Added selction of BA cost function in stitching samples (and added other BA cost func into stitching module)

This commit is contained in:
Alexey Spizhevoy 2011-09-21 13:22:12 +00:00
parent dbce155874
commit 4ee462c961
5 changed files with 185 additions and 7 deletions

View File

@ -138,6 +138,22 @@ private:
};
// Minimizes sun of ray-to-ray distances
class CV_EXPORTS BundleAdjusterRay : public BundleAdjusterBase
{
public:
BundleAdjusterRay() : BundleAdjusterBase(4, 3) {}
private:
void setUpInitialCameraParams(const std::vector<CameraParams> &cameras);
void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const;
void calcError(Mat &err);
void calcJacobian(Mat &jac);
Mat err1_, err2_;
};
void CV_EXPORTS waveCorrect(std::vector<Mat> &rmats);

View File

@ -47,6 +47,7 @@
#include "opencv2/features2d/features2d.hpp"
#include "warpers.hpp"
#include "detail/matchers.hpp"
#include "detail/motion_estimators.hpp"
#include "detail/exposure_compensate.hpp"
#include "detail/seam_finders.hpp"
#include "detail/blenders.hpp"
@ -90,6 +91,11 @@ public:
void setFeaturesMatcher(Ptr<detail::FeaturesMatcher> features_matcher)
{ features_matcher_ = features_matcher; }
Ptr<detail::BundleAdjusterBase> bundleAdjuster() { return bundle_adjuster_; }
const Ptr<detail::BundleAdjusterBase> bundleAdjuster() const { return bundle_adjuster_; }
void setBundleAdjuster(Ptr<detail::BundleAdjusterBase> bundle_adjuster)
{ bundle_adjuster_ = bundle_adjuster; }
Ptr<WarperCreator> warper() { return warper_; }
const Ptr<WarperCreator> warper() const { return warper_; }
void setWarper(Ptr<WarperCreator> warper) { warper_ = warper; }
@ -117,6 +123,7 @@ private:
bool horiz_stright_;
Ptr<detail::FeaturesFinder> features_finder_;
Ptr<detail::FeaturesMatcher> features_matcher_;
Ptr<detail::BundleAdjusterBase> bundle_adjuster_;
Ptr<WarperCreator> warper_;
Ptr<detail::ExposureCompensator> exposure_comp_;
Ptr<detail::SeamFinder> seam_finder_;

View File

@ -277,7 +277,6 @@ void BundleAdjusterReproj::obtainRefinedCameraParams(vector<CameraParams> &camer
cameras[i].focal = cam_params_.at<double>(i * 6, 0);
cameras[i].ppx = cam_params_.at<double>(i * 6 + 1, 0);
cameras[i].ppy = cam_params_.at<double>(i * 6 + 2, 0);
cameras[i].aspect = 1.;
Mat rvec(3, 1, CV_64F);
rvec.at<double>(0, 0) = cam_params_.at<double>(i * 6 + 3, 0);
@ -380,6 +379,147 @@ void BundleAdjusterReproj::calcJacobian(Mat &jac)
}
//////////////////////////////////////////////////////////////////////////////
void BundleAdjusterRay::setUpInitialCameraParams(const vector<CameraParams> &cameras)
{
cam_params_.create(num_images_ * 4, 1, CV_64F);
SVD svd;
for (int i = 0; i < num_images_; ++i)
{
cam_params_.at<double>(i * 4, 0) = cameras[i].focal;
svd(cameras[i].R, SVD::FULL_UV);
Mat R = svd.u * svd.vt;
if (determinant(R) < 0)
R *= -1;
Mat rvec;
Rodrigues(R, rvec);
CV_Assert(rvec.type() == CV_32F);
cam_params_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
cam_params_.at<double>(i * 4 + 2, 0) = rvec.at<float>(1, 0);
cam_params_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
}
}
void BundleAdjusterRay::obtainRefinedCameraParams(vector<CameraParams> &cameras) const
{
for (int i = 0; i < num_images_; ++i)
{
cameras[i].focal = cam_params_.at<double>(i * 4, 0);
Mat rvec(3, 1, CV_64F);
rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
Rodrigues(rvec, cameras[i].R);
Mat tmp;
cameras[i].R.convertTo(tmp, CV_32F);
cameras[i].R = tmp;
}
}
void BundleAdjusterRay::calcError(Mat &err)
{
err.create(total_num_matches_ * 3, 1, CV_64F);
int match_idx = 0;
for (size_t edge_idx = 0; edge_idx < edges_.size(); ++edge_idx)
{
int i = edges_[edge_idx].first;
int j = edges_[edge_idx].second;
double f1 = cam_params_.at<double>(i * 4, 0);
double f2 = cam_params_.at<double>(j * 4, 0);
double R1[9];
Mat R1_(3, 3, CV_64F, R1);
Mat rvec(3, 1, CV_64F);
rvec.at<double>(0, 0) = cam_params_.at<double>(i * 4 + 1, 0);
rvec.at<double>(1, 0) = cam_params_.at<double>(i * 4 + 2, 0);
rvec.at<double>(2, 0) = cam_params_.at<double>(i * 4 + 3, 0);
Rodrigues(rvec, R1_);
double R2[9];
Mat R2_(3, 3, CV_64F, R2);
rvec.at<double>(0, 0) = cam_params_.at<double>(j * 4 + 1, 0);
rvec.at<double>(1, 0) = cam_params_.at<double>(j * 4 + 2, 0);
rvec.at<double>(2, 0) = cam_params_.at<double>(j * 4 + 3, 0);
Rodrigues(rvec, R2_);
const ImageFeatures& features1 = features_[i];
const ImageFeatures& features2 = features_[j];
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
Mat_<double> K1 = Mat::eye(3, 3, CV_64F);
K1(0,0) = f1; K1(0,2) = features1.img_size.width * 0.5;
K1(1,1) = f1; K1(1,2) = features1.img_size.height * 0.5;
Mat_<double> K2 = Mat::eye(3, 3, CV_64F);
K2(0,0) = f2; K2(0,2) = features2.img_size.width * 0.5;
K2(1,1) = f2; K2(1,2) = features2.img_size.height * 0.5;
Mat_<double> H1 = R1_ * K1.inv();
Mat_<double> H2 = R2_ * K2.inv();
for (size_t k = 0; k < matches_info.matches.size(); ++k)
{
if (!matches_info.inliers_mask[k])
continue;
const DMatch& m = matches_info.matches[k];
Point2f p1 = features1.keypoints[m.queryIdx].pt;
double x1 = H1(0,0)*p1.x + H1(0,1)*p1.y + H1(0,2);
double y1 = H1(1,0)*p1.x + H1(1,1)*p1.y + H1(1,2);
double z1 = H1(2,0)*p1.x + H1(2,1)*p1.y + H1(2,2);
double len = sqrt(x1*x1 + y1*y1 + z1*z1);
x1 /= len; y1 /= len; z1 /= len;
Point2f p2 = features2.keypoints[m.trainIdx].pt;
double x2 = H2(0,0)*p2.x + H2(0,1)*p2.y + H2(0,2);
double y2 = H2(1,0)*p2.x + H2(1,1)*p2.y + H2(1,2);
double z2 = H2(2,0)*p2.x + H2(2,1)*p2.y + H2(2,2);
len = sqrt(x2*x2 + y2*y2 + z2*z2);
x2 /= len; y2 /= len; z2 /= len;
double mult = sqrt(f1 * f2);
err.at<double>(3 * match_idx, 0) = mult * (x1 - x2);
err.at<double>(3 * match_idx + 1, 0) = mult * (y1 - y2);
err.at<double>(3 * match_idx + 2, 0) = mult * (z1 - z2);
match_idx++;
}
}
}
void BundleAdjusterRay::calcJacobian(Mat &jac)
{
jac.create(total_num_matches_ * 3, num_images_ * 4, CV_64F);
double val;
const double step = 1e-3;
for (int i = 0; i < num_images_; ++i)
{
for (int j = 0; j < 4; ++j)
{
val = cam_params_.at<double>(i * 4 + j, 0);
cam_params_.at<double>(i * 4 + j, 0) = val - step;
calcError(err1_);
cam_params_.at<double>(i * 4 + j, 0) = val + step;
calcError(err2_);
calcDeriv(err1_, err2_, 2 * step, jac.col(i * 4 + j));
cam_params_.at<double>(i * 4 + j, 0) = val;
}
}
}
//////////////////////////////////////////////////////////////////////////////
// TODO replace SVD with eigen

