mirror of
https://github.com/opencv/opencv.git
synced 2025-07-24 05:39:22 +08:00
core: refactor EigenvalueDecomposition (hqr2)
- fix resource allocation management - reduce variables scope - fix complex_div - fix comments, constants - simplify add/sub operations
This commit is contained in:
parent
a7c4ee9ae1
commit
5451b89aed
@ -248,9 +248,6 @@ private:
|
||||
// Holds the data dimension.
|
||||
int n;
|
||||
|
||||
// Stores real/imag part of a complex division.
|
||||
double cdivr, cdivi;
|
||||
|
||||
// Pointer to internal memory.
|
||||
double *d, *e, *ort;
|
||||
double **V, **H;
|
||||
@ -297,8 +294,9 @@ private:
|
||||
return arr;
|
||||
}
|
||||
|
||||
void cdiv(double xr, double xi, double yr, double yi) {
|
||||
static void complex_div(double xr, double xi, double yr, double yi, double& cdivr, double& cdivi) {
|
||||
double r, dv;
|
||||
CV_DbgAssert(std::abs(yr) + std::abs(yi) > 0.0);
|
||||
if (std::abs(yr) > std::abs(yi)) {
|
||||
r = yi / yr;
|
||||
dv = yr + r * yi;
|
||||
@ -324,24 +322,25 @@ private:
|
||||
// Initialize
|
||||
const int max_iters_count = 1000 * this->n;
|
||||
|
||||
int nn = this->n;
|
||||
const int nn = this->n; CV_Assert(nn > 0);
|
||||
int n1 = nn - 1;
|
||||
int low = 0;
|
||||
int high = nn - 1;
|
||||
double eps = std::pow(2.0, -52.0);
|
||||
const int low = 0;
|
||||
const int high = nn - 1;
|
||||
const double eps = std::numeric_limits<double>::epsilon();
|
||||
double exshift = 0.0;
|
||||
double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y;
|
||||
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
|
||||
double norm = 0.0;
|
||||
for (int i = 0; i < nn; i++) {
|
||||
#if 0 // 'if' condition is always false
|
||||
if (i < low || i > high) {
|
||||
d[i] = H[i][i];
|
||||
e[i] = 0.0;
|
||||
}
|
||||
#endif
|
||||
for (int j = std::max(i - 1, 0); j < nn; j++) {
|
||||
norm = norm + std::abs(H[i][j]);
|
||||
norm += std::abs(H[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -355,7 +354,7 @@ private:
|
||||
if (norm < FLT_EPSILON) {
|
||||
break;
|
||||
}
|
||||
s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
|
||||
double s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]);
|
||||
if (s == 0.0) {
|
||||
s = norm;
|
||||
}
|
||||
@ -366,29 +365,26 @@ private:
|
||||
}
|
||||
|
||||
// Check for convergence
|
||||
// One root found
|
||||
|
||||
if (l == n1) {
|
||||
// One root found
|
||||
H[n1][n1] = H[n1][n1] + exshift;
|
||||
d[n1] = H[n1][n1];
|
||||
e[n1] = 0.0;
|
||||
n1--;
|
||||
iter = 0;
|
||||
|
||||
// Two roots found
|
||||
|
||||
} else if (l == n1 - 1) {
|
||||
w = H[n1][n1 - 1] * H[n1 - 1][n1];
|
||||
p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0;
|
||||
q = p * p + w;
|
||||
z = std::sqrt(std::abs(q));
|
||||
// Two roots found
|
||||
double w = H[n1][n1 - 1] * H[n1 - 1][n1];
|
||||
double p = (H[n1 - 1][n1 - 1] - H[n1][n1]) * 0.5;
|
||||
double q = p * p + w;
|
||||
double z = std::sqrt(std::abs(q));
|
||||
H[n1][n1] = H[n1][n1] + exshift;
|
||||
H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift;
|
||||
x = H[n1][n1];
|
||||
|
||||
// Real pair
|
||||
double x = H[n1][n1];
|
||||
|
||||
if (q >= 0) {
|
||||
// Real pair
|
||||
if (p >= 0) {
|
||||
z = p + z;
|
||||
} else {
|
||||
@ -402,10 +398,10 @@ private:
|
||||
e[n1 - 1] = 0.0;
|
||||
e[n1] = 0.0;
|
||||
x = H[n1][n1 - 1];
|
||||
s = std::abs(x) + std::abs(z);
|
||||
double s = std::abs(x) + std::abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
r = std::sqrt(p * p + q * q);
|
||||
