mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 06:53:50 +08:00
Merge pull request #17120 from ganesh-k13:bugfix/documentation/16987
This commit is contained in:
commit
511d0fe198
@ -305,7 +305,7 @@ according to the specified border mode.
|
||||
|
||||
The function does actually compute correlation, not the convolution:
|
||||
|
||||
\f[\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
|
||||
\f[\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f]
|
||||
|
||||
That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
|
||||
the kernel using flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
|
||||
@ -342,7 +342,7 @@ The function smooths an image using the kernel:
|
||||
|
||||
where
|
||||
|
||||
\f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f]
|
||||
\f[\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise} \end{cases}\f]
|
||||
|
||||
Unnormalized box filter is useful for computing various integral characteristics over each pixel
|
||||
neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
|
||||
|
Loading…
Reference in New Issue
Block a user