mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
Merge pull request #7158 from sturkmen72:documentation_fix
This commit is contained in:
commit
4f0f5a24ef
@ -320,7 +320,7 @@ mask values are ignored.
|
||||
@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be.
|
||||
@param confidence Confidence level, between 0 and 1.
|
||||
|
||||
The functions find and return the perspective transformation \f$H\f$ between the source and the
|
||||
The function finds and returns the perspective transformation \f$H\f$ between the source and the
|
||||
destination planes:
|
||||
|
||||
\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f]
|
||||
|
@ -426,7 +426,7 @@ CV_EXPORTS_W void multiply(InputArray src1, InputArray src2,
|
||||
|
||||
/** @brief Performs per-element division of two arrays or a scalar by an array.
|
||||
|
||||
The functions divide divide one array by another:
|
||||
The function cv::divide divides one array by another:
|
||||
\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f]
|
||||
or a scalar by an array when there is no src1 :
|
||||
\f[\texttt{dst(I) = saturate(scale/src2(I))}\f]
|
||||
@ -553,7 +553,7 @@ CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst);
|
||||
|
||||
/** @brief Calculates the sum of array elements.
|
||||
|
||||
The functions sum calculate and return the sum of array elements,
|
||||
The function cv::sum calculates and returns the sum of array elements,
|
||||
independently for each channel.
|
||||
@param src input array that must have from 1 to 4 channels.
|
||||
@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce
|
||||
@ -599,10 +599,10 @@ CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx );
|
||||
|
||||
/** @brief Calculates an average (mean) of array elements.
|
||||
|
||||
The function mean calculates the mean value M of array elements,
|
||||
The function cv::mean calculates the mean value M of array elements,
|
||||
independently for each channel, and return it:
|
||||
\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f]
|
||||
When all the mask elements are 0's, the functions return Scalar::all(0)
|
||||
When all the mask elements are 0's, the function returns Scalar::all(0)
|
||||
@param src input array that should have from 1 to 4 channels so that the result can be stored in
|
||||
Scalar_ .
|
||||
@param mask optional operation mask.
|
||||
@ -612,11 +612,11 @@ CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray());
|
||||
|
||||
/** Calculates a mean and standard deviation of array elements.
|
||||
|
||||
The function meanStdDev calculates the mean and the standard deviation M
|
||||
The function cv::meanStdDev calculates the mean and the standard deviation M
|
||||
of array elements independently for each channel and returns it via the
|
||||
output parameters:
|
||||
\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f]
|
||||
When all the mask elements are 0's, the functions return
|
||||
When all the mask elements are 0's, the function returns
|
||||
mean=stddev=Scalar::all(0).
|
||||
@note The calculated standard deviation is only the diagonal of the
|
||||
complete normalized covariance matrix. If the full matrix is needed, you
|
||||
@ -636,7 +636,7 @@ CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stdde
|
||||
/** @brief Calculates an absolute array norm, an absolute difference norm, or a
|
||||
relative difference norm.
|
||||
|
||||
The functions norm calculate an absolute norm of src1 (when there is no
|
||||
The function cv::norm calculates an absolute norm of src1 (when there is no
|
||||
src2 ):
|
||||
|
||||
\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) }
|
||||
@ -655,7 +655,7 @@ or
|
||||
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) }
|
||||
{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f]
|
||||
|
||||
The functions norm return the calculated norm.
|
||||
The function cv::norm returns the calculated norm.
|
||||
|
||||
When the mask parameter is specified and it is not empty, the norm is
|
||||
calculated only over the region specified by the mask.
|
||||
@ -703,7 +703,7 @@ CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
|
||||
|
||||
/** @brief Normalizes the norm or value range of an array.
|
||||
|
||||
The functions normalize scale and shift the input array elements so that
|
||||
The function cv::normalize normalizes scale and shift the input array elements so that
|
||||
\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f]
|
||||
(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that
|
||||
\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f]
|
||||
@ -773,11 +773,11 @@ CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, i
|
||||
|
||||
/** @brief Finds the global minimum and maximum in an array.
