mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #18145 from sl-sergei:fix_17914
This commit is contained in:
commit
4f3130f562
@ -354,9 +354,12 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const;
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
|
||||
|
||||
virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);
|
||||
|
||||
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
|
||||
CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
|
||||
CV_PROP int preferableTarget; //!< prefer target for layer forwarding
|
||||
|
@ -1119,6 +1119,7 @@ struct Net::Impl : public detail::NetImplBase
|
||||
preferableBackend = DNN_BACKEND_DEFAULT;
|
||||
preferableTarget = DNN_TARGET_CPU;
|
||||
skipInfEngineInit = false;
|
||||
hasDynamicShapes = false;
|
||||
}
|
||||
|
||||
Ptr<DataLayer> netInputLayer;
|
||||
@ -1130,6 +1131,7 @@ struct Net::Impl : public detail::NetImplBase
|
||||
int preferableTarget;
|
||||
String halideConfigFile;
|
||||
bool skipInfEngineInit;
|
||||
bool hasDynamicShapes;
|
||||
// Map host data to backend specific wrapper.
|
||||
std::map<void*, Ptr<BackendWrapper> > backendWrappers;
|
||||
|
||||
@ -3074,6 +3076,46 @@ struct Net::Impl : public detail::NetImplBase
|
||||
shapes = inOutShapes[layerId];
|
||||
}
|
||||
|
||||
void updateLayersShapes()
|
||||
{
|
||||
CV_Assert(!layers[0].outputBlobs.empty());
|
||||
ShapesVec inputShapes;
|
||||
for(int i = 0; i < layers[0].outputBlobs.size(); i++)
|
||||
{
|
||||
Mat& inp = layers[0].outputBlobs[i];
|
||||
CV_Assert(inp.total());
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV &&
|
||||
preferableTarget == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
layers[0].outputBlobs[i].create(inp.dims, inp.size, CV_16S);
|
||||
}
|
||||
inputShapes.push_back(shape(inp));
|
||||
}
|
||||
LayersShapesMap layersShapes;
|
||||
layersShapes[0].in = inputShapes;
|
||||
for (MapIdToLayerData::iterator it = layers.begin();
|
||||
it != layers.end(); it++)
|
||||
{
|
||||
int layerId = it->first;
|
||||
std::vector<LayerPin>& inputLayerIds = it->second.inputBlobsId;
|
||||
if (layersShapes[layerId].in.empty())
|
||||
{
|
||||
for(int i = 0; i < inputLayerIds.size(); i++)
|
||||
{
|
||||
int inputLayerId = inputLayerIds[i].lid;
|
||||
LayersShapesMap::iterator inputIt = layersShapes.find(inputLayerId);
|
||||
if(inputIt == layersShapes.end() || inputIt->second.out.empty())
|
||||
{
|
||||
getLayerShapesRecursively(inputLayerId, layersShapes);
|
||||
}
|
||||
const MatShape& shape = layersShapes[inputLayerId].out[inputLayerIds[i].oid];
|
||||
layersShapes[layerId].in.push_back(shape);
|
||||
}
|
||||
it->second.layerInstance->updateMemoryShapes(layersShapes[layerId].in);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
|
||||
{
|
||||
return *std::max_element(pins.begin(), pins.end());
|
||||
@ -3487,6 +3529,8 @@ int Net::addLayer(const String &name, const String &type, LayerParams ¶ms)
|
||||
int id = ++impl->lastLayerId;
|
||||
impl->layerNameToId.insert(std::make_pair(name, id));
|
||||
impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));
|
||||
if (params.get<bool>("has_dynamic_shapes", false))
|
||||
impl->hasDynamicShapes = true;
|
||||
|
||||
return id;
|
||||
}
|
||||
@ -3818,8 +3862,13 @@ void Net::setInput(InputArray blob, const String& name, double scalefactor, cons
|
||||
bool oldShape = prevShape == blobShape;
|
||||
|
||||
blob_.copyTo(impl->netInputLayer->inputsData[pin.oid]);
|
||||
if (!oldShape)
|
||||
if (!oldShape) {
|
||||
ld.outputBlobs[pin.oid] = impl->netInputLayer->inputsData[pin.oid];
|
||||
if (impl->hasDynamicShapes)
|
||||
{
|
||||
impl->updateLayersShapes();
|
||||
}
|
||||
}
|
||||
|
||||
if (!ld.outputBlobsWrappers[pin.oid].empty())
|
||||
{
|
||||
@ -4746,6 +4795,10 @@ bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Layer::updateMemoryShapes(const std::vector<MatShape> &inputs)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static Mutex& getLayerFactoryMutex()
|
||||
|
@ -88,6 +88,9 @@ public:
|
||||
stride = Size(1, 1);
|
||||
pad_t = pad_l = pad_b = pad_r = 0;
|
||||
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
|
||||
if (params.has("pool") || params.has("kernel_size") ||
|
||||
params.has("kernel_w") || params.has("kernel_h"))
|
||||
{
|
||||
@ -1043,25 +1046,33 @@ virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inp
|
||||
outShape.push_back(pooledSize.height);
|
||||
outShape.push_back(pooledSize.width);
|
||||
}
|
||||
else if (padMode.empty())
|
||||
{
|
||||
for (int i = 0; i < local_kernel.size(); i++) {
|
||||
float dst = (float)(inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
|
||||
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
|
||||
}
|
||||
|
||||
// If we have padding, ensure that the last pooling starts strictly
|
||||
// inside the image (instead of at the padding); otherwise clip the last.
