Merge remote-tracking branch 'upstream/3.4' into merge-3.4

This commit is contained in:
Alexander Alekhin 2018-10-13 15:13:45 +00:00
commit 5115e5decb
17 changed files with 494 additions and 136 deletions

View File

@ -999,6 +999,15 @@ function(ocv_convert_to_lib_name var)
set(${var} ${tmp} PARENT_SCOPE)
endfunction()
if(MSVC AND BUILD_SHARED_LIBS) # no defaults for static libs (modern CMake is required)
if(NOT CMAKE_VERSION VERSION_LESS 3.6.0)
option(INSTALL_PDB_COMPONENT_EXCLUDE_FROM_ALL "Don't install PDB files by default" ON)
option(INSTALL_PDB "Add install PDB rules" ON)
elseif(NOT CMAKE_VERSION VERSION_LESS 3.1.0)
option(INSTALL_PDB_COMPONENT_EXCLUDE_FROM_ALL "Don't install PDB files by default (not supported)" OFF)
option(INSTALL_PDB "Add install PDB rules" OFF)
endif()
endif()
# add install command
function(ocv_install_target)
@ -1030,9 +1039,10 @@ function(ocv_install_target)
endif()
if(MSVC)
if(INSTALL_PDB AND (NOT INSTALL_IGNORE_PDB))
set(__target "${ARGV0}")
set(__target "${ARGV0}")
if(INSTALL_PDB AND NOT INSTALL_IGNORE_PDB
AND NOT OPENCV_${__target}_PDB_SKIP
)
set(__location_key "ARCHIVE") # static libs
get_target_property(__target_type ${__target} TYPE)
if("${__target_type}" STREQUAL "SHARED_LIBRARY")
@ -1064,16 +1074,28 @@ function(ocv_install_target)
if(DEFINED INSTALL_PDB_COMPONENT AND INSTALL_PDB_COMPONENT)
set(__pdb_install_component "${INSTALL_PDB_COMPONENT}")
endif()
set(__pdb_exclude_from_all "")
if(INSTALL_PDB_COMPONENT_EXCLUDE_FROM_ALL)
if(NOT CMAKE_VERSION VERSION_LESS 3.6.0)
set(__pdb_exclude_from_all EXCLUDE_FROM_ALL)
else()
message(WARNING "INSTALL_PDB_COMPONENT_EXCLUDE_FROM_ALL requires CMake 3.6+")
endif()
endif()
# message(STATUS "Adding PDB file installation rule: target=${__target} dst=${__dst} component=${__pdb_install_component}")
if("${__target_type}" STREQUAL "SHARED_LIBRARY")
install(FILES "$<TARGET_PDB_FILE:${__target}>" DESTINATION "${__dst}" COMPONENT ${__pdb_install_component} OPTIONAL)
install(FILES "$<TARGET_PDB_FILE:${__target}>" DESTINATION "${__dst}"
COMPONENT ${__pdb_install_component} OPTIONAL ${__pdb_exclude_from_all})
else()
# There is no generator expression similar to TARGET_PDB_FILE and TARGET_PDB_FILE can't be used: https://gitlab.kitware.com/cmake/cmake/issues/16932
# However we still want .pdb files like: 'lib/Debug/opencv_core341d.pdb' or '3rdparty/lib/zlibd.pdb'
install(FILES "$<TARGET_PROPERTY:${__target},ARCHIVE_OUTPUT_DIRECTORY>/$<CONFIG>/$<IF:$<BOOL:$<TARGET_PROPERTY:${__target},COMPILE_PDB_NAME_DEBUG>>,$<TARGET_PROPERTY:${__target},COMPILE_PDB_NAME_DEBUG>,$<TARGET_PROPERTY:${__target},COMPILE_PDB_NAME>>.pdb"
DESTINATION "${__dst}" CONFIGURATIONS Debug COMPONENT ${__pdb_install_component} OPTIONAL)
DESTINATION "${__dst}" CONFIGURATIONS Debug
COMPONENT ${__pdb_install_component} OPTIONAL ${__pdb_exclude_from_all})
install(FILES "$<TARGET_PROPERTY:${__target},ARCHIVE_OUTPUT_DIRECTORY>/$<CONFIG>/$<IF:$<BOOL:$<TARGET_PROPERTY:${__target},COMPILE_PDB_NAME_RELEASE>>,$<TARGET_PROPERTY:${__target},COMPILE_PDB_NAME_RELEASE>,$<TARGET_PROPERTY:${__target},COMPILE_PDB_NAME>>.pdb"
DESTINATION "${__dst}" CONFIGURATIONS Release COMPONENT ${__pdb_install_component} OPTIONAL)
DESTINATION "${__dst}" CONFIGURATIONS Release
COMPONENT ${__pdb_install_component} OPTIONAL ${__pdb_exclude_from_all})
endif()
else()
message(WARNING "PDB files installation is not supported (need CMake >= 3.1.0)")