|
||||
|
||||
The functions minMaxLoc find the minimum and maximum element values and their positions. The
|
||||
The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The
|
||||
extremums are searched across the whole array or, if mask is not an empty array, in the specified
|
||||
array region.
|
||||
|
||||
The functions do not work with multi-channel arrays. If you need to find minimum or maximum
|
||||
The function do not work with multi-channel arrays. If you need to find minimum or maximum
|
||||
elements across all the channels, use Mat::reshape first to reinterpret the array as
|
||||
single-channel. Or you may extract the particular channel using either extractImageCOI , or
|
||||
mixChannels , or split .
|
||||
@ -796,7 +796,7 @@ CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal,
|
||||
|
||||
/** @brief Finds the global minimum and maximum in an array
|
||||
|
||||
The function minMaxIdx finds the minimum and maximum element values and their positions. The
|
||||
The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The
|
||||
extremums are searched across the whole array or, if mask is not an empty array, in the specified
|
||||
array region. The function does not work with multi-channel arrays. If you need to find minimum or
|
||||
maximum elements across all the channels, use Mat::reshape first to reinterpret the array as
|
||||
@ -834,7 +834,7 @@ CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal,
|
||||
|
||||
/** @brief Reduces a matrix to a vector.
|
||||
|
||||
The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
|
||||
The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
|
||||
1D vectors and performing the specified operation on the vectors until a single row/column is
|
||||
obtained. For example, the function can be used to compute horizontal and vertical projections of a
|
||||
raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one.
|
||||
@ -853,7 +853,7 @@ CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, in
|
||||
|
||||
/** @brief Creates one multi-channel array out of several single-channel ones.
|
||||
|
||||
The function merge merges several arrays to make a single multi-channel array. That is, each
|
||||
The function cv::merge merges several arrays to make a single multi-channel array. That is, each
|
||||
element of the output array will be a concatenation of the elements of the input arrays, where
|
||||
elements of i-th input array are treated as mv[i].channels()-element vectors.
|
||||
|
||||
@ -878,7 +878,7 @@ CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst);
|
||||
|
||||
/** @brief Divides a multi-channel array into several single-channel arrays.
|
||||
|
||||
The functions split split a multi-channel array into separate single-channel arrays:
|
||||
The function cv::split splits a multi-channel array into separate single-channel arrays:
|
||||
\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f]
|
||||
If you need to extract a single channel or do some other sophisticated channel permutation, use
|
||||
mixChannels .
|
||||
@ -990,7 +990,7 @@ CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
|
||||
|
||||
/** @brief Flips a 2D array around vertical, horizontal, or both axes.
|
||||
|
||||
The function flip flips the array in one of three different ways (row
|
||||
The function cv::flip flips the array in one of three different ways (row
|
||||
and column indices are 0-based):
|
||||
\f[\texttt{dst} _{ij} =
|
||||
\left\{
|
||||
@ -1177,7 +1177,7 @@ CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst);
|
||||
Calculates the per-element bit-wise conjunction of two arrays or an
|
||||
array and a scalar.
|
||||
|
||||
The function calculates the per-element bit-wise logical conjunction for:
|
||||
The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for:
|
||||
* Two arrays when src1 and src2 have the same size:
|
||||
\f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
|
||||
* An array and a scalar when src2 is constructed from Scalar or has
|
||||
@ -1204,7 +1204,7 @@ CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2,
|
||||
/** @brief Calculates the per-element bit-wise disjunction of two arrays or an
|
||||
array and a scalar.
|
||||
|
||||
The function calculates the per-element bit-wise logical disjunction for:
|
||||
The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for:
|
||||
* Two arrays when src1 and src2 have the same size:
|
||||
\f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
|
||||
* An array and a scalar when src2 is constructed from Scalar or has
|
||||
@ -1231,7 +1231,7 @@ CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2,
|
||||
/** @brief Calculates the per-element bit-wise "exclusive or" operation on two
|
||||
arrays or an array and a scalar.
