mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
dnn: some minor fixes in docs, indentation, unused code
This commit is contained in:
parent
520da7aaaf
commit
544908d06c
@ -44,7 +44,7 @@
|
||||
|
||||
// This is an umbrealla header to include into you project.
|
||||
// We are free to change headers layout in dnn subfolder, so please include
|
||||
// this header for future compartibility
|
||||
// this header for future compatibility
|
||||
|
||||
|
||||
/** @defgroup dnn Deep Neural Network module
|
||||
|
@ -152,7 +152,19 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
int outputNameToIndex(String outputName);
|
||||
};
|
||||
|
||||
//! Classical recurrent layer
|
||||
/** @brief Classical recurrent layer
|
||||
|
||||
Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
|
||||
|
||||
- input: should contain packed input @f$x_t@f$.
|
||||
- output: should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
|
||||
|
||||
input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
|
||||
|
||||
output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
|
||||
|
||||
If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
|
||||
*/
|
||||
class CV_EXPORTS RNNLayer : public Layer
|
||||
{
|
||||
public:
|
||||
@ -180,17 +192,6 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
virtual void setProduceHiddenOutput(bool produce = false) = 0;
|
||||
|
||||
/** Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
|
||||
|
||||
@param input should contain packed input @f$x_t@f$.
|
||||
@param output should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
|
||||
|
||||
@p input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
|
||||
|
||||
@p output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
|
||||
|
||||
If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
|
||||
*/
|
||||
};
|
||||
|
||||
class CV_EXPORTS BaseConvolutionLayer : public Layer
|
||||
|
@ -969,9 +969,6 @@ struct Net::Impl
|
||||
}
|
||||
}
|
||||
|
||||
#define CV_RETHROW_ERROR(err, newmsg)\
|
||||
cv::error(err.code, newmsg, err.func.c_str(), err.file.c_str(), err.line)
|
||||
|
||||
void allocateLayer(int lid, const LayersShapesMap& layersShapes)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
Loading…
Reference in New Issue
Block a user