View File

@ -544,6 +544,11 @@ public:
*/
CV_WRAP_AS(at) FileNode operator[](int i) const;
/** @brief Returns keys of a mapping node.
@returns Keys of a mapping node.
*/
CV_WRAP std::vector<String> keys() const;
/** @brief Returns type of the node.
@returns Type of the node. See FileNode::Type
*/

View File

@ -355,15 +355,16 @@ void Mat::create(int d, const int* _sizes, int _type)
#endif
if(!a)
a = a0;
CV_TRY
try
{
u = a->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, USAGE_DEFAULT);
CV_Assert(u != 0);
}
CV_CATCH_ALL
catch (...)
{
if(a != a0)
u = a0->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, USAGE_DEFAULT);
if (a == a0)
throw;
u = a0->allocate(dims, size, _type, 0, step.p, ACCESS_RW /* ignored */, USAGE_DEFAULT);
CV_Assert(u != 0);
}
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );

View File

@ -274,6 +274,20 @@ FileNode FileNode::operator[](int i) const
i == 0 ? *this : FileNode();
}
std::vector<String> FileNode::keys() const
{
std::vector<String> res;
if (isMap())
{
res.reserve(size());
for (FileNodeIterator it = begin(); it != end(); ++it)
{
res.push_back((*it).name());
}
}
return res;
}
String FileNode::name() const
{
const char* str;