|
||||
|
||||
The function calculates the per-element bit-wise logical "exclusive-or"
|
||||
The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or"
|
||||
operation for:
|
||||
* Two arrays when src1 and src2 have the same size:
|
||||
\f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f]
|
||||
@ -1258,7 +1258,7 @@ CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2,
|
||||
|
||||
/** @brief Inverts every bit of an array.
|
||||
|
||||
The function calculates per-element bit-wise inversion of the input
|
||||
The function cv::bitwise_not calculates per-element bit-wise inversion of the input
|
||||
array:
|
||||
\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f]
|
||||
In case of a floating-point input array, its machine-specific bit
|
||||
@ -1275,7 +1275,7 @@ CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst,
|
||||
|
||||
/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar.
|
||||
|
||||
The function absdiff calculates:
|
||||
The function cv::absdiff calculates:
|
||||
* Absolute difference between two arrays when they have the same
|
||||
size and type:
|
||||
\f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f]
|
||||
@ -1350,7 +1350,7 @@ CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int
|
||||
|
||||
/** @brief Calculates per-element minimum of two arrays or an array and a scalar.
|
||||
|
||||
The functions min calculate the per-element minimum of two arrays:
|
||||
The function cv::min calculates the per-element minimum of two arrays:
|
||||
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f]
|
||||
or array and a scalar:
|
||||
\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f]
|
||||
@ -1371,7 +1371,7 @@ CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst);
|
||||
|
||||
/** @brief Calculates per-element maximum of two arrays or an array and a scalar.
|
||||
|
||||
The functions max calculate the per-element maximum of two arrays:
|
||||
The function cv::max calculates the per-element maximum of two arrays:
|
||||
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f]
|
||||
or array and a scalar:
|
||||
\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f]
|
||||
@ -1392,7 +1392,7 @@ CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst);
|
||||
|
||||
/** @brief Calculates a square root of array elements.
|
||||
|
||||
The functions sqrt calculate a square root of each input array element.
|
||||
The function cv::sqrt calculates a square root of each input array element.
|
||||
In case of multi-channel arrays, each channel is processed
|
||||
independently. The accuracy is approximately the same as of the built-in
|
||||
std::sqrt .
|
||||
@ -1403,7 +1403,7 @@ CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst);
|
||||
|
||||
/** @brief Raises every array element to a power.
|
||||
|
||||
The function pow raises every element of the input array to power :
|
||||
The function cv::pow raises every element of the input array to power :
|
||||
\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f]
|
||||
|
||||
So, for a non-integer power exponent, the absolute values of input array
|
||||
@ -1428,7 +1428,7 @@ CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst);
|
||||
|
||||
/** @brief Calculates the exponent of every array element.
|
||||
|
||||
The function exp calculates the exponent of every element of the input
|
||||
The function cv::exp calculates the exponent of every element of the input
|
||||
array:
|
||||
\f[\texttt{dst} [I] = e^{ src(I) }\f]
|
||||
|
||||
@ -1444,7 +1444,7 @@ CV_EXPORTS_W void exp(InputArray src, OutputArray dst);
|
||||
|
||||
/** @brief Calculates the natural logarithm of every array element.
|
||||
|
||||
The function log calculates the natural logarithm of every element of the input array:
|
||||
The function cv::log calculates the natural logarithm of every element of the input array:
|
||||
\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f]
|
||||
|
||||
Output on zero, negative and special (NaN, Inf) values is undefined.
|
||||
@ -1457,7 +1457,7 @@ CV_EXPORTS_W void log(InputArray src, OutputArray dst);
|
||||
|
||||
/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle.
|
||||
|
||||
The function polarToCart calculates the Cartesian coordinates of each 2D
|
||||
The function cv::polarToCart calculates the Cartesian coordinates of each 2D
|
||||
vector represented by the corresponding elements of magnitude and angle:
|
||||
\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f]
|
||||
|
||||
@ -1480,7 +1480,7 @@ CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle,
|
||||
|
||||
/** @brief Calculates the magnitude and angle of 2D vectors.