|
||||
for (int i = 0; i < pads_end.size(); i++) {
|
||||
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
|
||||
--outShape[2 + i];
|
||||
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
getConvPoolOutParams(inpShape, local_kernel, strides, padMode, std::vector<size_t>(local_kernel.size(), 1), outShape);
|
||||
if (hasDynamicShapes && !shapesInitialized)
|
||||
{
|
||||
//Just copy input shapes for width and height to prevent errors on loading stage
|
||||
for (int i = 0; i < inpShape.size(); i++)
|
||||
outShape.push_back(inpShape[i]);
|
||||
}
|
||||
else if (padMode.empty())
|
||||
{
|
||||
for (int i = 0; i < local_kernel.size(); i++) {
|
||||
float dst = (float) (inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
|
||||
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
|
||||
}
|
||||
|
||||
// If we have padding, ensure that the last pooling starts strictly
|
||||
// inside the image (instead of at the padding); otherwise clip the last.
|
||||
for (int i = 0; i < pads_end.size(); i++) {
|
||||
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
|
||||
--outShape[2 + i];
|
||||
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
getConvPoolOutParams(inpShape, local_kernel, strides, padMode,
|
||||
std::vector<size_t>(local_kernel.size(), 1), outShape);
|
||||
}
|
||||
}
|
||||
if (type == ROI)
|
||||
{
|
||||
@ -1083,6 +1094,14 @@ virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inp
|
||||
return false;
|
||||
}
|
||||
|
||||
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
||||
{
|
||||
int dims = inputs[0].size();
|
||||
CV_Assert(inputs[0][dims - 1] > 0 && inputs[0][dims - 2] > 0);
|
||||
shapesInitialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
||||
{
|
||||
@ -1114,6 +1133,8 @@ private:
|
||||
ROI, // RoI pooling, https://arxiv.org/pdf/1504.08083.pdf
|
||||
PSROI // Position-sensitive RoI pooling, https://arxiv.org/pdf/1605.06409.pdf
|
||||
};
|
||||
bool hasDynamicShapes;
|
||||
bool shapesInitialized;
|
||||
};
|
||||
|
||||
Ptr<PoolingLayer> PoolingLayer::create(const LayerParams& params)
|
||||
|
@ -164,6 +164,9 @@ public:
|
||||
setParamsFrom(params);
|
||||
int axis = params.get<int>("axis", 0);
|
||||
int numAxes = params.get<int>("num_axes", -1);
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
|
||||
CV_Assert(numAxes >= -1);
|
||||
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
|
||||
|
||||
@ -176,6 +179,25 @@ public:
|
||||
for (i = 0; i < dims; i++)
|
||||
newShapeDesc[i] = paramShape.get<int>(i);
|
||||
}
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
dynamicShapes.clear();
|
||||
inputIndices.clear();
|
||||
if (params.has("dynamic_axes")) {
|
||||
CV_Assert(params.has("input_indices"));
|
||||
const DictValue &dynamicAxes = params.get("dynamic_axes");
|
||||
const DictValue &dynamicInputShapes = params.get("input_indices");
|
||||
int i, dims = dynamicAxes.size();
|
||||
CV_Assert(dims == dynamicInputShapes.size());
|
||||
CV_Assert(dims > 0);
|
||||
dynamicShapes.resize(dims);
|
||||
inputIndices.resize(dims);
|
||||
for (i = 0; i < dims; i++) {
|
||||
dynamicShapes[i] = dynamicAxes.get<int>(i);
|
||||
inputIndices[i] = dynamicInputShapes.get<int>(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
@ -189,13 +211,21 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
|
||||
