mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #16223 from l-bat:lip_jppnet
This commit is contained in:
commit
5429b1f5ff
@ -250,7 +250,8 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
std::vector<size_t> pads_begin, pads_end;
|
||||
CV_DEPRECATED_EXTERNAL Size kernel, stride, pad;
|
||||
CV_DEPRECATED_EXTERNAL int pad_l, pad_t, pad_r, pad_b;
|
||||
bool globalPooling;
|
||||
bool globalPooling; //!< Flag is true if at least one of the axes is global pooled.
|
||||
std::vector<bool> isGlobalPooling;
|
||||
bool computeMaxIdx;
|
||||
String padMode;
|
||||
bool ceilMode;
|
||||
|
@ -47,9 +47,9 @@
|
||||
#include "opencv2/core/async.hpp"
|
||||
|
||||
#if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_EXPERIMENTAL_NS
|
||||
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_34_v15 {
|
||||
#define CV__DNN_EXPERIMENTAL_NS_BEGIN namespace experimental_dnn_34_v16 {
|
||||
#define CV__DNN_EXPERIMENTAL_NS_END }
|
||||
namespace cv { namespace dnn { namespace experimental_dnn_34_v15 { } using namespace experimental_dnn_34_v15; }}
|
||||
namespace cv { namespace dnn { namespace experimental_dnn_34_v16 { } using namespace experimental_dnn_34_v16; }}
|
||||
#else
|
||||
#define CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
#define CV__DNN_EXPERIMENTAL_NS_END
|
||||
|
@ -144,26 +144,37 @@ void getStrideAndPadding(const LayerParams ¶ms, std::vector<size_t>& pads_be
|
||||
}
|
||||
}
|
||||
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, bool &globalPooling,
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, std::vector<bool>& globalPooling,
|
||||
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end,
|
||||
std::vector<size_t>& strides, cv::String &padMode)
|
||||
{
|
||||
globalPooling = params.has("global_pooling") &&
|
||||
params.get<bool>("global_pooling");
|
||||
bool is_global = params.get<bool>("global_pooling", false);
|
||||
globalPooling.resize(3);
|
||||
globalPooling[0] = params.get<bool>("global_pooling_d", is_global);
|
||||
globalPooling[1] = params.get<bool>("global_pooling_h", is_global);
|
||||
globalPooling[2] = params.get<bool>("global_pooling_w", is_global);
|
||||
|
||||
if (globalPooling)
|
||||
if (globalPooling[0] || globalPooling[1] || globalPooling[2])
|
||||
{
|
||||
util::getStrideAndPadding(params, pads_begin, pads_end, strides, padMode);
|
||||
if(params.has("kernel_h") || params.has("kernel_w") || params.has("kernel_size"))
|
||||
{
|
||||
if ((globalPooling[0] && params.has("kernel_d")) ||
|
||||
(globalPooling[1] && params.has("kernel_h")) ||
|
||||
(globalPooling[2] && params.has("kernel_w")) ||
|
||||
params.has("kernel_size")) {
|
||||
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, kernel_size (or kernel_h and kernel_w) cannot be specified");
|
||||
}
|
||||
for (int i = 0; i < pads_begin.size(); i++) {
|
||||
if (pads_begin[i] != 0 || pads_end[i] != 0)
|
||||
|
||||
kernel.resize(3);
|
||||
kernel[0] = params.get<int>("kernel_d", 1);
|
||||
kernel[1] = params.get<int>("kernel_h", 1);
|
||||
kernel[2] = params.get<int>("kernel_w", 1);
|
||||
|
||||
for (int i = 0, j = globalPooling.size() - pads_begin.size(); i < pads_begin.size(); i++, j++) {
|
||||