View File

@ -55,6 +55,7 @@ Stitcher Stitcher::createDefault(bool try_use_gpu)
stitcher.setPanoConfidenceThresh(1);
stitcher.setHorizontalStrightening(true);
stitcher.setFeaturesMatcher(new detail::BestOf2NearestMatcher(try_use_gpu));
stitcher.setBundleAdjuster(new detail::BundleAdjusterRay());
#ifndef ANDROID
if (try_use_gpu && gpu::getCudaEnabledDeviceCount() > 0)
@ -189,9 +190,8 @@ Stitcher::Status Stitcher::stitch(InputArray imgs_, OutputArray pano_)
LOGLN("Initial intrinsic parameters #" << indices[i]+1 << ":\n " << cameras[i].K());
}
detail::BundleAdjusterReproj adjuster;
adjuster.setConfThresh(conf_thresh_);
adjuster(features, pairwise_matches, cameras);
bundle_adjuster_->setConfThresh(conf_thresh_);
(*bundle_adjuster_)(features, pairwise_matches, cameras);
// Find median focal length
vector<double> focals;

View File

@ -79,6 +79,8 @@ void printUsage()
" --conf_thresh <float>\n"
" Threshold for two images are from the same panorama confidence.\n"
" The default is 1.0.\n"
" --ba (reproj|ray)\n"
" Bundle adjustment cost function. The default is ray.\n"
" --wave_correct (no|yes)\n"
" Perform wave effect correction. The default is 'yes'.\n"
" --save_graph <file_name>\n"
@ -114,6 +116,7 @@ double work_megapix = 0.6;
double seam_megapix = 0.1;
double compose_megapix = -1;
float conf_thresh = 1.f;
string ba_cost_func = "ray";
bool wave_correct = true;
bool save_graph = false;
std::string save_graph_to;
@ -186,6 +189,11 @@ int parseCmdArgs(int argc, char** argv)
conf_thresh = static_cast<float>(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--ba")
{
ba_cost_func = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--wave_correct")
{
if (string(argv[i + 1]) == "no")
@ -413,9 +421,16 @@ int main(int argc, char* argv[])
LOGLN("Initial intrinsics #" << indices[i]+1 << ":\n" << cameras[i].K());
}
BundleAdjusterReproj adjuster;
adjuster.setConfThresh(conf_thresh);
adjuster(features, pairwise_matches, cameras);
Ptr<detail::BundleAdjusterBase> adjuster;
if (ba_cost_func == "reproj") adjuster = new detail::BundleAdjusterReproj();
else if (ba_cost_func == "ray") adjuster = new detail::BundleAdjusterRay();
else
{
cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
return -1;
}
adjuster->setConfThresh(conf_thresh);
(*adjuster)(features, pairwise_matches, cameras);
// Find median focal length
vector<double> focals;