double r = std::sqrt(p * p + q * q);
|
||||
p = p / r;
|
||||
q = q / r;
|
||||
|
||||
@ -433,9 +429,8 @@ private:
|
||||
V[i][n1] = q * V[i][n1] - p * z;
|
||||
}
|
||||
|
||||
// Complex pair
|
||||
|
||||
} else {
|
||||
// Complex pair
|
||||
d[n1 - 1] = x + p;
|
||||
d[n1] = x + p;
|
||||
e[n1 - 1] = z;
|
||||
@ -444,28 +439,25 @@ private:
|
||||
n1 = n1 - 2;
|
||||
iter = 0;
|
||||
|
||||
} else {
|
||||
// No convergence yet
|
||||
|
||||
} else {
|
||||
|
||||
// Form shift
|
||||
|
||||
x = H[n1][n1];
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
double x = H[n1][n1];
|
||||
double y = 0.0;
|
||||
double w = 0.0;
|
||||
if (l < n1) {
|
||||
y = H[n1 - 1][n1 - 1];
|
||||
w = H[n1][n1 - 1] * H[n1 - 1][n1];
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
|
||||
if (iter == 10) {
|
||||
exshift += x;
|
||||
for (int i = low; i <= n1; i++) {
|
||||
H[i][i] -= x;
|
||||
}
|
||||
s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
|
||||
double s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]);
|
||||
x = y = 0.75 * s;
|
||||
w = -0.4375 * s * s;
|
||||
}
|
||||
@ -473,14 +465,14 @@ private:
|
||||
// MATLAB's new ad hoc shift
|
||||
|
||||
if (iter == 30) {
|
||||
s = (y - x) / 2.0;
|
||||
double s = (y - x) * 0.5;
|
||||
s = s * s + w;
|
||||
if (s > 0) {
|
||||
s = std::sqrt(s);
|
||||
if (y < x) {
|
||||
s = -s;
|
||||
}
|
||||
s = x - w / ((y - x) / 2.0 + s);
|
||||
s = x - w / ((y - x) * 0.5 + s);
|
||||
for (int i = low; i <= n1; i++) {
|
||||
H[i][i] -= s;
|
||||
}
|
||||
@ -493,12 +485,16 @@ private:
|
||||
if (iter > max_iters_count)
|
||||
CV_Error(Error::StsNoConv, "Algorithm doesn't converge (complex eigen values?)");
|
||||
|
||||
double p = std::numeric_limits<double>::quiet_NaN();
|
||||
double q = std::numeric_limits<double>::quiet_NaN();
|
||||
double r = std::numeric_limits<double>::quiet_NaN();
|
||||
|
||||
// Look for two consecutive small sub-diagonal elements
|
||||
int m = n1 - 2;
|
||||
while (m >= l) {
|
||||
z = H[m][m];
|
||||
double z = H[m][m];
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
double s = y - z;
|
||||
p = (r * s - w) / H[m + 1][m] + H[m][m + 1];
|
||||
q = H[m + 1][m + 1] - z - r - s;
|
||||
r = H[m + 2][m + 1];
|
||||
@ -527,6 +523,7 @@ private:
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
|
||||
for (int k = m; k < n1; k++) {
|
||||
|
||||
bool notlast = (k != n1 - 1);
|
||||
if (k != m) {
|
||||
p = H[k][k - 1];
|
||||
@ -542,7 +539,7 @@ private:
|
||||
if (x == 0.0) {
|
||||
break;
|
||||
}
|
||||
s = std::sqrt(p * p + q * q + r * r);
|
||||
double s = std::sqrt(p * p + q * q + r * r);
|
||||
if (p < 0) {
|
||||
s = -s;
|
||||
}
|
||||
@ -555,7 +552,7 @@ private:
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
y = q / s;
|
||||
z = r / s;
|
||||
double z = r / s;
|
||||
q = q / p;
|
||||
r = r / p;
|
||||
|
||||
@ -567,8 +564,8 @@ private:
|
||||
p = p + r * H[k + 2][j];
|
||||
H[k + 2][j] = H[k + 2][j] - p * z;
|
||||
}
|
||||
H[k][j] = H[k][j] - p * x;
|
||||
H[k + 1][j] = H[k + 1][j] - p * y;
|
||||
H[k][j] -= p * x;
|
||||
H[k + 1][j] -= p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
@ -579,8 +576,8 @@ private:
|
||||
p = p + z * H[i][k + 2];
|
||||
H[i][k + 2] = H[i][k + 2] - p * r;
|
||||
}
|
||||
H[i][k] = H[i][k] - p;
|
||||
H[i][k + 1] = H[i][k + 1] - p * q;
|
||||
H[i][k] -= p;
|
||||
H[i][k + 1] -= p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
@ -606,17 +603,19 @@ private:
|
||||
}
|
||||
|
||||
for (n1 = nn - 1; n1 >= 0; n1--) {
|
||||