View File

@ -140,19 +140,18 @@ returns an empty matrix ( Mat::data==NULL ).
Currently, the following file formats are supported:
- Windows bitmaps - \*.bmp, \*.dib (always supported)
- JPEG files - \*.jpeg, \*.jpg, \*.jpe (see the *Notes* section)
- JPEG 2000 files - \*.jp2 (see the *Notes* section)
- Portable Network Graphics - \*.png (see the *Notes* section)
- WebP - \*.webp (see the *Notes* section)
- JPEG files - \*.jpeg, \*.jpg, \*.jpe (see the *Note* section)
- JPEG 2000 files - \*.jp2 (see the *Note* section)
- Portable Network Graphics - \*.png (see the *Note* section)
- WebP - \*.webp (see the *Note* section)
- Portable image format - \*.pbm, \*.pgm, \*.ppm \*.pxm, \*.pnm (always supported)
- Sun rasters - \*.sr, \*.ras (always supported)
- TIFF files - \*.tiff, \*.tif (see the *Notes* section)
- OpenEXR Image files - \*.exr (see the *Notes* section)
- TIFF files - \*.tiff, \*.tif (see the *Note* section)
- OpenEXR Image files - \*.exr (see the *Note* section)
- Radiance HDR - \*.hdr, \*.pic (always supported)
- Raster and Vector geospatial data supported by Gdal (see the *Notes* section)
- Raster and Vector geospatial data supported by GDAL (see the *Note* section)
@note
- The function determines the type of an image by the content, not by the file extension.
- In the case of color images, the decoded images will have the channels stored in **B G R** order.
- When using IMREAD_GRAYSCALE, the codec's internal grayscale conversion will be used, if available.
@ -167,11 +166,12 @@ Currently, the following file formats are supported:
files, for example, "libjpeg-dev", in Debian\* and Ubuntu\*) to get the codec support or turn
on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.
- In the case you set *WITH_GDAL* flag to true in CMake and @ref IMREAD_LOAD_GDAL to load the image,
then [GDAL](http://www.gdal.org) driver will be used in order to decode the image by supporting
then the [GDAL](http://www.gdal.org) driver will be used in order to decode the image, supporting
the following formats: [Raster](http://www.gdal.org/formats_list.html),
[Vector](http://www.gdal.org/ogr_formats.html).
- If EXIF information are embedded in the image file, the EXIF orientation will be taken into account
and thus the image will be rotated accordingly except if the flag @ref IMREAD_IGNORE_ORIENTATION is passed.
@param filename Name of file to be loaded.
@param flags Flag that can take values of cv::ImreadModes
*/
@ -190,18 +190,23 @@ CV_EXPORTS_W bool imreadmulti(const String& filename, CV_OUT std::vector<Mat>& m
/** @brief Saves an image to a specified file.
The function imwrite saves the image to the specified file. The image format is chosen based on the
filename extension (see cv::imread for the list of extensions). Only 8-bit (or 16-bit unsigned (CV_16U)
in case of PNG, JPEG 2000, and TIFF) single-channel or 3-channel (with 'BGR' channel order) images
can be saved using this function. If the format, depth or channel order is different, use
Mat::convertTo , and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O
filename extension (see cv::imread for the list of extensions). In general, only 8-bit
single-channel or 3-channel (with 'BGR' channel order) images
can be saved using this function, with these exceptions:
- 16-bit unsigned (CV_16U) images can be saved in the case of PNG, JPEG 2000, and TIFF formats
- 32-bit float (CV_32F) images can be saved in TIFF, OpenEXR, and Radiance HDR formats; 3-channel
(CV_32FC3) TIFF images will be saved using the LogLuv high dynamic range encoding (4 bytes per pixel)
- PNG images with an alpha channel can be saved using this function. To do this, create
8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels
should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535 (see the code sample below).
If the format, depth or channel order is different, use
Mat::convertTo and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O
functions to save the image to XML or YAML format.
It is possible to store PNG images with an alpha channel using this function. To do this, create
8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels
should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535.
The sample below shows how to create such a BGRA image and store to PNG file. It also demonstrates how to set custom
compression parameters :
The sample below shows how to create a BGRA image and save it to a PNG file. It also demonstrates how to set custom
compression parameters:
@include snippets/imgcodecs_imwrite.cpp
@param filename Name of the file.
@param img Image to be saved.

View File

@ -152,7 +152,7 @@ struct PyrDownVec_32f
}
};
#if CV_SSE4_1 || CV_NEON
#if CV_SSE4_1 || CV_NEON || CV_VSX
struct PyrDownVec_32s16u
{
@ -312,7 +312,7 @@ struct PyrUpVec_32s16s
}
};
#if CV_SSE4_1 || CV_NEON
#if CV_SSE4_1 || CV_NEON || CV_VSX
struct PyrUpVec_32s16u
{

View File

@ -3783,7 +3783,7 @@ void cv::resize( InputArray _src, OutputArray _dst, Size dsize,
CV_Assert( !ssize.empty() );
CV_Assert( !dsize.empty() || (inv_scale_x > 0 && inv_scale_y > 0) );
if( dsize.area() == 0 )
if( dsize.empty() )
{
dsize = Size(saturate_cast<int>(ssize.width*inv_scale_x),
saturate_cast<int>(ssize.height*inv_scale_y));

