||||
string outpath = cmd.get<std::string>("o");
|
||||
|
||||
cpu_img1 = imread(cmd.get<std::string>("l"));
|
||||
CV_Assert(!cpu_img1.empty());
|
||||
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
|
||||
cpu_img2 = imread(cmd.get<std::string>("r"));
|
||||
CV_Assert(!cpu_img2.empty());
|
||||
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
|
||||
if(useALL)
|
||||
{
|
||||
if (string(argv[i]) == "--left")
|
||||
{
|
||||
cpu_img1 = imread(argv[++i]);
|
||||
CV_Assert(!cpu_img1.empty());
|
||||
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
}
|
||||
else if (string(argv[i]) == "--right")
|
||||
{
|
||||
cpu_img2 = imread(argv[++i]);
|
||||
CV_Assert(!cpu_img2.empty());
|
||||
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else if (string(argv[i]) == "-c")
|
||||
{
|
||||
useCPU = true;
|
||||
useGPU = false;
|
||||
useALL = false;
|
||||
}else if(string(argv[i]) == "-g")
|
||||
{
|
||||
useGPU = true;
|
||||
useCPU = false;
|
||||
useALL = false;
|
||||
}else if(string(argv[i]) == "-a")
|
||||
{
|
||||
useALL = true;
|
||||
useCPU = false;
|
||||
useGPU = false;
|
||||
}
|
||||
else if (string(argv[i]) == "--help")
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
useCPU = false;
|
||||
useGPU = false;
|
||||
}
|
||||
else if(useCPU==false && useALL==false)
|
||||
{
|
||||
useGPU = true;
|
||||
}
|
||||
|
||||
if(!useCPU)
|
||||
{
|
||||
std::cout
|
||||
<< "Device name:"
|
||||
<< info[0].DeviceName[0]
|
||||
<< std::endl;
|
||||
<< "Device name:"
|
||||
<< info[0].DeviceName[0]
|
||||
<< std::endl;
|
||||
}
|
||||
double surf_time = 0.;
|
||||
|
||||
@ -262,12 +211,12 @@ int main(int argc, char* argv[])
|
||||
//instantiate detectors/matchers
|
||||
SURFDetector<SURF> cpp_surf;
|
||||
SURFDetector<SURF_OCL> ocl_surf;
|
||||
|
||||
|
||||
SURFMatcher<BFMatcher> cpp_matcher;
|
||||
SURFMatcher<BFMatcher_OCL> ocl_matcher;
|
||||
|
||||
//-- start of timing section
|
||||
if (useCPU)
|
||||
if (useCPU)
|
||||
{
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
@ -298,7 +247,8 @@ int main(int argc, char* argv[])
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
}else
|
||||
}
|
||||
else
|
||||
{
|
||||
//cpu runs
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
@ -353,14 +303,14 @@ int main(int argc, char* argv[])
|
||||
for(size_t i = 0; i < cpu_corner.size(); i++)
|
||||
{
|
||||
if((std::abs(cpu_corner[i].x - gpu_corner[i].x) > 10)
|
||||
||(std::abs(cpu_corner[i].y - gpu_corner[i].y) > 10))
|
||||
||(std::abs(cpu_corner[i].y - gpu_corner[i].y) > 10))
|
||||
{
|
||||
std::cout<<"Failed\n";
|
||||
result = false;
|
||||
break;
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
}
|
||||
if(result)
|
||||
std::cout<<"Passed\n";
|
||||
}
|
||||
@ -371,12 +321,15 @@ int main(int argc, char* argv[])
|
||||
{
|
||||
namedWindow("cpu surf matches", 0);
|
||||
imshow("cpu surf matches", img_matches);
|
||||
imwrite(outpath, img_matches);
|
||||
}
|
||||
else if(useGPU)
|
||||
{
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", img_matches);
|
||||
}else
|
||||
imwrite(outpath, img_matches);
|
||||
}
|
||||
else
|
||||
{
|
||||
namedWindow("cpu surf matches", 0);
|
||||
imshow("cpu surf matches", img_matches);
|
||||
|
265
samples/ocl/tvl1_optical_flow.cpp
Normal file
265
samples/ocl/tvl1_optical_flow.cpp
Normal file
@ -0,0 +1,265 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <iomanip>
|
||||