p = d[n1];
|
||||
q = e[n1];
|
||||
|
||||
// Real vector
|
||||
double p = d[n1];
|
||||
double q = e[n1];
|
||||
|
||||
if (q == 0) {
|
||||
// Real vector
|
||||
double z = std::numeric_limits<double>::quiet_NaN();
|
||||
double s = std::numeric_limits<double>::quiet_NaN();
|
||||
|
||||
int l = n1;
|
||||
H[n1][n1] = 1.0;
|
||||
for (int i = n1 - 1; i >= 0; i--) {
|
||||
w = H[i][i] - p;
|
||||
r = 0.0;
|
||||
double w = H[i][i] - p;
|
||||
double r = 0.0;
|
||||
for (int j = l; j <= n1; j++) {
|
||||
r = r + H[i][j] * H[j][n1];
|
||||
}
|
||||
@ -631,34 +630,38 @@ private:
|
||||
} else {
|
||||
H[i][n1] = -r / (eps * norm);
|
||||
}
|
||||
|
||||
// Solve real equations
|
||||
|
||||
} else {
|
||||
x = H[i][i + 1];
|
||||
y = H[i + 1][i];
|
||||
// Solve real equations
|
||||
CV_DbgAssert(!cvIsNaN(z));
|
||||
double x = H[i][i + 1];
|
||||
double y = H[i + 1][i];
|
||||
q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
|
||||
t = (x * s - z * r) / q;
|
||||
double t = (x * s - z * r) / q;
|
||||
H[i][n1] = t;
|
||||
if (std::abs(x) > std::abs(z)) {
|
||||
H[i + 1][n1] = (-r - w * t) / x;
|
||||
} else {
|
||||
CV_DbgAssert(z != 0.0);
|
||||
H[i + 1][n1] = (-s - y * t) / z;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
|
||||
t = std::abs(H[i][n1]);
|
||||
double t = std::abs(H[i][n1]);
|
||||
if ((eps * t) * t > 1) {
|
||||
double inv_t = 1.0 / t;
|
||||
for (int j = i; j <= n1; j++) {
|
||||
H[j][n1] = H[j][n1] / t;
|
||||
H[j][n1] *= inv_t;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// Complex vector
|
||||
} else if (q < 0) {
|
||||
// Complex vector
|
||||
double z = std::numeric_limits<double>::quiet_NaN();
|
||||
double r = std::numeric_limits<double>::quiet_NaN();
|
||||
double s = std::numeric_limits<double>::quiet_NaN();
|
||||
|
||||
int l = n1 - 1;
|
||||
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
@ -667,9 +670,11 @@ private:
|
||||
H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1];
|
||||
H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1];
|
||||
} else {
|
||||
cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q);
|
||||
H[n1 - 1][n1 - 1] = cdivr;
|
||||
H[n1 - 1][n1] = cdivi;
|
||||
complex_div(
|
||||
0.0, -H[n1 - 1][n1],
|
||||
H[n1 - 1][n1 - 1] - p, q,
|
||||
H[n1 - 1][n1 - 1], H[n1 - 1][n1]
|
||||
);
|
||||
}
|
||||
H[n1][n1 - 1] = 0.0;
|
||||
H[n1][n1] = 1.0;
|
||||
@ -681,7 +686,7 @@ private:
|
||||
ra = ra + H[i][j] * H[j][n1 - 1];
|
||||
sa = sa + H[i][j] * H[j][n1];
|
||||
}
|
||||
w = H[i][i] - p;
|
||||
double w = H[i][i] - p;
|
||||
|
||||
if (e[i] < 0.0) {
|
||||
z = w;
|
||||
@ -690,41 +695,42 @@ private:
|
||||
} else {
|
||||
l = i;
|
||||
if (e[i] == 0) {
|
||||
cdiv(-ra, -sa, w, q);
|
||||
H[i][n1 - 1] = cdivr;
|
||||
H[i][n1] = cdivi;
|
||||
complex_div(
|
||||
-ra, -sa,
|
||||
w, q,
|
||||
H[i][n1 - 1], H[i][n1]
|
||||
);
|
||||
} else {
|
||||
|
||||
// Solve complex equations
|
||||
|
||||
x = H[i][i + 1];
|
||||
y = H[i + 1][i];
|
||||
double x = H[i][i + 1];
|
||||
double y = H[i + 1][i];
|
||||
vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
|
||||
vi = (d[i] - p) * 2.0 * q;
|
||||
if (vr == 0.0 && vi == 0.0) {
|
||||
vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x)
|
||||
+ std::abs(y) + std::abs(z));
|
||||
}
|
||||
cdiv(x * r - z * ra + q * sa,
|
||||
x * s - z * sa - q * ra, vr, vi);
|
||||
H[i][n1 - 1] = cdivr;
|
||||
H[i][n1] = cdivi;
|
||||
complex_div(
|
||||
x * r - z * ra + q * sa, x * s - z * sa - q * ra,
|
||||
vr, vi,
|
||||