View File

@ -5,21 +5,15 @@
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
const char* keys =
#include "common.hpp"
std::string keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ model m | | Path to a binary file of model contains trained weights. "
"It could be a file with extensions .caffemodel (Caffe), "
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet) }"
"{ config c | | Path to a text file of model contains network configuration. "
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet) }"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ classes | | Optional path to a text file with names of classes. }"
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
"{ width | | Preprocess input image by resizing to a specific width. }"
"{ height | | Preprocess input image by resizing to a specific height. }"
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
@ -39,6 +33,13 @@ std::vector<std::string> classes;
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
const std::string modelName = parser.get<String>("@alias");
const std::string zooFile = parser.get<String>("zoo");
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run classification deep learning networks using OpenCV.");
if (argc == 1 || parser.has("help"))
{
@ -51,8 +52,8 @@ int main(int argc, char** argv)
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
String model = parser.get<String>("model");
String config = parser.get<String>("config");
String model = findFile(parser.get<String>("model"));
String config = findFile(parser.get<String>("config"));
String framework = parser.get<String>("framework");
int backendId = parser.get<int>("backend");
int targetId = parser.get<int>("target");

View File

@ -1,35 +1,19 @@
import cv2 as cv
import argparse
import numpy as np
import sys
from common import *
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
parser = argparse.ArgumentParser(description='Use this script to run classification deep learning networks using OpenCV.')
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--model', required=True,
help='Path to a binary file of model contains trained weights. '
'It could be a file with extensions .caffemodel (Caffe), '
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)')
parser.add_argument('--config',
help='Path to a text file of model contains network configuration. '
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)')
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
help='Preprocess input image by subtracting mean values. '
'Mean values should be in BGR order.')
parser.add_argument('--scale', type=float, default=1.0,
help='Preprocess input image by multiplying on a scale factor.')
parser.add_argument('--width', type=int, required=True,
help='Preprocess input image by resizing to a specific width.')
parser.add_argument('--height', type=int, required=True,
help='Preprocess input image by resizing to a specific height.')
parser.add_argument('--rgb', action='store_true',
help='Indicate that model works with RGB input images instead BGR ones.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
@ -42,8 +26,17 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: VPU' % targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'classification')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run classification deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
# Load names of classes
classes = None
if args.classes:
@ -66,7 +59,9 @@ while cv.waitKey(1) < 0:
break
# Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False)
inpWidth = args.width if args.width else frame.shape[1]
inpHeight = args.height if args.height else frame.shape[0]
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
# Run a model
net.setInput(blob)

