mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
Add 2 new tests, bugfixed in old tests
This commit is contained in:
parent
86868176a2
commit
54c07ba0ff
112
modules/python/test/test_camshift.py
Normal file
112
modules/python/test/test_camshift.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
'''
|
||||||
|
Camshift tracker
|
||||||
|
================
|
||||||
|
|
||||||
|
This is a demo that shows mean-shift based tracking
|
||||||
|
You select a color objects such as your face and it tracks it.
|
||||||
|
This reads from video camera (0 by default, or the camera number the user enters)
|
||||||
|
|
||||||
|
http://www.robinhewitt.com/research/track/camshift.html
|
||||||
|
|
||||||
|
'''
|
||||||
|
|
||||||
|
# Python 2/3 compatibility
|
||||||
|
from __future__ import print_function
|
||||||
|
import sys
|
||||||
|
PY3 = sys.version_info[0] == 3
|
||||||
|
|
||||||
|
if PY3:
|
||||||
|
xrange = range
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
from tst_scene_render import TestSceneRender
|
||||||
|
|
||||||
|
def intersectionRate(s1, s2):
|
||||||
|
|
||||||
|
x1, y1, x2, y2 = s1
|
||||||
|
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
|
||||||
|
|
||||||
|
x1, y1, x2, y2 = s2
|
||||||
|
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
|
||||||
|
|
||||||
|
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2))
|
||||||
|
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2)))
|
||||||
|
|
||||||
|
|
||||||
|
from tests_common import NewOpenCVTests
|
||||||
|
|
||||||
|
class camshift_test(NewOpenCVTests):
|
||||||
|
|
||||||
|
frame = None
|
||||||
|
selection = None
|
||||||
|
drag_start = None
|
||||||
|
show_backproj = False
|
||||||
|
track_window = None
|
||||||
|
render = None
|
||||||
|
|
||||||
|
def prepareRender(self):
|
||||||
|
|
||||||
|
cv2.namedWindow('camshift')
|
||||||
|
self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'))
|
||||||
|
|
||||||
|
def runTracker(self):
|
||||||
|
|
||||||
|
framesCounter = 0
|
||||||
|
self.selection = True
|
||||||
|
|
||||||
|
xmin, ymin, xmax, ymax = self.render.getCurrentRect()
|
||||||
|
|
||||||
|
self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
framesCounter += 1
|
||||||
|
self.frame = self.render.getNextFrame()
|
||||||
|
vis = self.frame.copy()
|
||||||
|
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
|
||||||
|
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||||||
|
|
||||||
|
if self.selection:
|
||||||
|
x0, y0, x1, y1 = self.render.getCurrentRect() + 50
|
||||||
|
x0 -= 100
|
||||||
|
y0 -= 100
|
||||||
|
|
||||||
|
hsv_roi = hsv[y0:y1, x0:x1]
|
||||||
|
mask_roi = mask[y0:y1, x0:x1]
|
||||||
|
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||||||
|
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
|
||||||
|
self.hist = hist.reshape(-1)
|
||||||
|
|
||||||
|
vis_roi = vis[y0:y1, x0:x1]
|
||||||
|
cv2.bitwise_not(vis_roi, vis_roi)
|
||||||
|
vis[mask == 0] = 0
|
||||||
|
|
||||||
|
self.selection = False
|
||||||
|
|
||||||
|
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
|
||||||
|
self.selection = None
|
||||||
|
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||||||
|
prob &= mask
|
||||||
|
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
||||||
|
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
|
||||||
|
|
||||||
|
if self.show_backproj:
|
||||||
|
vis[:] = prob[...,np.newaxis]
|
||||||
|
|
||||||
|
cv2.rectangle(vis, (self.track_window[0], self.track_window[1]), (self.track_window[0] + self.track_window[2], self.track_window[1] + self.track_window[3]), (0, 255, 0), 2)
|
||||||
|
|
||||||
|
trackingRect = np.array(self.track_window)
|
||||||
|
trackingRect[2] += trackingRect[0]
|
||||||
|
trackingRect[3] += trackingRect[1]
|
||||||
|
|
||||||
|
print(intersectionRate((self.render.getCurrentRect()), trackingRect))
|
||||||
|
self.assertGreater(intersectionRate((self.render.getCurrentRect()), trackingRect), 0.5)
|
||||||
|
|
||||||
|
if framesCounter > 300:
|
||||||
|
break
|
||||||
|
|
||||||
|
def test_camshift(self):
|
||||||
|
self.prepareRender()
|
||||||
|
self.runTracker()
|
@ -93,9 +93,9 @@ class facedetect_test(NewOpenCVTests):
|
|||||||
faces_matches += 1
|
faces_matches += 1
|
||||||
#check eyes
|
#check eyes
|
||||||
if len(eyes[i]) == 2:
|
if len(eyes[i]) == 2:
|
||||||
if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1], testFaces[j][2]):
|
if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1] , testFaces[j][2]) > eps:
|
||||||
eyes_matches += 1
|
eyes_matches += 1
|
||||||
elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]):
|
elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]) > eps:
|
||||||
eyes_matches += 1
|
eyes_matches += 1
|
||||||
|
|
||||||
self.assertEqual(faces_matches, 2)
|
self.assertEqual(faces_matches, 2)
|
||||||
|
167
modules/python/test/test_letter_recog.py
Normal file
167
modules/python/test/test_letter_recog.py
Normal file
@ -0,0 +1,167 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
'''
|
||||||
|
The sample demonstrates how to train Random Trees classifier
|
||||||
|
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
|
||||||
|
|
||||||
|
We use the sample database letter-recognition.data
|
||||||
|
from UCI Repository, here is the link:
|
||||||
|
|
||||||
|
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
|
||||||
|
UCI Repository of machine learning databases
|
||||||
|
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
|
||||||
|
Irvine, CA: University of California, Department of Information and Computer Science.