|
||||
|
||||
The function cartToPolar calculates either the magnitude, angle, or both
|
||||
The function cv::cartToPolar calculates either the magnitude, angle, or both
|
||||
for every 2D vector (x(I),y(I)):
|
||||
\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f]
|
||||
|
||||
@ -1502,7 +1502,7 @@ CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y,
|
||||
|
||||
/** @brief Calculates the rotation angle of 2D vectors.
|
||||
|
||||
The function phase calculates the rotation angle of each 2D vector that
|
||||
The function cv::phase calculates the rotation angle of each 2D vector that
|
||||
is formed from the corresponding elements of x and y :
|
||||
\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f]
|
||||
|
||||
@ -1521,7 +1521,7 @@ CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle,
|
||||
|
||||
/** @brief Calculates the magnitude of 2D vectors.
|
||||
|
||||
The function magnitude calculates the magnitude of 2D vectors formed
|
||||
The function cv::magnitude calculates the magnitude of 2D vectors formed
|
||||
from the corresponding elements of x and y arrays:
|
||||
\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f]
|
||||
@param x floating-point array of x-coordinates of the vectors.
|
||||
@ -1534,11 +1534,11 @@ CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude);
|
||||
|
||||
/** @brief Checks every element of an input array for invalid values.
|
||||
|
||||
The functions checkRange check that every array element is neither NaN nor infinite. When minVal \>
|
||||
-DBL_MAX and maxVal \< DBL_MAX, the functions also check that each value is between minVal and
|
||||
The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \>
|
||||
-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and
|
||||
maxVal. In case of multi-channel arrays, each channel is processed independently. If some values
|
||||
are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the
|
||||
functions either return false (when quiet=true) or throw an exception.
|
||||
function either returns false (when quiet=true) or throws an exception.
|
||||
@param a input array.
|
||||
@param quiet a flag, indicating whether the functions quietly return false when the array elements
|
||||
are out of range or they throw an exception.
|
||||
@ -1556,7 +1556,7 @@ CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0);
|
||||
|
||||
/** @brief Performs generalized matrix multiplication.
|
||||
|
||||
The function performs generalized matrix multiplication similar to the
|
||||
The function cv::gemm performs generalized matrix multiplication similar to the
|
||||
gemm functions in BLAS level 3. For example,
|
||||
`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`
|
||||
corresponds to
|
||||
@ -1587,7 +1587,7 @@ CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha,
|
||||
|
||||
/** @brief Calculates the product of a matrix and its transposition.
|
||||
|
||||
The function mulTransposed calculates the product of src and its
|
||||
The function cv::mulTransposed calculates the product of src and its
|
||||
transposition:
|
||||
\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f]
|
||||
if aTa=true , and
|
||||
@ -1619,7 +1619,7 @@ CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa,
|
||||
|
||||
/** @brief Transposes a matrix.
|
||||
|
||||
The function transpose transposes the matrix src :
|
||||
The function cv::transpose transposes the matrix src :
|
||||
\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f]
|
||||
@note No complex conjugation is done in case of a complex matrix. It it
|
||||
should be done separately if needed.
|
||||
@ -1630,7 +1630,7 @@ CV_EXPORTS_W void transpose(InputArray src, OutputArray dst);
|
||||
|
||||
/** @brief Performs the matrix transformation of every array element.
|
||||
|
||||
The function transform performs the matrix transformation of every
|
||||
The function cv::transform performs the matrix transformation of every
|
||||
element of the array src and stores the results in dst :
|
||||
\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f]
|
||||
(when m.cols=src.channels() ), or
|
||||
@ -1656,7 +1656,7 @@ CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m );
|
||||
|
||||
/** @brief Performs the perspective matrix transformation of vectors.