if (inputs.size() == 1 || inputs.size() == requiredOutputs)
|
||||
{
|
||||
outputs.clear();
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
outputs.push_back(MatShape());
|
||||
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||||
if (hasDynamicShapes && !shapesInitialized)
|
||||
{
|
||||
outputs.push_back(newShapeDesc);
|
||||
}
|
||||
else
|
||||
{
|
||||
outputs.push_back(MatShape());
|
||||
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -206,6 +236,19 @@ public:
|
||||
return true;
|
||||
}
|
||||
|
||||
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
||||
{
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
for (int i = 0; i < dynamicShapes.size(); ++i)
|
||||
{
|
||||
newShapeDesc[dynamicShapes[i]] = inputs[0][inputIndices[i]];
|
||||
}
|
||||
}
|
||||
shapesInitialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
||||
{
|
||||
std::vector<Mat> outputs;
|
||||
@ -287,6 +330,10 @@ public:
|
||||
|
||||
private:
|
||||
std::vector<MatShape> outShapes;
|
||||
std::vector<int> dynamicShapes; // Which axes shapes are dynamic and require reinitialization with new input
|
||||
std::vector<int> inputIndices; // Which axes from input are needed to compute correct output shape
|
||||
bool hasDynamicShapes;
|
||||
bool shapesInitialized;
|
||||
};
|
||||
|
||||
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params)
|
||||
|
@ -66,6 +66,8 @@ public:
|
||||
setParamsFrom(params);
|
||||
axis = params.get<int>("axis", 1);
|
||||
num_split = params.get<int>("num_split", 0);
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
if (params.has("slice_point"))
|
||||
{
|
||||
CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end"));
|
||||
@ -143,7 +145,8 @@ public:
|
||||
CV_Assert(sliceRanges[i].size() <= inpShape.size());
|
||||
for (int j = 0; j < sliceRanges[i].size(); ++j)
|
||||
{
|
||||
outputs[i][j] = clamp(sliceRanges[i][j], inpShape[j]).size();
|
||||
if (shapesInitialized || inpShape[j] > 0)
|
||||
outputs[i][j] = clamp(sliceRanges[i][j], inpShape[j]).size();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -158,6 +161,12 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
||||
{
|
||||
shapesInitialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -564,6 +573,8 @@ public:
|
||||
protected:
|
||||
// The actual non-negative values determined from @p sliceRanges depends on input size.
|
||||
std::vector<std::vector<Range> > finalSliceRanges;
|
||||
bool hasDynamicShapes;
|
||||
bool shapesInitialized;
|
||||
};
|
||||
|
||||
class CropLayerImpl CV_FINAL : public SliceLayerImpl
|
||||
|
@ -64,6 +64,7 @@ public:
|
||||
ONNXImporter(Net& net, const char *onnxFile)
|
||||
: dstNet(net)
|
||||
{
|
||||
hasDynamicShapes = false;
|
||||
CV_Assert(onnxFile);
|
||||
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing ONNX model from file: " << onnxFile);
|
||||
|
||||
@ -84,6 +85,7 @@ public:
|
||||
ONNXImporter(Net& net, const char* buffer, size_t sizeBuffer)
|
||||
: dstNet(net)
|
||||
{
|
||||
hasDynamicShapes = false;
|
||||
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing in-memory ONNX model (" << sizeBuffer << " bytes)");
|
||||
|
||||
struct _Buf : public std::streambuf
|
||||
@ -115,6 +117,7 @@ protected:
|
||||
std::map<std::string, Mat> constBlobs;
|
||||
|
||||
std::map<std::string, MatShape> outShapes; // List of internal blobs shapes.