93
samples/dnn/common.hpp Normal file
View File

@ -0,0 +1,93 @@
#include <opencv2/core/utils/filesystem.hpp>
using namespace cv;
std::string genArgument(const std::string& argName, const std::string& help,
const std::string& modelName, const std::string& zooFile,
char key = ' ', std::string defaultVal = "");
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile);
std::string findFile(const std::string& filename);
std::string genArgument(const std::string& argName, const std::string& help,
const std::string& modelName, const std::string& zooFile,
char key, std::string defaultVal)
{
if (!modelName.empty())
{
FileStorage fs(zooFile, FileStorage::READ);
if (fs.isOpened())
{
FileNode node = fs[modelName];
if (!node.empty())
{
FileNode value = node[argName];
if (!value.empty())
{
if (value.isReal())
defaultVal = format("%f", (float)value);
else if (value.isString())
defaultVal = (std::string)value;
else if (value.isInt())
defaultVal = format("%d", (int)value);
else if (value.isSeq())
{
for (size_t i = 0; i < value.size(); ++i)
{
FileNode v = value[(int)i];
if (v.isInt())
defaultVal += format("%d ", (int)v);
else if (v.isReal())
defaultVal += format("%f ", (float)v);
else
CV_Error(Error::StsNotImplemented, "Unexpected value format");
}
}
else
CV_Error(Error::StsNotImplemented, "Unexpected field format");
}
}
}
}
return "{ " + argName + " " + key + " | " + defaultVal + " | " + help + " }";
}
std::string findFile(const std::string& filename)
{
if (filename.empty() || utils::fs::exists(filename))
return filename;
std::string extraPaths[] = {getenv("OPENCV_DNN_TEST_DATA_PATH"),
getenv("OPENCV_TEST_DATA_PATH")};
for (int i = 0; i < 2; ++i)
{
std::string absPath = utils::fs::join(extraPaths[i], utils::fs::join("dnn", filename));
if (utils::fs::exists(absPath))
return absPath;
}
CV_Error(Error::StsObjectNotFound, "File " + filename + " not found! "
"Please specify a path to /opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH "
"environment variable or pass a full path to model.");
}
std::string genPreprocArguments(const std::string& modelName, const std::string& zooFile)
{
return genArgument("model", "Path to a binary file of model contains trained weights. "
"It could be a file with extensions .caffemodel (Caffe), "
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO).",
modelName, zooFile, 'm') +
genArgument("config", "Path to a text file of model contains network configuration. "
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet), .xml (OpenVINO).",
modelName, zooFile, 'c') +
genArgument("mean", "Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.",
modelName, zooFile) +
genArgument("scale", "Preprocess input image by multiplying on a scale factor.",
modelName, zooFile, ' ', "1.0") +
genArgument("width", "Preprocess input image by resizing to a specific width.",
modelName, zooFile, ' ', "-1") +
genArgument("height", "Preprocess input image by resizing to a specific height.",
modelName, zooFile, ' ', "-1") +
genArgument("rgb", "Indicate that model works with RGB input images instead BGR ones.",
modelName, zooFile);
}

108
samples/dnn/common.py Normal file
View File

@ -0,0 +1,108 @@
import sys
import os
import cv2 as cv
def add_argument(zoo, parser, name, help, required=False, default=None, type=None, action=None, nargs=None):
if len(sys.argv) <= 1:
return
modelName = sys.argv[1]
if os.path.isfile(zoo):
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
node = fs.getNode(modelName)
if not node.empty():
value = node.getNode(name)
if not value.empty():
if value.isReal():
default = value.real()
elif value.isString():
default = value.string()
elif value.isInt():
default = int(value.real())
elif value.isSeq():
default = []
for i in range(value.size()):
v = value.at(i)
if v.isInt():
default.append(int(v.real()))
elif v.isReal():
default.append(v.real())
else:
print('Unexpected value format')
exit(0)
else:
print('Unexpected field format')
exit(0)
required = False
if action == 'store_true':
default = 1 if default == 'true' else (0 if default == 'false' else default)
assert(default is None or default == 0 or default == 1)
parser.add_argument('--' + name, required=required, help=help, default=bool(default),
action=action)
else:
parser.add_argument('--' + name, required=required, help=help, default=default,
action=action, nargs=nargs, type=type)
def add_preproc_args(zoo, parser, sample):
aliases = []
if os.path.isfile(zoo):
fs = cv.FileStorage(zoo, cv.FILE_STORAGE_READ)
root = fs.root()
for name in root.keys():
model = root.getNode(name)
if model.getNode('sample').string() == sample:
aliases.append(name)
parser.add_argument('alias', nargs='?', choices=aliases,
help='An alias name of model to extract preprocessing parameters from models.yml file.')
add_argument(zoo, parser, 'model', required=True,
help='Path to a binary file of model contains trained weights. '
'It could be a file with extensions .caffemodel (Caffe), '
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO)')
add_argument(zoo, parser, 'config',
help='Path to a text file of model contains network configuration. '
'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)')
add_argument(zoo, parser, 'mean', nargs='+', type=float, default=[0, 0, 0],
help='Preprocess input image by subtracting mean values. '
'Mean values should be in BGR order.')
add_argument(zoo, parser, 'scale', type=float, default=1.0,
help='Preprocess input image by multiplying on a scale factor.')
add_argument(zoo, parser, 'width', type=int,
help='Preprocess input image by resizing to a specific width.')
add_argument(zoo, parser, 'height', type=int,
help='Preprocess input image by resizing to a specific height.')
add_argument(zoo, parser, 'rgb', action='store_true',
help='Indicate that model works with RGB input images instead BGR ones.')
add_argument(zoo, parser, 'classes',
help='Optional path to a text file with names of classes to label detected objects.')
def findFile(filename):
if filename:
if os.path.exists(filename):
return filename
samplesDataDir = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'..',
'data',
'dnn')
if os.path.exists(os.path.join(samplesDataDir, filename)):
return os.path.join(samplesDataDir, filename)
for path in ['OPENCV_DNN_TEST_DATA_PATH', 'OPENCV_TEST_DATA_PATH']:
try:
extraPath = os.environ[path]
absPath = os.path.join(extraPath, 'dnn', filename)
if os.path.exists(absPath):
return absPath
except KeyError:
pass
print('File ' + filename + ' not found! Please specify a path to '
'/opencv_extra/testdata in OPENCV_DNN_TEST_DATA_PATH environment '
'variable or pass a full path to model.')
exit(0)