|
||||
|
||||
The function perspectiveTransform transforms every element of src by
|
||||
The function cv::perspectiveTransform transforms every element of src by
|
||||
treating it as a 2D or 3D vector, in the following way:
|
||||
\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f]
|
||||
where
|
||||
@ -1683,7 +1683,7 @@ CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArr
|
||||
|
||||
/** @brief Copies the lower or the upper half of a square matrix to another half.
|
||||
|
||||
The function completeSymm copies the lower half of a square matrix to
|
||||
The function cv::completeSymm copies the lower half of a square matrix to
|
||||
its another half. The matrix diagonal remains unchanged:
|
||||
* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if
|
||||
lowerToUpper=false
|
||||
@ -1698,7 +1698,7 @@ CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false);
|
||||
|
||||
/** @brief Initializes a scaled identity matrix.
|
||||
|
||||
The function setIdentity initializes a scaled identity matrix:
|
||||
The function cv::setIdentity initializes a scaled identity matrix:
|
||||
\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f]
|
||||
|
||||
The function can also be emulated using the matrix initializers and the
|
||||
@ -1715,7 +1715,7 @@ CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1))
|
||||
|
||||
/** @brief Returns the determinant of a square floating-point matrix.
|
||||
|
||||
The function determinant calculates and returns the determinant of the
|
||||
The function cv::determinant calculates and returns the determinant of the
|
||||
specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the
|
||||
direct method is used. For larger matrices, the function uses LU
|
||||
factorization with partial pivoting.
|
||||
@ -1730,7 +1730,7 @@ CV_EXPORTS_W double determinant(InputArray mtx);
|
||||
|
||||
/** @brief Returns the trace of a matrix.
|
||||
|
||||
The function trace returns the sum of the diagonal elements of the
|
||||
The function cv::trace returns the sum of the diagonal elements of the
|
||||
matrix mtx .
|
||||
\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f]
|
||||
@param mtx input matrix.
|
||||
@ -1739,7 +1739,7 @@ CV_EXPORTS_W Scalar trace(InputArray mtx);
|
||||
|
||||
/** @brief Finds the inverse or pseudo-inverse of a matrix.
|
||||
|
||||
The function invert inverts the matrix src and stores the result in dst
|
||||
The function cv::invert inverts the matrix src and stores the result in dst
|
||||
. When the matrix src is singular or non-square, the function calculates
|
||||
the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is
|
||||
minimal, where I is an identity matrix.
|
||||
@ -1766,7 +1766,7 @@ CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_L
|
||||
|
||||
/** @brief Solves one or more linear systems or least-squares problems.
|
||||
|
||||
The function solve solves a linear system or least-squares problem (the
|
||||
The function cv::solve solves a linear system or least-squares problem (the
|
||||
latter is possible with SVD or QR methods, or by specifying the flag
|
||||
DECOMP_NORMAL ):
|
||||
\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f]
|
||||
@ -1791,7 +1791,7 @@ CV_EXPORTS_W bool solve(InputArray src1, InputArray src2,
|
||||
|
||||
/** @brief Sorts each row or each column of a matrix.
|
||||
|
||||
The function sort sorts each matrix row or each matrix column in
|
||||
The function cv::sort sorts each matrix row or each matrix column in
|
||||
ascending or descending order. So you should pass two operation flags to
|
||||
get desired behaviour. If you want to sort matrix rows or columns
|
||||
lexicographically, you can use STL std::sort generic function with the
|
||||
@ -1806,7 +1806,7 @@ CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags);
|
||||
|
||||
/** @brief Sorts each row or each column of a matrix.
|
||||
|
||||
The function sortIdx sorts each matrix row or each matrix column in the
|
||||
The function cv::sortIdx sorts each matrix row or each matrix column in the
|
||||
ascending or descending order. So you should pass two operation flags to
|
||||
get desired behaviour. Instead of reordering the elements themselves, it
|
||||
stores the indices of sorted elements in the output array. For example:
|
||||
@ -1840,7 +1840,7 @@ CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
|
||||
|
||||
/** @brief Finds the real or complex roots of a polynomial equation.
