mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
fixed single-precision SVD accuracy on some very ill-conditioned matrices (ticket #1448)
This commit is contained in:
parent
2547f7554e
commit
5353b97605
@ -533,10 +533,12 @@ template<> inline int VBLAS<double>::givensx(double* a, double* b, int n, double
|
||||
#endif
|
||||
|
||||
template<typename _Tp> void
|
||||
JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int n, int n1)
|
||||
JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* _W, _Tp* Vt, size_t vstep, int m, int n, int n1)
|
||||
{
|
||||
VBLAS<_Tp> vblas;
|
||||
_Tp eps = std::numeric_limits<_Tp>::epsilon()*10;
|
||||
AutoBuffer<double> Wbuf(n);
|
||||
double* W = Wbuf;
|
||||
_Tp eps = DBL_EPSILON*10;
|
||||
int i, j, k, iter, max_iter = std::max(m, 30);
|
||||
_Tp c, s;
|
||||
double sd;
|
||||
@ -548,7 +550,7 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
for( k = 0, s = 0; k < m; k++ )
|
||||
{
|
||||
_Tp t = At[i*astep + k];
|
||||
s += t*t;
|
||||
s += (double)t*t;
|
||||
}
|
||||
W[i] = s;
|
||||
|
||||
@ -567,12 +569,11 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
for( i = 0; i < n-1; i++ )
|
||||
for( j = i+1; j < n; j++ )
|
||||
{
|
||||
_Tp *Ai = At + i*astep, *Aj = At + j*astep, a = W[i], p = 0, b = W[j];
|
||||
_Tp *Ai = At + i*astep, *Aj = At + j*astep;
|
||||
double a = W[i], p = 0, b = W[j];
|
||||
|
||||
k = vblas.dot(Ai, Aj, m, &p);
|
||||
|
||||
for( ; k < m; k++ )
|
||||
p += Ai[k]*Aj[k];
|
||||
for( k = 0; k < m; k++ )
|
||||
p += (double)Ai[k]*Aj[k];
|
||||
|
||||
if( std::abs(p) <= eps*std::sqrt((double)a*b) )
|
||||
continue;
|
||||
@ -581,7 +582,7 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
double beta = a - b, gamma = hypot((double)p, beta), delta;
|
||||
if( beta < 0 )
|
||||
{
|
||||
delta = (_Tp)((gamma - beta)*0.5);
|
||||
delta = (gamma - beta)*0.5;
|
||||
s = (_Tp)std::sqrt(delta/gamma);
|
||||
c = (_Tp)(p/(gamma*s*2));
|
||||
}
|
||||
@ -589,13 +590,13 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
{
|
||||
c = (_Tp)std::sqrt((gamma + beta)/(gamma*2));
|
||||
s = (_Tp)(p/(gamma*c*2));
|
||||
delta = (_Tp)(p*p*0.5/(gamma + beta));
|
||||
delta = p*p*0.5/(gamma + beta);
|
||||
}
|
||||
|
||||
if( iter % 2 )
|
||||
{
|
||||
W[i] = (_Tp)(W[i] + delta);
|
||||
W[j] = (_Tp)(W[j] - delta);
|
||||
W[i] += delta;
|
||||
W[j] -= delta;
|
||||
|
||||
k = vblas.givens(Ai, Aj, m, c, s);
|
||||
|
||||
@ -609,14 +610,13 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
else
|
||||
{
|
||||
a = b = 0;
|
||||
k = vblas.givensx(Ai, Aj, m, c, s, &a, &b);
|
||||
for( ; k < m; k++ )
|
||||
for( k = 0; k < m; k++ )
|
||||
{
|
||||
_Tp t0 = c*Ai[k] + s*Aj[k];
|
||||
_Tp t1 = -s*Ai[k] + c*Aj[k];
|
||||
Ai[k] = t0; Aj[k] = t1;
|
||||
|
||||
a += t0*t0; b += t1*t1;
|
||||
a += (double)t0*t0; b += (double)t1*t1;
|
||||
}
|
||||
W[i] = a; W[j] = b;
|
||||
}
|
||||
@ -647,7 +647,7 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
_Tp t = At[i*astep + k];
|
||||
sd += (double)t*t;
|
||||
}
|
||||
W[i] = s = (_Tp)std::sqrt(sd);
|
||||
W[i] = std::sqrt(sd);
|
||||
}
|
||||
|
||||
for( i = 0; i < n-1; i++ )
|
||||
@ -677,9 +677,9 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
RNG rng(0x12345678);
|
||||
for( i = 0; i < n1; i++ )
|
||||
{
|
||||
s = i < n ? W[i] : 0;
|
||||
sd = i < n ? W[i] : 0;
|
||||
|
||||
while( s == 0 )
|
||||
while( sd == 0 )
|
||||
{
|
||||
// if we got a zero singular value, then in order to get the corresponding left singular vector
|
||||
// we generate a random vector, project it to the previously computed left singular vectors,
|
||||
@ -715,13 +715,16 @@ JacobiSVDImpl_(_Tp* At, size_t astep, _Tp* W, _Tp* Vt, size_t vstep, int m, int
|
||||
_Tp t = At[i*astep + k];
|
||||
sd += (double)t*t;
|
||||
}
|
||||
s = (_Tp)std::sqrt(sd);
|
||||
sd = std::sqrt(sd);
|
||||
}
|
||||
|
||||
s = 1/s;
|
||||
s = (_Tp)(1/sd);
|
||||
for( k = 0; k < m; k++ )
|
||||
At[i*astep + k] *= s;
|
||||
}
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
_W[i] = (_Tp)W[i];
|
||||
}
|
||||
|
||||
|
||||
@ -837,7 +840,7 @@ SVBkSb( int m, int n, const float* w, size_t wstep,
|
||||
v, (int)(vstep/sizeof(v[0])), vT,
|
||||
b, (int)(bstep/sizeof(b[0])), nb,
|
||||
x, (int)(xstep/sizeof(x[0])),
|
||||
(double*)alignPtr(buffer, sizeof(double)), FLT_EPSILON*10 );
|
||||
(double*)alignPtr(buffer, sizeof(double)), (float)(DBL_EPSILON*2) );
|
||||
}
|
||||
|
||||
static void
|
||||
|
Loading…
Reference in New Issue
Block a user