if ((pads_begin[i] != 0 || pads_end[i] != 0) && globalPooling[j])
|
||||
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, pads must be = 0");
|
||||
}
|
||||
for (int i = 0; i < strides.size(); i++) {
|
||||
if (strides[i] != 1)
|
||||
for (int i = 0, j = globalPooling.size() - strides.size(); i < strides.size(); i++, j++) {
|
||||
if (strides[i] != 1 && globalPooling[j])
|
||||
CV_Error(cv::Error::StsBadArg, "In global_pooling mode, strides must be = 1");
|
||||
}
|
||||
}
|
||||
|
@ -63,7 +63,7 @@ void getConvolutionKernelParams(const LayerParams ¶ms, std::vector<size_t>&
|
||||
std::vector<size_t>& pads_end, std::vector<size_t>& strides, std::vector<size_t>& dilations,
|
||||
cv::String &padMode, std::vector<size_t>& adjust_pads);
|
||||
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, bool &globalPooling,
|
||||
void getPoolingKernelParams(const LayerParams ¶ms, std::vector<size_t>& kernel, std::vector<bool>& globalPooling,
|
||||
std::vector<size_t>& pads_begin, std::vector<size_t>& pads_end, std::vector<size_t>& strides, cv::String &padMode);
|
||||
|
||||
void getConvPoolOutParams(const std::vector<int>& inp, const std::vector<size_t>& kernel,
|
||||
|
@ -79,6 +79,7 @@ public:
|
||||
{
|
||||
computeMaxIdx = true;
|
||||
globalPooling = false;
|
||||
isGlobalPooling = std::vector<bool>(3, false);
|
||||
stride = Size(1, 1);
|
||||
pad_t = pad_l = pad_b = pad_r = 0;
|
||||
|
||||
@ -95,7 +96,8 @@ public:
|
||||
else
|
||||
CV_Error(Error::StsBadArg, "Unknown pooling type \"" + pool + "\"");
|
||||
|
||||
getPoolingKernelParams(params, kernel_size, globalPooling, pads_begin, pads_end, strides, padMode);
|
||||
getPoolingKernelParams(params, kernel_size, isGlobalPooling, pads_begin, pads_end, strides, padMode);
|
||||
globalPooling = isGlobalPooling[0] || isGlobalPooling[1] || isGlobalPooling[2];
|
||||
if (kernel_size.size() == 2) {
|
||||
kernel = Size(kernel_size[1], kernel_size[0]);
|
||||
stride = Size(strides[1], strides[0]);
|
||||
@ -147,9 +149,14 @@ public:
|
||||
out.push_back(outputs[0].size[i]);
|
||||
}
|
||||
if (globalPooling) {
|
||||
kernel = Size(inp[1], inp[0]);
|
||||
kernel_size = std::vector<size_t>(inp.begin(), inp.end());
|
||||
}
|
||||
std::vector<size_t> finalKernel;
|
||||
for (int i = 0; i < inp.size(); i++) {
|
||||
int idx = isGlobalPooling.size() - inp.size() + i;
|
||||
finalKernel.push_back(isGlobalPooling[idx] ? inp[i] : kernel_size[idx]);
|
||||
}
|
||||
kernel_size = finalKernel;
|
||||
kernel = Size(kernel_size[1], kernel_size[0]);
|
||||
}
|
||||
|
||||
getConvPoolPaddings(inp, kernel_size, strides, padMode, pads_begin, pads_end);
|
||||
if (pads_begin.size() == 2) {
|
||||
@ -995,20 +1002,25 @@ virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inp
|
||||
std::vector<int> inpShape(inputs[0].begin() + 2, inputs[0].end());
|
||||
std::vector<int> outShape(inputs[0].begin(), inputs[0].begin() + 2);
|
||||
|
||||
if (globalPooling)
|
||||
{
|
||||
outShape.push_back(1);
|
||||
outShape.push_back(1);
|
||||
std::vector<size_t> local_kernel;
|
||||
if (globalPooling) {
|
||||
for (int i = 0; i < inpShape.size(); i++) {
|
||||
int idx = isGlobalPooling.size() - inpShape.size() + i;
|
||||