117
samples/dnn/models.yml Normal file
View File

@ -0,0 +1,117 @@
%YAML:1.0
################################################################################
# Object detection models.
################################################################################
# OpenCV's face detection network
opencv_fd:
model: "opencv_face_detector.caffemodel"
config: "opencv_face_detector.prototxt"
mean: [104, 177, 123]
scale: 1.0
width: 300
height: 300
rgb: false
sample: "object_detection"
# YOLO object detection family from Darknet (https://pjreddie.com/darknet/yolo/)
# Might be used for all YOLOv2, TinyYolov2 and YOLOv3
yolo:
model: "yolov3.weights"
config: "yolov3.cfg"
mean: [0, 0, 0]
scale: 0.00392
width: 416
height: 416
rgb: true
classes: "object_detection_classes_yolov3.txt"
sample: "object_detection"
tiny-yolo-voc:
model: "tiny-yolo-voc.weights"
config: "tiny-yolo-voc.cfg"
mean: [0, 0, 0]
scale: 0.00392
width: 416
height: 416
rgb: true
classes: "object_detection_classes_pascal_voc.txt"
sample: "object_detection"
# Caffe implementation of SSD model from https://github.com/chuanqi305/MobileNet-SSD
ssd_caffe:
model: "MobileNetSSD_deploy.caffemodel"
config: "MobileNetSSD_deploy.prototxt"
mean: [127.5, 127.5, 127.5]
scale: 0.007843
width: 300
height: 300
rgb: false
classes: "object_detection_classes_pascal_voc.txt"
sample: "object_detection"
# TensorFlow implementation of SSD model from https://github.com/tensorflow/models/tree/master/research/object_detection
ssd_tf:
model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
mean: [0, 0, 0]
scale: 1.0
width: 300
height: 300
rgb: true
classes: "object_detection_classes_coco.txt"
sample: "object_detection"
# TensorFlow implementation of Faster-RCNN model from https://github.com/tensorflow/models/tree/master/research/object_detection
faster_rcnn_tf:
model: "faster_rcnn_inception_v2_coco_2018_01_28.pb"
config: "faster_rcnn_inception_v2_coco_2018_01_28.pbtxt"
mean: [0, 0, 0]
scale: 1.0
width: 800
height: 600
rgb: true
sample: "object_detection"
################################################################################
# Image classification models.
################################################################################
# SqueezeNet v1.1 from https://github.com/DeepScale/SqueezeNet
squeezenet:
model: "squeezenet_v1.1.caffemodel"
config: "squeezenet_v1.1.prototxt"
mean: [0, 0, 0]
scale: 1.0
width: 227
height: 227
rgb: false
classes: "classification_classes_ILSVRC2012.txt"
sample: "classification"
################################################################################
# Semantic segmentation models.
################################################################################
# ENet road scene segmentation network from https://github.com/e-lab/ENet-training
# Works fine for different input sizes.
enet:
model: "Enet-model-best.net"
mean: [0, 0, 0]
scale: 0.00392
width: 512
height: 256
rgb: true
classes: "enet-classes.txt"
sample: "segmentation"
fcn8s:
model: "fcn8s-heavy-pascal.caffemodel"
config: "fcn8s-heavy-pascal.prototxt"
mean: [0, 0, 0]
scale: 1.0
width: 500
height: 500
rgb: false
sample: "segmentation"