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#include "opencv2/video/video.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
typedef unsigned char uchar;
|
||||
#define LOOP_NUM 10
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
|
||||
static void workBegin()
|
||||
{
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
static void workEnd()
|
||||
{
|
||||
work_end += (getTickCount() - work_begin);
|
||||
}
|
||||
static double getTime()
|
||||
{
|
||||
return work_end * 1000. / getTickFrequency();
|
||||
}
|
||||
|
||||
template <typename T> inline T clamp (T x, T a, T b)
|
||||
{
|
||||
return ((x) > (a) ? ((x) < (b) ? (x) : (b)) : (a));
|
||||
}
|
||||
|
||||
template <typename T> inline T mapValue(T x, T a, T b, T c, T d)
|
||||
{
|
||||
x = clamp(x, a, b);
|
||||
return c + (d - c) * (x - a) / (b - a);
|
||||
}
|
||||
|
||||
static void getFlowField(const Mat& u, const Mat& v, Mat& flowField)
|
||||
{
|
||||
float maxDisplacement = 1.0f;
|
||||
|
||||
for (int i = 0; i < u.rows; ++i)
|
||||
{
|
||||
const float* ptr_u = u.ptr<float>(i);
|
||||
const float* ptr_v = v.ptr<float>(i);
|
||||
|
||||
for (int j = 0; j < u.cols; ++j)
|
||||
{
|
||||
float d = max(fabsf(ptr_u[j]), fabsf(ptr_v[j]));
|
||||
|
||||
if (d > maxDisplacement)
|
||||
maxDisplacement = d;
|
||||
}
|
||||
}
|
||||
|
||||
flowField.create(u.size(), CV_8UC4);
|
||||
|
||||
for (int i = 0; i < flowField.rows; ++i)
|
||||
{
|
||||
const float* ptr_u = u.ptr<float>(i);
|
||||
const float* ptr_v = v.ptr<float>(i);
|
||||
|
||||
|
||||
Vec4b* row = flowField.ptr<Vec4b>(i);
|
||||
|
||||
for (int j = 0; j < flowField.cols; ++j)
|
||||
{
|
||||
row[j][0] = 0;
|
||||
row[j][1] = static_cast<unsigned char> (mapValue (-ptr_v[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
|
||||
row[j][2] = static_cast<unsigned char> (mapValue ( ptr_u[j], -maxDisplacement, maxDisplacement, 0.0f, 255.0f));
|
||||
row[j][3] = 255;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
{
|
||||
static std::vector<Info> ocl_info;
|
||||
ocl::getDevice(ocl_info);
|
||||
//if you want to use undefault device, set it here
|
||||
setDevice(ocl_info[0]);
|
||||
|
||||
//set this to save kernel compile time from second time you run
|
||||
ocl::setBinpath("./");
|
||||
const char* keys =
|
||||
"{ h | help | false | print help message }"
|
||||
"{ l | left | | specify left image }"
|
||||
"{ r | right | | specify right image }"
|
||||
"{ o | output | tvl1_output.jpg | specify output save path }"
|
||||
"{ c | camera | 0 | enable camera capturing }"
|
||||
"{ s | use_cpu | false | use cpu or gpu to process the image }"
|
||||
"{ v | video | | use video as input }";
|
||||
|
||||
CommandLineParser cmd(argc, argv, keys);
|
||||
|
||||
if (cmd.get<bool>("help"))
|
||||
{
|
||||
cout << "Usage: pyrlk_optical_flow [options]" << endl;
|
||||
cout << "Avaible options:" << endl;
|
||||
cmd.printParams();
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool defaultPicturesFail = false;
|
||||
string fname0 = cmd.get<string>("l");
|
||||
string fname1 = cmd.get<string>("r");
|
||||
string vdofile = cmd.get<string>("v");
|
||||
string outpath = cmd.get<string>("o");
|
||||
bool useCPU = cmd.get<bool>("s");
|
||||
bool useCamera = cmd.get<bool>("c");
|
||||
int inputName = cmd.get<int>("c");
|
||||
|
||||
Mat frame0 = imread(fname0, cv::IMREAD_GRAYSCALE);
|
||||
Mat frame1 = imread(fname1, cv::IMREAD_GRAYSCALE);