local_kernel.push_back(isGlobalPooling[idx] ? inpShape[i] : kernel_size[idx]);
|
||||
}
|
||||
} else {
|
||||
local_kernel = kernel_size;
|
||||
}
|
||||
else if (type == ROI || type == PSROI)
|
||||
|
||||
if (type == ROI || type == PSROI)
|
||||
{
|
||||
outShape.push_back(pooledSize.height);
|
||||
outShape.push_back(pooledSize.width);
|
||||
}
|
||||
else if (padMode.empty())
|
||||
{
|
||||
for (int i = 0; i < kernel_size.size(); i++) {
|
||||
float dst = (float)(inpShape[i] + pads_begin[i] + pads_end[i] - kernel_size[i]) / strides[i];
|
||||
for (int i = 0; i < local_kernel.size(); i++) {
|
||||
float dst = (float)(inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
|
||||
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
|
||||
}
|
||||
|
||||
@ -1023,7 +1035,7 @@ virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inp
|
||||
}
|
||||
else
|
||||
{
|
||||
getConvPoolOutParams(inpShape, kernel_size, strides, padMode, std::vector<size_t>(kernel_size.size(), 1), outShape);
|
||||
getConvPoolOutParams(inpShape, local_kernel, strides, padMode, std::vector<size_t>(local_kernel.size(), 1), outShape);
|
||||
}
|
||||
if (type == ROI)
|
||||
{
|
||||
|
@ -114,7 +114,8 @@ public:
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
((backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) &&
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && sliceRanges.size() == 1) ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 &&
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1) &&
|
||||
#endif
|
||||
|
@ -1936,20 +1936,22 @@ void TFImporter::populateNet(Net dstNet)
|
||||
}
|
||||
else if (type == "Mean")
|
||||
{
|
||||
// Computes the mean of elements across dimensions of a tensor.
|
||||
// If keepdims is false (default) reduces input_tensor along the dimensions given in axis,
|
||||
// else the reduced dimensions are retained with length 1.
|
||||
// if indices = [1, 2] in NHWC layout we use global pooling: NxCxHxW --Pooling--> NxCx1x1
|
||||
// if keepdims is false we use Flatten after Pooling: out_shape = NxC
|
||||
// if indices = [0] we use a global pooling by indices.
|
||||
// To return correct shape, we use Reshape after Pooling. To determine input shape use Slice for input,
|
||||
// if keepdims is false we use Flatten after Slice.
|
||||
// Example: input_shape = NxCxHxW
|
||||
// determine out shape: NxCxHxW --Slice--> 1xCxHxW
|
||||
// out_shape = 1xCxHxW if keepDims else (1xCxHxW --Flatten--> CxHxW)
|
||||
// global pool: NxCxHxW --Flatten--> Nx(C*H*W) --Reshape--> 1x1xNx(C*H*W) --Pooling--> 1x1x1x(C*H*W) --Reshape--> out_shape
|
||||
|
||||
Mat indices = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
CV_Assert(indices.type() == CV_32SC1);
|
||||
|
||||
if (indices.total() != 2 || indices.at<int>(0) != 1 || indices.at<int>(1) != 2)
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported mode of reduce_mean operation.");
|
||||
|
||||
layerParams.set("pool", "ave");
|
||||
layerParams.set("global_pooling", true);
|
||||
|
||||
int id = dstNet.addLayer(name, "Pooling", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
|
||||
// There are two attributes, "keepdims" and a deprecated "keep_dims".