View File

@ -5,22 +5,16 @@
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
const char* keys =
#include "common.hpp"
std::string keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ device | 0 | camera device number. }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ model m | | Path to a binary file of model contains trained weights. "
"It could be a file with extensions .caffemodel (Caffe), "
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).}"
"{ config c | | Path to a text file of model contains network configuration. "
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).}"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ classes | | Optional path to a text file with names of classes to label detected objects. }"
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
"{ width | -1 | Preprocess input image by resizing to a specific width. }"
"{ height | -1 | Preprocess input image by resizing to a specific height. }"
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
"{ thr | .5 | Confidence threshold. }"
"{ nms | .4 | Non-maximum suppression threshold. }"
"{ backend | 0 | Choose one of computation backends: "
@ -52,6 +46,13 @@ std::vector<String> getOutputsNames(const Net& net);
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
const std::string modelName = parser.get<String>("@alias");
const std::string zooFile = parser.get<String>("zoo");
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run object detection deep learning networks using OpenCV.");
if (argc == 1 || parser.has("help"))
{
@ -66,6 +67,9 @@ int main(int argc, char** argv)
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
CV_Assert(parser.has("model"));
std::string modelPath = findFile(parser.get<String>("model"));
std::string configPath = findFile(parser.get<String>("config"));
// Open file with classes names.
if (parser.has("classes"))
@ -82,8 +86,7 @@ int main(int argc, char** argv)
}
// Load a model.
CV_Assert(parser.has("model"));
Net net = readNet(parser.get<String>("model"), parser.get<String>("config"), parser.get<String>("framework"));
Net net = readNet(modelPath, configPath, parser.get<String>("framework"));
net.setPreferableBackend(parser.get<int>("backend"));
net.setPreferableTarget(parser.get<int>("target"));
std::vector<String> outNames = net.getUnconnectedOutLayersNames();

View File

@ -1,8 +1,8 @@
import cv2 as cv
import argparse
import sys
import numpy as np
from common import *
from tf_text_graph_common import readTextMessage
from tf_text_graph_ssd import createSSDGraph
from tf_text_graph_faster_rcnn import createFasterRCNNGraph
@ -10,15 +10,10 @@ from tf_text_graph_faster_rcnn import createFasterRCNNGraph
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
parser = argparse.ArgumentParser(description='Use this script to run object detection deep learning networks using OpenCV.')
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--model', required=True,
help='Path to a binary file of model contains trained weights. '
'It could be a file with extensions .caffemodel (Caffe), '
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet), .bin (OpenVINO)')
parser.add_argument('--config',
help='Path to a text file of model contains network configuration. '
'It could be a file with extensions .prototxt (Caffe), .pbtxt or .config (TensorFlow), .cfg (Darknet), .xml (OpenVINO)')
parser.add_argument('--out_tf_graph', default='graph.pbtxt',
help='For models from TensorFlow Object Detection API, you may '
'pass a .config file which was used for training through --config '
@ -26,18 +21,6 @@ parser.add_argument('--out_tf_graph', default='graph.pbtxt',
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet', 'dldt'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--classes', help='Optional path to a text file with names of classes to label detected objects.')
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
help='Preprocess input image by subtracting mean values. '
'Mean values should be in BGR order.')
parser.add_argument('--scale', type=float, default=1.0,
help='Preprocess input image by multiplying on a scale factor.')
parser.add_argument('--width', type=int,
help='Preprocess input image by resizing to a specific width.')
parser.add_argument('--height', type=int,
help='Preprocess input image by resizing to a specific height.')
parser.add_argument('--rgb', action='store_true',
help='Indicate that model works with RGB input images instead BGR ones.')
parser.add_argument('--thr', type=float, default=0.5, help='Confidence threshold')
parser.add_argument('--nms', type=float, default=0.4, help='Non-maximum suppression threshold')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
@ -52,8 +35,17 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: VPU' % targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'object_detection')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run object detection deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
# If config specified, try to load it as TensorFlow Object Detection API's pipeline.
config = readTextMessage(args.config)
if 'model' in config:

