mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
updated gpu module docs
This commit is contained in:
parent
4502f671ae
commit
536625d6fb
130
doc/gpu.tex
130
doc/gpu.tex
@ -17,6 +17,7 @@ void bitwise\_not(const GpuMat\& src, GpuMat\& dst,\par
|
||||
\cvarg{mask}{Optional operation mask. 8-bit single channel image.}
|
||||
\cvarg{stream}{Stream for asynchronous version.}
|
||||
\end{description}
|
||||
See also: \hyperref[cppfunc.bitwise.not]{cv::bitwise\_not}.
|
||||
|
||||
\cvfunc{cv::gpu::bitwise\_or}
|
||||
Performs per-element bitwise disjunction of two matrixes.
|
||||
@ -33,6 +34,7 @@ void bitwise\_or(const GpuMat\& src1, const GpuMat\& src2, GpuMat\& dst,\par
|
||||
\cvarg{mask}{Optional operation mask. 8-bit single channel image.}
|
||||
\cvarg{stream}{Stream for asynchronous version.}
|
||||
\end{description}
|
||||
See also: \hyperref[cppfunc.bitwise.or]{cv::bitwise\_or}.
|
||||
|
||||
\cvfunc{cv::gpu::bitwise\_and}
|
||||
Performs per-element bitwise conjunction of two matrixes.
|
||||
@ -49,6 +51,7 @@ void bitwise\_and(const GpuMat\& src1, const GpuMat\& src2, GpuMat\& dst,\par
|
||||
\cvarg{mask}{Optional operation mask. 8-bit single channel image.}
|
||||
\cvarg{stream}{Stream for asynchronous version.}
|
||||
\end{description}
|
||||
See also: \hyperref[cppfunc.bitwise.and]{cv::bitwise\_and}.
|
||||
|
||||
\cvfunc{cv::gpu::bitwise\_xor}
|
||||
Performs per-element bitwise "exclusive or" of two matrixes.
|
||||
@ -65,6 +68,7 @@ void bitwise\_xor(const GpuMat\& src1, const GpuMat\& src2, GpuMat\& dst,\par
|
||||
\cvarg{mask}{Optional operation mask. 8-bit single channel image.}
|
||||
\cvarg{stream}{Stream for asynchronous version.}
|
||||
\end{description}
|
||||
See also: \hyperref[cppfunc.bitwise.xor]{cv::bitwise\_xor}.
|
||||
|
||||
\section{Image Processing}
|
||||
|
||||
@ -81,7 +85,7 @@ Performs mean-shift filtering.
|
||||
\cvarg{dst}{Destination image. Will have the same size and type as \texttt{src}. Each pixel \texttt{(x,y)} of the destination image will contain color of converged point started from \texttt{(x,y)} pixel of the source image.}
|
||||
\cvarg{sp}{Spatial window radius.}
|
||||
\cvarg{sr}{Color window radius.}
|
||||
\cvarg{criteria}{Termination criteria. See \cross{TermCriteria}.}
|
||||
\cvarg{criteria}{Termination criteria. See \hyperref[TermCriteria]{cv::TermCriteria}.}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{gpu::meanShiftProc}
|
||||
@ -98,9 +102,128 @@ Performs mean-shift procedure and stores information about converged points in t
|
||||
\cvarg{dstsp}{16SC2 matrix, which will contain coordinates of converged points and have the same size as \texttt{src}.}
|
||||
\cvarg{sp}{Spatial window radius.}
|
||||
\cvarg{sr}{Color window radius.}
|
||||
\cvarg{criteria}{Termination criteria. See \cross{TermCriteria}.}
|
||||
\cvarg{criteria}{Termination criteria. See \hyperref[TermCriteria]{cv::TermCriteria}.}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{gpu::meanShiftSegmentation}
|
||||
Performs mean-shift segmentation of the source image and eleminates small segments.
|
||||
|
||||
\cvdefCpp{void meanShiftSegmentation(const GpuMat\& src, Mat\& dst,\par
|
||||
int sp, int sr, int minsize,\par
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::MAX\_ITER\par
|
||||
+ TermCriteria::EPS, 5, 1));}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{src}{Source image. Only 8UC4 images are supported for now.}
|
||||
\cvarg{dst}{Segmented image. Will have the same size and type as \texttt{src}.}
|
||||
\cvarg{sp}{Spatial window radius.}
|
||||
\cvarg{sr}{Color window radius.}
|
||||
\cvarg{minsize}{Minimum segment size. Smaller segements will be merged.}
|
||||
\cvarg{criteria}{Termination criteria. See \hyperref[TermCriteria]{cv::TermCriteria}.}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{gpu::integral}
|
||||
Computes the integral image and squared integral image.
|
||||
|
||||
\cvdefCpp{void integral(const GpuMat\& src, GpuMat\& sum);\newline
|
||||
void integral(const GpuMat\& src, GpuMat\& sum, GpuMat\& sqsum);}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{src}{Source image. Only 8UC1 images are supported for now.}
|
||||
\cvarg{sum}{Integral image. Will contain 32-bit unsigned integer values packed into 32SC1.}
|
||||
\cvarg{sqsum}{Squared integral image. Will have 32FC1 type.}
|
||||
\end{description}
|
||||
See also: \cvCppCross{integral}.
|
||||
|
||||
\cvCppFunc{gpu::sqrIntegral}
|
||||
Computes squared integral image.
|
||||
|
||||
\cvdefCpp{void sqrIntegral(const GpuMat\& src, GpuMat\& sqsum);}
|
||||
\begin{description}
|
||||
\cvarg{src}{Source image. Only 8UC1 images are supported for now.}
|
||||
\cvarg{sqsum}{Squared integral image. Will contain 64-bit floating point values packed into 64U.}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{gpu::columnSum}
|
||||
Computes vertical (column) sum.