|
||||
bool keepDims = false;
|
||||
if (hasLayerAttr(layer, "keepdims"))
|
||||
@ -1957,16 +1959,128 @@ void TFImporter::populateNet(Net dstNet)
|
||||
else if (hasLayerAttr(layer, "keep_dims"))
|
||||
keepDims = getLayerAttr(layer, "keep_dims").b();
|
||||
|
||||
if (!keepDims)
|
||||
if (indices.total() == 1 && indices.at<int>(0) == 0)
|
||||
{
|
||||
LayerParams flattenLp;
|
||||
std::string flattenName = name + "/flatten";
|
||||
CV_Assert(layer_id.find(flattenName) == layer_id.end());
|
||||
int flattenId = dstNet.addLayer(flattenName, "Flatten", flattenLp);
|
||||
layer_id[flattenName] = flattenId;
|
||||
connect(layer_id, dstNet, Pin(name), flattenId, 0);
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), flattenId, 0);
|
||||
|
||||
LayerParams reshapeLp;
|
||||
std::string reshapeName = name + "/reshape";
|
||||
CV_Assert(layer_id.find(reshapeName) == layer_id.end());
|
||||
reshapeLp.set("axis", 0);
|
||||
reshapeLp.set("num_axes", 1);
|
||||
int newShape[] = {1, 1, -1};
|
||||
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], 3));
|
||||
|
||||
int reshapeId = dstNet.addLayer(reshapeName, "Reshape", reshapeLp);
|
||||
layer_id[reshapeName] = reshapeId;
|
||||
connect(layer_id, dstNet, Pin(flattenName), reshapeId, 0);
|
||||
|
||||
LayerParams avgLp;
|
||||
std::string avgName = name + "/avg";
|
||||
CV_Assert(layer_id.find(avgName) == layer_id.end());
|
||||
avgLp.set("pool", "ave");
|
||||
// pooling kernel H x 1
|
||||
avgLp.set("global_pooling_h", true);
|
||||
avgLp.set("kernel_w", 1);
|
||||
int avgId = dstNet.addLayer(avgName, "Pooling", avgLp);
|
||||
layer_id[avgName] = avgId;
|
||||
connect(layer_id, dstNet, Pin(reshapeName), avgId, 0);
|
||||
|
||||
LayerParams sliceLp;
|
||||
std::string layerShapeName = name + "/slice";
|
||||
CV_Assert(layer_id.find(layerShapeName) == layer_id.end());
|
||||
sliceLp.set("axis", 0);
|
||||
int begin[] = {0};
|
||||
int size[] = {1};
|
||||
sliceLp.set("begin", DictValue::arrayInt(&begin[0], 1));
|
||||
sliceLp.set("size", DictValue::arrayInt(&size[0], 1));
|
||||
int sliceId = dstNet.addLayer(layerShapeName, "Slice", sliceLp);
|
||||
layer_id[layerShapeName] = sliceId;
|
||||
connect(layer_id, dstNet, Pin(layer.input(0)), sliceId, 0);
|
||||
|
||||
if (!keepDims)
|
||||
{
|
||||
LayerParams squeezeLp;
|
||||
std::string squeezeName = name + "/squeeze";
|
||||
CV_Assert(layer_id.find(squeezeName) == layer_id.end());
|
||||
squeezeLp.set("axis", 0);
|
||||
squeezeLp.set("end_axis", 1);
|
||||
int squeezeId = dstNet.addLayer(squeezeName, "Flatten", squeezeLp);
|
||||
layer_id[squeezeName] = squeezeId;
|
||||
connect(layer_id, dstNet, Pin(layerShapeName), squeezeId, 0);
|
||||
layerShapeName = squeezeName;
|
||||
}
|
||||
|
||||
int id = dstNet.addLayer(name, "Reshape", layerParams);
|
||||
layer_id[name] = id;
|
||||
connect(layer_id, dstNet, Pin(avgName), id, 0);
|
||||
connect(layer_id, dstNet, Pin(layerShapeName), id, 1);
|
||||
} else {
|
||||
if (indices.total() != 2 || indices.at<int>(0) != 1 || indices.at<int>(1) != 2)
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported mode of reduce_mean operation.");
|
||||
|
||||
layerParams.set("pool", "ave");
|
||||
layerParams.set("global_pooling", true);
|
||||
int id = dstNet.addLayer(name, "Pooling", layerParams);
|
||||
layer_id[name] = id;
|
||||
connect(layer_id, dstNet, parsePin(layer.input(0)), id, 0);
|
||||
|
||||
if (!keepDims)
|
||||
{
|
||||
LayerParams flattenLp;
|
||||
std::string flattenName = name + "/flatten";
|
||||
CV_Assert(layer_id.find(flattenName) == layer_id.end());
|
||||
int flattenId = dstNet.addLayer(flattenName, "Flatten", flattenLp);
|
||||
layer_id[flattenName] = flattenId;
|
||||
connect(layer_id, dstNet, Pin(name), flattenId, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (type == "Pack")
|
||||
{
|
||||
// op: tf.stack(list of tensors, axis=0)
|
||||
// Join a list of inputs along a new axis.