|
||||
|
||||
The function solvePoly finds real and complex roots of a polynomial equation:
|
||||
The function cv::solvePoly finds real and complex roots of a polynomial equation:
|
||||
\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f]
|
||||
@param coeffs array of polynomial coefficients.
|
||||
@param roots output (complex) array of roots.
|
||||
@ -1850,7 +1850,7 @@ CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters
|
||||
|
||||
/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix.
|
||||
|
||||
The functions eigen calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric
|
||||
The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric
|
||||
matrix src:
|
||||
@code
|
||||
src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
|
||||
@ -1871,7 +1871,7 @@ CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues,
|
||||
|
||||
/** @brief Calculates the covariance matrix of a set of vectors.
|
||||
|
||||
The functions calcCovarMatrix calculate the covariance matrix and, optionally, the mean vector of
|
||||
The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of
|
||||
the set of input vectors.
|
||||
@param samples samples stored as separate matrices
|
||||
@param nsamples number of samples
|
||||
@ -1921,7 +1921,7 @@ CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt,
|
||||
|
||||
/** @brief Calculates the Mahalanobis distance between two vectors.
|
||||
|
||||
The function Mahalanobis calculates and returns the weighted distance between two vectors:
|
||||
The function cv::Mahalanobis calculates and returns the weighted distance between two vectors:
|
||||
\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f]
|
||||
The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using
|
||||
the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate).
|
||||
@ -1933,7 +1933,7 @@ CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar)
|
||||
|
||||
/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
|
||||
|
||||
The function performs one of the following:
|
||||
The function cv::dft performs one of the following:
|
||||
- Forward the Fourier transform of a 1D vector of N elements:
|
||||
\f[Y = F^{(N)} \cdot X,\f]
|
||||
where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$
|
||||
@ -2081,7 +2081,7 @@ CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonze
|
||||
|
||||
/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array.
|
||||
|
||||
The function dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
|
||||
The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D
|
||||
floating-point array:
|
||||
- Forward Cosine transform of a 1D vector of N elements:
|
||||
\f[Y = C^{(N)} \cdot X\f]
|
||||
@ -2132,7 +2132,7 @@ CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0);
|
||||
|
||||
/** @brief Performs the per-element multiplication of two Fourier spectrums.
|
||||
|
||||
The function mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
|
||||
The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex
|
||||
matrices that are results of a real or complex Fourier transform.
|
||||
|
||||
The function, together with dft and idft , may be used to calculate convolution (pass conjB=false )
|
||||
@ -2159,7 +2159,7 @@ original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the
|
||||
Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2)
|
||||
are also processed quite efficiently.
|
||||
|
||||
The function getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
|
||||
The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize
|
||||
so that the DFT of a vector of size N can be processed efficiently. In the current implementation N
|
||||
= 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r.
|
||||
|
||||
@ -2175,7 +2175,7 @@ CV_EXPORTS_W int getOptimalDFTSize(int vecsize);
|
||||
|
||||
/** @brief Returns the default random number generator.
|
||||
|
||||
The function theRNG returns the default random number generator. For each thread, there is a
|
||||
The function cv::theRNG returns the default random number generator. For each thread, there is a
|
||||
separate random number generator, so you can use the function safely in multi-thread environments.
|
||||
If you just need to get a single random number using this generator or initialize an array, you can
|
||||
use randu or randn instead. But if you are going to generate many random numbers inside a loop, it
|
||||
@ -2186,7 +2186,7 @@ CV_EXPORTS RNG& theRNG();
|
||||
|
||||
/** @brief Sets state of default random number generator.
|
||||
|
||||
The function sets state of default random number generator to custom value.
|
||||
The function cv::setRNGSeed sets state of default random number generator to custom value.
|
||||
@param seed new state for default random number generator
|
||||
@sa RNG, randu, randn
|
||||
*/
|
||||
@ -2206,7 +2206,7 @@ CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high);
|
||||
|
||||
/** @brief Fills the array with normally distributed random numbers.