H[i][n1 - 1], H[i][n1]);
|
||||
if (std::abs(x) > (std::abs(z) + std::abs(q))) {
|
||||
H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q
|
||||
* H[i][n1]) / x;
|
||||
H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1
|
||||
- 1]) / x;
|
||||
} else {
|
||||
cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z,
|
||||
q);
|
||||
H[i + 1][n1 - 1] = cdivr;
|
||||
H[i + 1][n1] = cdivi;
|
||||
complex_div(
|
||||
-r - y * H[i][n1 - 1], -s - y * H[i][n1],
|
||||
z, q,
|
||||
H[i + 1][n1 - 1], H[i + 1][n1]);
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
|
||||
t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
|
||||
double t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1]));
|
||||
if ((eps * t) * t > 1) {
|
||||
for (int j = i; j <= n1; j++) {
|
||||
H[j][n1 - 1] = H[j][n1 - 1] / t;
|
||||
@ -738,6 +744,7 @@ private:
|
||||
|
||||
// Vectors of isolated roots
|
||||
|
||||
#if 0 // 'if' condition is always false
|
||||
for (int i = 0; i < nn; i++) {
|
||||
if (i < low || i > high) {
|
||||
for (int j = i; j < nn; j++) {
|
||||
@ -745,14 +752,15 @@ private:
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Back transformation to get eigenvectors of original matrix
|
||||
|
||||
for (int j = nn - 1; j >= low; j--) {
|
||||
for (int i = low; i <= high; i++) {
|
||||
z = 0.0;
|
||||
double z = 0.0;
|
||||
for (int k = low; k <= std::min(j, high); k++) {
|
||||
z = z + V[i][k] * H[k][j];
|
||||
z += V[i][k] * H[k][j];
|
||||
}
|
||||
V[i][j] = z;
|
||||
}
|
||||
@ -852,15 +860,15 @@ private:
|
||||
// Releases all internal working memory.
|
||||
void release() {
|
||||
// releases the working data
|
||||
delete[] d;
|
||||
delete[] e;
|
||||
delete[] ort;
|
||||
delete[] d; d = NULL;
|
||||
delete[] e; e = NULL;
|
||||
delete[] ort; ort = NULL;
|
||||
for (int i = 0; i < n; i++) {
|
||||
delete[] H[i];
|
||||
delete[] V[i];
|
||||
if (H) delete[] H[i];
|
||||
if (V) delete[] V[i];
|
||||
}
|
||||
delete[] H;
|
||||
delete[] V;
|
||||
delete[] H; H = NULL;
|
||||
delete[] V; V = NULL;
|
||||
}
|
||||
|
||||
// Computes the Eigenvalue Decomposition for a matrix given in H.
|
||||
@ -870,7 +878,7 @@ private:
|
||||
d = alloc_1d<double> (n);
|
||||
e = alloc_1d<double> (n);
|
||||
ort = alloc_1d<double> (n);
|
||||
try {
|
||||
{
|
||||
// Reduce to Hessenberg form.
|
||||
orthes();
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
@ -888,11 +896,6 @@ private:
|
||||
// Deallocate the memory by releasing all internal working data.
|
||||
release();
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
release();
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
@ -900,7 +903,11 @@ public:
|
||||
// given in src. This function is a port of the EigenvalueSolver in JAMA,
|
||||
// which has been released to public domain by The MathWorks and the
|
||||
// National Institute of Standards and Technology (NIST).
|
||||
EigenvalueDecomposition(InputArray src, bool fallbackSymmetric = true) {
|
||||
EigenvalueDecomposition(InputArray src, bool fallbackSymmetric = true) :
|
||||
n(0),
|
||||
d(NULL), e(NULL), ort(NULL),
|
||||
V(NULL), H(NULL)
|
||||
{
|
||||
compute(src, fallbackSymmetric);
|
||||
}
|
||||
|
||||
@ -938,7 +945,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
~EigenvalueDecomposition() {}
|
||||
~EigenvalueDecomposition() { release(); }
|
||||
|
||||
// Returns the eigenvalues of the Eigenvalue Decomposition.
|
||||
Mat eigenvalues() const { return _eigenvalues; }
|
||||
|
Loading…
Reference in New Issue
Block a user