|
||||
// The "axis" specifies the index of the new axis in the dimensions of the output.
|
||||
// Example: given a list with "N" tensors of shape (C, H, W):
|
||||
// if axis == 0 then the output tensor will have the shape (N, C, H, W),
|
||||
// if axis == 1 then the output tensor will have the shape (C, N, H, W).
|
||||
CV_Assert(hasLayerAttr(layer, "axis"));
|
||||
int dim = (int)getLayerAttr(layer, "axis").i();
|
||||
if (dim != 0)
|
||||
CV_Error(Error::StsNotImplemented, "Unsupported mode of pack operation.");
|
||||
|
||||
CV_Assert(hasLayerAttr(layer, "N"));
|
||||
int num = (int)getLayerAttr(layer, "N").i();
|
||||
CV_Assert(layer.input_size() == num);
|
||||
std::string base_name = name + "/reshape_";
|
||||
std::vector<int> reshape_ids;
|
||||
for (int i = 0; i < num; i++) {
|
||||
std::ostringstream ss;
|
||||
ss << i;
|
||||
std::string reshape_name = base_name + ss.str();
|
||||
LayerParams reshapeLP;
|
||||
reshapeLP.set("axis", dim);
|
||||
reshapeLP.set("num_axes", 1);
|
||||
int outShape[] = {1, -1};
|
||||
reshapeLP.set("dim", DictValue::arrayInt(&outShape[0], 2));
|
||||
int id = dstNet.addLayer(reshape_name, "Reshape", reshapeLP);
|
||||
layer_id[reshape_name] = id;
|
||||
reshape_ids.push_back(id);
|
||||
connect(layer_id, dstNet, parsePin(layer.input(i)), id, 0);
|
||||
}
|
||||
|
||||
layerParams.set("axis", dim);
|
||||
int id = dstNet.addLayer(name, "Concat", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
for (int li = 0; li < num; li++)
|
||||
dstNet.connect(reshape_ids[li], 0, id, li);
|
||||
}
|
||||
else if (type == "ClipByValue")
|
||||
{
|
||||
// op: "ClipByValue"
|
||||
|
@ -121,6 +121,13 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, reduce_mean)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
runTensorFlowNet("global_pool_by_axis");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, conv)
|
||||
{
|
||||
runTensorFlowNet("single_conv");
|
||||
|
178
samples/dnn/human_parsing.py
Normal file
178
samples/dnn/human_parsing.py
Normal file
@ -0,0 +1,178 @@
|
||||
#!/usr/bin/env python
|
||||
'''
|
||||
You can download the converted pb model from https://www.dropbox.com/s/qag9vzambhhkvxr/lip_jppnet_384.pb?dl=0
|
||||
or convert the model yourself.
