mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
python cv2 sample: GMM expectation-maximization
This commit is contained in:
parent
07f28d3309
commit
53f7a50fa2
57
samples/python2/gaussian_mix.py
Normal file
57
samples/python2/gaussian_mix.py
Normal file
@ -0,0 +1,57 @@
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
import cv2, cv
|
||||
|
||||
|
||||
def make_gaussians(cluster_n, img_size):
|
||||
points = []
|
||||
ref_distrs = []
|
||||
for i in xrange(cluster_n):
|
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
||||
n = 100 + random.randint(900)
|
||||
pts = random.multivariate_normal(mean, cov, n)
|
||||
points.append( pts )
|
||||
ref_distrs.append( (mean, cov) )
|
||||
points = np.float32( np.vstack(points) )
|
||||
return points, ref_distrs
|
||||
|
||||
def draw_gaussain(img, mean, cov, color):
|
||||
x, y = np.int32(mean)
|
||||
w, u, vt = cv2.SVDecomp(cov)
|
||||
ang = np.rad2deg( np.arctan2(u[1, 0], u[0, 0]) )
|
||||
s1, s2 = np.sqrt(w)*3.0
|
||||
cv2.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv.CV_AA)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
cluster_n = 5
|
||||
img_size = 512
|
||||
|
||||
print 'press any key to update distributions, ESC - exit\n'
|
||||
|
||||
while True:
|
||||
print 'sampling distributions...'
|
||||
points, ref_distrs = make_gaussians(cluster_n, img_size)
|
||||
|
||||
print 'EM (opencv) ...'
|
||||
em = cv2.EM(points, params = dict( nclusters = cluster_n, cov_mat_type = cv2.EM_COV_MAT_GENERIC) )
|
||||
means = em.getMeans()
|
||||
covs = np.zeros((cluster_n, 2, 2), np.float32)
|
||||
covs = em.getCovs(covs) # FIXME
|
||||
found_distrs = zip(means, covs)
|
||||
print 'ready!\n'
|
||||
|
||||
img = np.zeros((img_size, img_size, 3), np.uint8)
|
||||
for x, y in np.int32(points):
|
||||
cv2.circle(img, (x, y), 1, (255, 255, 255), -1)
|
||||
for m, cov in ref_distrs:
|
||||
draw_gaussain(img, m, cov, (0, 255, 0))
|
||||
for m, cov in found_distrs:
|
||||
draw_gaussain(img, m, cov, (0, 0, 255))
|
||||
|
||||
cv2.imshow('gaussian mixture', img)
|
||||
ch = cv2.waitKey(0)
|
||||
if ch == 27:
|
||||
break
|
Loading…
Reference in New Issue
Block a user