|
||||
|
||||
\cvdefCpp{void columnSum(const GpuMat\& src, GpuMat\& sum);}
|
||||
\begin{description}
|
||||
\cvarg{src}{Source image. Only 32FC1 images are supported for now.}
|
||||
\cvarg{sum}{Destination image. Will have 32FC1 type.}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{gpu::cornerHarris}
|
||||
Computes Harris cornerness criteria at each image pixel.
|
||||
|
||||
\cvdefCpp{void cornerHarris(const GpuMat\& src, GpuMat\& dst,\par
|
||||
int blockSize, int ksize, double k,\par
|
||||
int borderType=BORDER\_REFLECT101);}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{src}{Source image. Only 8UC1 and 32FC1 images are supported for now.}
|
||||
\cvarg{dst}{Destination image. Will have the same size and 32FC1 type and contain cornerness values.}
|
||||
\cvarg{blockSize}{Neighborhood size.}
|
||||
\cvarg{ksize}{Aperture parameter for the Sobel operator.}
|
||||
\cvarg{k}{Harris detector free parameter.}
|
||||
\cvarg{borderType}{Pixel extrapolation method. Only \texttt{BORDER\_REFLECT101} and \texttt{BORDER\_REPLICATE} are supported for now.}
|
||||
\end{description}
|
||||
See also: \cvCppCross{cornerHarris}.
|
||||
|
||||
\cvCppFunc{gpu::cornerMinEigenVal}
|
||||
Computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria.
|
||||
|
||||
\cvdefCpp{void cornerMinEigenVal(const GpuMat\& src, GpuMat\& dst,\par
|
||||
int blockSize, int ksize,\par
|
||||
int borderType=BORDER\_REFLECT101);}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{src}{Source image. Only 8UC1 and 32FC1 images are supported for now.}
|
||||
\cvarg{dst}{Destination image. Will have the same size and 32FC1 type and contain cornerness values.}
|
||||
\cvarg{blockSize}{Neighborhood size.}
|
||||
\cvarg{ksize}{Aperture parameter for the Sobel operator.}
|
||||
\cvarg{k}{Harris detector free parameter.}
|
||||
\cvarg{borderType}{Pixel extrapolation method. Only \texttt{BORDER\_REFLECT101} and \texttt{BORDER\_REPLICATE} are supported for now.}
|
||||
\end{description}
|
||||
See also: \cvCppCross{cornerMinEigenValue}.
|
||||
|
||||
\cvCppFunc{gpu::mulSpectrums}
|
||||
Performs per-element multiplication of two Fourier spectrums.
|
||||
|
||||
\cvdefCpp{void mulSpectrums(const GpuMat\& a, const GpuMat\& b,\par
|
||||
GpuMat\& c, int flags, bool conjB=false);}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{a}{First spectrum.}
|
||||
\cvarg{b}{Second spectrum. Must have the same size and type as \texttt{a}.}
|
||||
\cvarg{c}{Destination spectrum.}
|
||||
\cvarg{flags}{Mock paramter is kept for CPU/GPU interfaces similarity.}
|
||||
\cvarg{conjB}{Optional flag indicates if the second spectrum must be conjugated before the multiplcation.}
|
||||
\end{description}
|
||||
|
||||
Only full (i.e. not packed) 32FC2 complex spectrums in the interleaved format are supported for now.
|
||||
|
||||
See also: \cvCppCross{mulSpectrums}.
|
||||
|
||||
\cvCppFunc{gpu::mulAndScaleSpectrums}
|
||||
Performs per-element multiplication of two Fourier spectrums and scales the result.
|
||||
|
||||
\cvdefCpp{void mulAndScaleSpectrums(const GpuMat\& a, const GpuMat\& b,\par
|
||||
GpuMat\& c, int flags, float scale, bool conjB=false);}
|
||||
|
||||
\begin{description}
|
||||
\cvarg{a}{First spectrum.}
|
||||
\cvarg{b}{Second spectrum. Must have the same size and type as \texttt{a}.}
|
||||
\cvarg{c}{Destination spectrum.}
|
||||
\cvarg{flags}{Mock paramter is kept for CPU/GPU interfaces similarity.}
|
||||
\cvarg{scale}{Scale constant.}
|
||||
\cvarg{conjB}{Optional flag indicates if the second spectrum must be conjugated before the multiplcation.}
|
||||
\end{description}
|
||||
|
||||
Only full (i.e. not packed) 32FC2 complex spectrums in the interleaved format are supported for now.
|
||||
|
||||
See also: \cvCppCross{mulSpectrums}.
|
||||
|
||||
\section{Object Detection}
|
||||
|
||||
\cvclass{gpu::HOGDescriptor}
|
||||
@ -237,7 +360,8 @@ Perfroms object detection with increasing detection window.
|
||||
\cvarg{win\_stride}{Window stride. Must be a multiple of block stride.}
|
||||
\cvarg{padding}{Mock parameter to keep CPU interface compatibility. Must be (0,0).}
|
||||
\cvarg{scale0}{Coefficient of the detection window increase.}
|
||||
\cvarg{group\_threshold}{After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping. See \cvCppCross{groupRectangles}}
|
||||
\cvarg{group\_threshold}{After detection some objects could be covered by many rectangles. This coefficient regulates similarity threshold. 0 means don't perform grouping.\newline
|
||||
See \cvCppCross{groupRectangles}.}
|
||||
\end{description}
|
||||
|
||||
\cvCppFunc{gpu::HOGDescriptor::getDescriptors}
|
||||
|
BIN
doc/opencv.pdf
BIN
doc/opencv.pdf
Binary file not shown.
Loading…
Reference in New Issue
Block a user