|
||||
|
||||
Follow these steps if you want to convert the original model yourself:
|
||||
To get original .meta pre-trained model download https://drive.google.com/file/d/1BFVXgeln-bek8TCbRjN6utPAgRE0LJZg/view
|
||||
For correct convert .meta to .pb model download original repository https://github.com/Engineering-Course/LIP_JPPNet
|
||||
Change script evaluate_parsing_JPPNet-s2.py for human parsing
|
||||
1. Remove preprocessing to create image_batch_origin:
|
||||
with tf.name_scope("create_inputs"):
|
||||
...
|
||||
Add
|
||||
image_batch_origin = tf.placeholder(tf.float32, shape=(2, None, None, 3), name='input')
|
||||
|
||||
2. Create input
|
||||
image = cv2.imread(path/to/image)
|
||||
image_rev = np.flip(image, axis=1)
|
||||
input = np.stack([image, image_rev], axis=0)
|
||||
|
||||
3. Hardcode image_h and image_w shapes to determine output shapes.
|
||||
We use default INPUT_SIZE = (384, 384) from evaluate_parsing_JPPNet-s2.py.
|
||||
parsing_out1 = tf.reduce_mean(tf.stack([tf.image.resize_images(parsing_out1_100, INPUT_SIZE),
|
||||
tf.image.resize_images(parsing_out1_075, INPUT_SIZE),
|
||||
tf.image.resize_images(parsing_out1_125, INPUT_SIZE)]), axis=0)
|
||||
Do similarly with parsing_out2, parsing_out3
|
||||
4. Remove postprocessing. Last net operation:
|
||||
raw_output = tf.reduce_mean(tf.stack([parsing_out1, parsing_out2, parsing_out3]), axis=0)
|
||||
Change:
|
||||
parsing_ = sess.run(raw_output, feed_dict={'input:0': input})
|
||||
|
||||
5. To save model after sess.run(...) add:
|
||||
input_graph_def = tf.get_default_graph().as_graph_def()
|
||||
output_node = "Mean_3"
|
||||
output_graph_def = tf.graph_util.convert_variables_to_constants(sess, input_graph_def, output_node)
|
||||
|
||||
output_graph = "LIP_JPPNet.pb"
|
||||
with tf.gfile.GFile(output_graph, "wb") as f:
|
||||
f.write(output_graph_def.SerializeToString())'
|
||||
'''
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
|
||||
|
||||
|
||||
def preprocess(image_path):
|
||||
"""
|
||||
Create 4-dimensional blob from image and flip image
|
||||
:param image_path: path to input image
|
||||
"""
|
||||
image = cv.imread(image_path)
|
||||
image_rev = np.flip(image, axis=1)
|
||||
input = cv.dnn.blobFromImages([image, image_rev], mean=(104.00698793, 116.66876762, 122.67891434))
|
||||
return input
|
||||
|
||||
|
||||
def run_net(input, model_path, backend, target):
|
||||
"""
|
||||
Read network and infer model
|
||||
:param model_path: path to JPPNet model
|
||||
:param backend: computation backend
|
||||
:param target: computation device
|
||||
"""
|
||||
net = cv.dnn.readNet(model_path)
|
||||
net.setPreferableBackend(backend)
|
||||
net.setPreferableTarget(target)
|
||||
net.setInput(input)
|
||||
out = net.forward()
|
||||
return out
|
||||
|
||||
|
||||
def postprocess(out, input_shape):
|
||||
"""
|
||||
Create a grayscale human segmentation
|
||||
:param out: network output
|
||||
:param input_shape: input image width and height
|
||||
"""
|
||||
# LIP classes
|
||||
# 0 Background
|
||||
# 1 Hat
|
||||
# 2 Hair
|
||||
# 3 Glove
|
||||
# 4 Sunglasses
|
||||
# 5 UpperClothes
|
||||
# 6 Dress
|
||||
# 7 Coat
|
||||
# 8 Socks
|
||||
# 9 Pants
|
||||
# 10 Jumpsuits
|
||||
# 11 Scarf
|
||||
# 12 Skirt
|
||||
# 13 Face
|
||||
# 14 LeftArm
|
||||
# 15 RightArm
|
||||
# 16 LeftLeg
|
||||
# 17 RightLeg
|
||||
# 18 LeftShoe
|
||||
# 19 RightShoe
|
||||
head_output, tail_output = np.split(out, indices_or_sections=[1], axis=0)
|
||||
head_output = head_output.squeeze(0)
|
||||
tail_output = tail_output.squeeze(0)
|
||||
|
||||
head_output = np.stack([cv.resize(img, dsize=input_shape) for img in head_output[:, ...]])