|
||||
cv::Ptr<cv::DenseOpticalFlow> alg = cv::createOptFlow_DualTVL1();
|
||||
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
|
||||
|
||||
|
||||
Mat flow, show_flow;
|
||||
Mat flow_vec[2];
|
||||
if (frame0.empty() || frame1.empty())
|
||||
{
|
||||
useCamera = true;
|
||||
defaultPicturesFail = true;
|
||||
CvCapture* capture = 0;
|
||||
capture = cvCaptureFromCAM( inputName );
|
||||
if (!capture)
|
||||
{
|
||||
cout << "Can't load input images" << endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (useCamera)
|
||||
{
|
||||
CvCapture* capture = 0;
|
||||
Mat frame, frameCopy;
|
||||
Mat frame0Gray, frame1Gray;
|
||||
Mat ptr0, ptr1;
|
||||
|
||||
if(vdofile == "")
|
||||
capture = cvCaptureFromCAM( inputName );
|
||||
else
|
||||
capture = cvCreateFileCapture(vdofile.c_str());
|
||||
|
||||
int c = inputName ;
|
||||
if(!capture)
|
||||
{
|
||||
if(vdofile == "")
|
||||
cout << "Capture from CAM " << c << " didn't work" << endl;
|
||||
else
|
||||
cout << "Capture from file " << vdofile << " failed" <<endl;
|
||||
if (defaultPicturesFail)
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
goto nocamera;
|
||||
}
|
||||
|
||||
cout << "In capture ..." << endl;
|
||||
for(int i = 0;; i++)
|
||||
{
|
||||
frame = cvQueryFrame( capture );
|
||||
if( frame.empty() )
|
||||
break;
|
||||
|
||||
if (i == 0)
|
||||
{
|
||||
frame.copyTo( frame0 );
|
||||
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (i%2 == 1)
|
||||
{
|
||||
frame.copyTo(frame1);
|
||||
cvtColor(frame1, frame1Gray, COLOR_BGR2GRAY);
|
||||
ptr0 = frame0Gray;
|
||||
ptr1 = frame1Gray;
|
||||
}
|
||||
else
|
||||
{
|
||||
frame.copyTo(frame0);
|
||||
cvtColor(frame0, frame0Gray, COLOR_BGR2GRAY);
|
||||
ptr0 = frame1Gray;
|
||||
ptr1 = frame0Gray;
|
||||
}
|
||||
|
||||
if (useCPU)
|
||||
{
|
||||
alg->calc(ptr0, ptr1, flow);
|
||||
split(flow, flow_vec);
|
||||
}
|
||||
else
|
||||
{
|
||||
oclMat d_flowx, d_flowy;
|
||||
d_alg(oclMat(ptr0), oclMat(ptr1), d_flowx, d_flowy);
|
||||
d_flowx.download(flow_vec[0]);
|
||||
d_flowy.download(flow_vec[1]);
|
||||
}
|
||||
if (i%2 == 1)
|
||||
frame1.copyTo(frameCopy);
|
||||
else
|
||||
frame0.copyTo(frameCopy);
|
||||
getFlowField(flow_vec[0], flow_vec[1], show_flow);
|
||||
imshow("PyrLK [Sparse]", show_flow);
|
||||
}
|
||||
|
||||
if( waitKey( 10 ) >= 0 )
|
||||
goto _cleanup_;
|
||||
}
|
||||
|
||||
waitKey(0);
|
||||
|
||||
_cleanup_:
|
||||
cvReleaseCapture( &capture );
|
||||
}
|
||||
else
|
||||
{
|
||||
nocamera:
|
||||
oclMat d_flowx, d_flowy;
|
||||
for(int i = 0; i <= LOOP_NUM; i ++)
|
||||
{
|
||||
cout << "loop" << i << endl;
|
||||
|
||||
if (i > 0) workBegin();
|
||||
if (useCPU)
|
||||
{
|
||||
alg->calc(frame0, frame1, flow);
|
||||
split(flow, flow_vec);
|
||||
}
|
||||
else
|
||||
{
|
||||
d_alg(oclMat(frame0), oclMat(frame1), d_flowx, d_flowy);
|
||||
d_flowx.download(flow_vec[0]);
|
||||
d_flowy.download(flow_vec[1]);
|
||||
}
|
||||
if (i > 0 && i <= LOOP_NUM)
|
||||
workEnd();
|
||||
|
||||
if (i == LOOP_NUM)
|
||||
{
|
||||
if (useCPU)
|
||||
cout << "average CPU time (noCamera) : ";
|
||||
else
|
||||
cout << "average GPU time (noCamera) : ";
|
||||
cout << getTime() / LOOP_NUM << " ms" << endl;
|
||||
|
||||
getFlowField(flow_vec[0], flow_vec[1], show_flow);
|
||||
imshow("PyrLK [Sparse]", show_flow);
|
||||
imwrite(outpath, show_flow);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user