|
||||
|
||||
The function randn fills the matrix dst with normally distributed random numbers with the specified
|
||||
The function cv::randn fills the matrix dst with normally distributed random numbers with the specified
|
||||
mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the
|
||||
value range of the output array data type.
|
||||
@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
|
||||
@ -2219,7 +2219,7 @@ CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev
|
||||
|
||||
/** @brief Shuffles the array elements randomly.
|
||||
|
||||
The function randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
|
||||
The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and
|
||||
swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor .
|
||||
@param dst input/output numerical 1D array.
|
||||
@param iterFactor scale factor that determines the number of random swap operations (see the details
|
||||
|
@ -2507,7 +2507,7 @@ CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum,
|
||||
|
||||
/** @brief Calculates the integral of an image.
|
||||
|
||||
The functions calculate one or more integral images for the source image as follows:
|
||||
The function calculates one or more integral images for the source image as follows:
|
||||
|
||||
\f[\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)\f]
|
||||
|
||||
@ -3348,7 +3348,7 @@ An example on using the distance transform\
|
||||
|
||||
/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image.
|
||||
|
||||
The functions distanceTransform calculate the approximate or precise distance from every binary
|
||||
The function cv::distanceTransform calculates the approximate or precise distance from every binary
|
||||
image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
|
||||
|
||||
When maskSize == DIST_MASK_PRECISE and distanceType == DIST_L2 , the function runs the
|
||||
@ -3432,7 +3432,7 @@ CV_EXPORTS int floodFill( InputOutputArray image,
|
||||
|
||||
/** @brief Fills a connected component with the given color.
|
||||
|
||||
The functions floodFill fill a connected component starting from the seed point with the specified
|
||||
The function cv::floodFill fills a connected component starting from the seed point with the specified
|
||||
color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
|
||||
pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if:
|
||||
|
||||
@ -3712,7 +3712,7 @@ CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contou
|
||||
|
||||
/** @brief Approximates a polygonal curve(s) with the specified precision.
|
||||
|
||||
The functions approxPolyDP approximate a curve or a polygon with another curve/polygon with less
|
||||
The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
|
||||
vertices so that the distance between them is less or equal to the specified precision. It uses the
|
||||
Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
|
||||
|
||||
@ -3854,7 +3854,7 @@ An example using the convexHull functionality
|
||||
|
||||
/** @brief Finds the convex hull of a point set.
|
||||
|
||||
The functions find the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
|
||||
The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82
|
||||
that has *O(N logN)* complexity in the current implementation. See the OpenCV sample convexhull.cpp
|
||||
that demonstrates the usage of different function variants.
|
||||
|
||||
@ -4123,7 +4123,7 @@ CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius,
|
||||
|
||||
/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector.
|
||||
|
||||
The functions ellipse with less parameters draw an ellipse outline, a filled ellipse, an elliptic
|
||||
The function cv::ellipse with less parameters draws an ellipse outline, a filled ellipse, an elliptic
|
||||
arc, or a filled ellipse sector. A piecewise-linear curve is used to approximate the elliptic arc
|
||||
boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
|
||||
ellipse2Poly and then render it with polylines or fill it with fillPoly . If you use the first
|
||||
@ -4344,9 +4344,9 @@ CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays conto
|
||||
|
||||
/** @brief Clips the line against the image rectangle.
|
||||
|
||||
The functions clipLine calculate a part of the line segment that is entirely within the specified
|
||||
rectangle. They return false if the line segment is completely outside the rectangle. Otherwise,
|
||||
they return true .
|
||||
The function cv::clipLine calculates a part of the line segment that is entirely within the specified
|
||||
rectangle. it returns false if the line segment is completely outside the rectangle. Otherwise,
|
||||
it returns true .
|
||||
@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) .
|
||||
@param pt1 First line point.
|
||||
@param pt2 Second line point.
|
||||
|
Loading…
Reference in New Issue
Block a user