|
||||
tail_output = np.stack([cv.resize(img, dsize=input_shape) for img in tail_output[:, ...]])
|
||||
|
||||
tail_list = np.split(tail_output, indices_or_sections=list(range(1, 20)), axis=0)
|
||||
tail_list = [arr.squeeze(0) for arr in tail_list]
|
||||
tail_list_rev = [tail_list[i] for i in range(14)]
|
||||
tail_list_rev.extend([tail_list[15], tail_list[14], tail_list[17], tail_list[16], tail_list[19], tail_list[18]])
|
||||
tail_output_rev = np.stack(tail_list_rev, axis=0)
|
||||
tail_output_rev = np.flip(tail_output_rev, axis=2)
|
||||
raw_output_all = np.mean(np.stack([head_output, tail_output_rev], axis=0), axis=0, keepdims=True)
|
||||
raw_output_all = np.argmax(raw_output_all, axis=1)
|
||||
raw_output_all = raw_output_all.transpose(1, 2, 0)
|
||||
return raw_output_all
|
||||
|
||||
|
||||
def decode_labels(gray_image):
|
||||
"""
|
||||
Colorize image according to labels
|
||||
:param gray_image: grayscale human segmentation result
|
||||
"""
|
||||
height, width, _ = gray_image.shape
|
||||
colors = [(0, 0, 0), (128, 0, 0), (255, 0, 0), (0, 85, 0), (170, 0, 51), (255, 85, 0),
|
||||
(0, 0, 85), (0, 119, 221), (85, 85, 0), (0, 85, 85), (85, 51, 0), (52, 86, 128),
|
||||
(0, 128, 0), (0, 0, 255), (51, 170, 221), (0, 255, 255),(85, 255, 170),
|
||||
(170, 255, 85), (255, 255, 0), (255, 170, 0)]
|
||||
|
||||
segm = np.stack([colors[idx] for idx in gray_image.flatten()])
|
||||
segm = segm.reshape(height, width, 3).astype(np.uint8)
|
||||
segm = cv.cvtColor(segm, cv.COLOR_BGR2RGB)
|
||||
return segm
|
||||
|
||||
|
||||
def parse_human(image_path, model_path, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU):
|
||||
"""
|
||||
Prepare input for execution, run net and postprocess output to parse human.
|
||||
:param image_path: path to input image
|
||||
:param model_path: path to JPPNet model
|
||||
:param backend: name of computation backend
|
||||
:param target: name of computation target
|
||||
"""
|
||||
input = preprocess(image_path)
|
||||
input_h, input_w = input.shape[2:]
|
||||
output = run_net(input, model_path, backend, target)
|
||||
grayscale_out = postprocess(output, (input_w, input_h))
|
||||
segmentation = decode_labels(grayscale_out)
|
||||
return segmentation
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Use this script to run human parsing using JPPNet',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--input', '-i', required=True, help='Path to input image.')
|
||||
parser.add_argument('--model', '-m', required=True, help='Path to pb model.')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
help="Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation" % backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: VPU' % targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
output = parse_human(args.input, args.model, args.backend, args.target)
|
||||
winName = 'Deep learning human parsing in OpenCV'
|
||||
cv.namedWindow(winName, cv.WINDOW_AUTOSIZE)
|
||||
cv.imshow(winName, output)
|
||||
cv.waitKey()
|
Loading…
Reference in New Issue
Block a user