View File

@ -5,24 +5,18 @@
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
const char* keys =
#include "common.hpp"
std::string keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ device | 0 | camera device number. }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ model m | | Path to a binary file of model contains trained weights. "
"It could be a file with extensions .caffemodel (Caffe), "
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet). }"
"{ config c | | Path to a text file of model contains network configuration. "
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet). }"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ classes | | Optional path to a text file with names of classes. }"
"{ colors | | Optional path to a text file with colors for an every class. "
"An every color is represented with three values from 0 to 255 in BGR channels order. }"
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
"{ width | | Preprocess input image by resizing to a specific width. }"
"{ height | | Preprocess input image by resizing to a specific height. }"
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
@ -47,6 +41,13 @@ void colorizeSegmentation(const Mat &score, Mat &segm);
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
const std::string modelName = parser.get<String>("@alias");
const std::string zooFile = parser.get<String>("zoo");
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
if (argc == 1 || parser.has("help"))
{
@ -59,8 +60,8 @@ int main(int argc, char** argv)
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
String model = parser.get<String>("model");
String config = parser.get<String>("config");
String model = findFile(parser.get<String>("model"));
String config = findFile(parser.get<String>("config"));
String framework = parser.get<String>("framework");
int backendId = parser.get<int>("backend");
int targetId = parser.get<int>("target");

View File

@ -3,35 +3,20 @@ import argparse
import numpy as np
import sys
from common import *
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.')
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--model', required=True,
help='Path to a binary file of model contains trained weights. '
'It could be a file with extensions .caffemodel (Caffe), '
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)')
parser.add_argument('--config',
help='Path to a text file of model contains network configuration. '
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)')
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
'An every color is represented with three values from 0 to 255 in BGR channels order.')
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
help='Preprocess input image by subtracting mean values. '
'Mean values should be in BGR order.')
parser.add_argument('--scale', type=float, default=1.0,
help='Preprocess input image by multiplying on a scale factor.')
parser.add_argument('--width', type=int, required=True,
help='Preprocess input image by resizing to a specific width.')
parser.add_argument('--height', type=int, required=True,
help='Preprocess input image by resizing to a specific height.')
parser.add_argument('--rgb', action='store_true',
help='Indicate that model works with RGB input images instead BGR ones.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
@ -44,8 +29,17 @@ parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU,
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: VPU' % targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'segmentation')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run semantic segmentation deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
np.random.seed(324)
# Load names of classes
@ -93,8 +87,13 @@ while cv.waitKey(1) < 0:
cv.waitKey()
break
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
# Create a 4D blob from a frame.
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False)
inpWidth = args.width if args.width else frameWidth
inpHeight = args.height if args.height else frameHeight
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
# Run a model
net.setInput(blob)
@ -115,7 +114,7 @@ while cv.waitKey(1) < 0:
segm = np.stack([colors[idx] for idx in classIds.flatten()])
segm = segm.reshape(height, width, 3)
segm = cv.resize(segm, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_NEAREST)
segm = cv.resize(segm, (frameWidth, frameHeight), interpolation=cv.INTER_NEAREST)
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
# Put efficiency information.

View File

@ -72,6 +72,8 @@ def parseMessage(tokens, idx):
def readTextMessage(filePath):
if not filePath:
return {}
with open(filePath, 'rt') as f:
content = f.read()