|
||||
bool hasDynamicShapes; // Whether the model has inputs with dynamic shapes
|
||||
typedef std::map<std::string, MatShape>::iterator IterShape_t;
|
||||
|
||||
std::map<std::string, LayerInfo> layer_id;
|
||||
@ -413,8 +416,10 @@ void ONNXImporter::populateNet()
|
||||
for (int j = 0; j < inpShape.size(); ++j)
|
||||
{
|
||||
inpShape[j] = tensorShape.dim(j).dim_value();
|
||||
if (!tensorShape.dim(j).dim_param().empty())
|
||||
hasDynamicShapes = true;
|
||||
}
|
||||
if (!inpShape.empty())
|
||||
if (!inpShape.empty() && !hasDynamicShapes)
|
||||
{
|
||||
inpShape[0] = std::max(inpShape[0], 1); // It's OK to have undetermined batch size
|
||||
}
|
||||
@ -461,6 +466,7 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
|
||||
layerParams.name = name;
|
||||
layerParams.type = layer_type;
|
||||
layerParams.set("has_dynamic_shapes", hasDynamicShapes);
|
||||
|
||||
if (layer_type == "MaxPool")
|
||||
{
|
||||
@ -1301,6 +1307,20 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
{
|
||||
layerParams.type = "Reshape";
|
||||
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size()));
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
std::vector<int> dynamicAxes;
|
||||
std::vector<int> inputIndices;
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
{
|
||||
if (!maskedAxes[index])
|
||||
inputIndices.push_back(index);
|
||||
}
|
||||
for (int index = 0; index < outShape.size(); ++index)
|
||||
dynamicAxes.push_back(index);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
}
|
||||
else
|
||||
layerParams.type = "Identity";
|
||||
@ -1363,6 +1383,19 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
outShape.insert(outShape.begin() + axis, 1);
|
||||
layerParams.type = "Reshape";
|
||||
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size()));
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
std::vector<int> dynamicAxes;
|
||||
std::vector<int> inputIndices;
|
||||
for (int index = 0; index < outShape.size(); ++index) {
|
||||
if (index != axis)
|
||||
dynamicAxes.push_back(index);
|
||||
}
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
inputIndices.push_back(index);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Expand")
|
||||
{
|
||||
@ -1650,6 +1683,7 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
cv::dnn::DictValue paramEnd = cv::dnn::DictValue::arrayInt(end.data(), end.size());
|
||||
sliceLp.set("begin", paramBegin);
|
||||
sliceLp.set("end", paramEnd);
|
||||
sliceLp.set("has_dynamic_shapes", hasDynamicShapes);
|
||||
|
||||
if (inpShape.size() > 1)
|
||||
{
|
||||
@ -1662,6 +1696,17 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
layerParams.type = "Reshape";
|
||||
layerParams.set("axis", 0);
|
||||
layerParams.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size()));
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
std::vector<int> dynamicAxes;
|
||||
std::vector<int> inputIndices;
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
dynamicAxes.push_back(index);
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
inputIndices.push_back(index);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
node_proto.set_input(0, sliceLp.name);
|
||||
}
|
||||
else
|
||||
@ -1701,7 +1746,11 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
for (int i = 1; i < node_proto.input_size(); i++)
|
||||
CV_Assert(layer_id.find(node_proto.input(i)) == layer_id.end());
|
||||
|
||||
String interp_mode = layerParams.get<String>("coordinate_transformation_mode");
|
||||
String interp_mode;
|
||||
if (layerParams.has("coordinate_transformation_mode"))
|
||||
interp_mode = layerParams.get<String>("coordinate_transformation_mode");
|
||||
else
|
||||
interp_mode = layerParams.get<String>("mode");
|
||||
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "tf_half_pixel_for_nn");
|
||||
|
||||
layerParams.set("align_corners", interp_mode == "align_corners");
|
||||
@ -1713,16 +1762,23 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
shapes.convertTo(shapes, CV_32S);
|
||||
int height = shapes.at<int>(2);
|
||||
int width = shapes.at<int>(3);
|
||||
if (node_proto.input_size() == 3)
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
MatShape scales = shapeIt->second;
|
||||
height *= scales[2];
|
||||
width *= scales[3];
|
||||
layerParams.set("zoom_factor_x", width);
|
||||
layerParams.set("zoom_factor_y", height);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (node_proto.input_size() == 3) {
|
||||
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
MatShape scales = shapeIt->second;
|
||||
height *= scales[2];
|
||||
width *= scales[3];
|
||||
}
|
||||
layerParams.set("width", width);
|
||||
layerParams.set("height", height);
|
||||
}
|
||||
layerParams.set("width", width);
|
||||
layerParams.set("height", height);
|
||||
|
||||
if (layerParams.get<String>("mode") == "linear") {
|
||||
layerParams.set("mode", interp_mode == "pytorch_half_pixel" ?
|
||||
|
@ -721,6 +721,27 @@ TEST_P(Test_ONNX_layers, GatherMultiOutput)
|
||||
testONNXModels("gather_multi_output");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, DynamicAxes)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
{
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
}
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
}
|
||||
testONNXModels("squeeze_and_conv_dynamic_axes");
|
||||
testONNXModels("unsqueeze_and_conv_dynamic_axes");
|
||||
testONNXModels("gather_dynamic_axes");
|
||||
testONNXModels("gather_scalar_dynamic_axes");
|
||||
testONNXModels("slice_dynamic_axes");
|
||||
testONNXModels("slice_opset_11_dynamic_axes");
|
||||
testONNXModels("resize_opset11_torch1.6_dynamic_axes");
|
||||
testONNXModels("average_pooling_dynamic_axes");
|
||||
testONNXModels("maxpooling_sigmoid_dynamic_axes");
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
|
||||
|
||||
class Test_ONNX_nets : public Test_ONNX_layers
|
||||
|
Loading…
Reference in New Issue
Block a user