|
||||||
|
|
||||||
|
The dataset consists of 20000 feature vectors along with the
|
||||||
|
responses - capital latin letters A..Z.
|
||||||
|
The first 10000 samples are used for training
|
||||||
|
and the remaining 10000 - to test the classifier.
|
||||||
|
======================================================
|
||||||
|
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||||
|
'''
|
||||||
|
|
||||||
|
# Python 2/3 compatibility
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
def load_base(fn):
|
||||||
|
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
||||||
|
samples, responses = a[:,1:], a[:,0]
|
||||||
|
return samples, responses
|
||||||
|
|
||||||
|
class LetterStatModel(object):
|
||||||
|
class_n = 26
|
||||||
|
train_ratio = 0.5
|
||||||
|
|
||||||
|
def load(self, fn):
|
||||||
|
self.model.load(fn)
|
||||||
|
def save(self, fn):
|
||||||
|
self.model.save(fn)
|
||||||
|
|
||||||
|
def unroll_samples(self, samples):
|
||||||
|
sample_n, var_n = samples.shape
|
||||||
|
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
|
||||||
|
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
|
||||||
|
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
|
||||||
|
return new_samples
|
||||||
|
|
||||||
|
def unroll_responses(self, responses):
|
||||||
|
sample_n = len(responses)
|
||||||
|
new_responses = np.zeros(sample_n*self.class_n, np.int32)
|
||||||
|
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
|
||||||
|
new_responses[resp_idx] = 1
|
||||||
|
return new_responses
|
||||||
|
|
||||||
|
class RTrees(LetterStatModel):
|
||||||
|
def __init__(self):
|
||||||
|
self.model = cv2.ml.RTrees_create()
|
||||||
|
|
||||||
|
def train(self, samples, responses):
|
||||||
|
sample_n, var_n = samples.shape
|
||||||
|
self.model.setMaxDepth(20)
|
||||||
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||||
|
|
||||||
|
def predict(self, samples):
|
||||||
|
ret, resp = self.model.predict(samples)
|
||||||
|
return resp.ravel()
|
||||||
|
|
||||||
|
|
||||||
|
class KNearest(LetterStatModel):
|
||||||
|
def __init__(self):
|
||||||
|
self.model = cv2.ml.KNearest_create()
|
||||||
|
|
||||||
|
def train(self, samples, responses):
|
||||||
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||||
|
|
||||||
|
def predict(self, samples):
|
||||||
|
retval, results, neigh_resp, dists = self.model.findNearest(samples, k = 10)
|
||||||
|
return results.ravel()
|
||||||
|
|
||||||
|
|
||||||
|
class Boost(LetterStatModel):
|
||||||
|
def __init__(self):
|
||||||
|
self.model = cv2.ml.Boost_create()
|
||||||
|
|
||||||
|
def train(self, samples, responses):
|
||||||
|
sample_n, var_n = samples.shape
|
||||||
|
new_samples = self.unroll_samples(samples)
|
||||||
|
new_responses = self.unroll_responses(responses)
|
||||||
|
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||||
|
|
||||||
|
self.model.setWeakCount(15)
|
||||||
|
self.model.setMaxDepth(10)
|
||||||
|
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||||
|
|
||||||
|
def predict(self, samples):
|
||||||
|
new_samples = self.unroll_samples(samples)
|
||||||
|
ret, resp = self.model.predict(new_samples)
|
||||||
|
|
||||||
|
return resp.ravel().reshape(-1, self.class_n).argmax(1)
|
||||||
|
|
||||||
|
|
||||||
|
class SVM(LetterStatModel):
|
||||||
|
def __init__(self):
|
||||||
|
self.model = cv2.ml.SVM_create()
|
||||||
|
|
||||||
|
def train(self, samples, responses):
|
||||||
|
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||||
|
self.model.setC(1)
|
||||||
|
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||||
|
self.model.setGamma(.1)
|
||||||
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||||
|
|
||||||
|
def predict(self, samples):
|
||||||
|
ret, resp = self.model.predict(samples)
|
||||||
|
return resp.ravel()
|
||||||
|
|
||||||
|
|
||||||
|
class MLP(LetterStatModel):
|
||||||
|
def __init__(self):
|
||||||
|
self.model = cv2.ml.ANN_MLP_create()
|
||||||
|
|
||||||
|
def train(self, samples, responses):
|
||||||
|
sample_n, var_n = samples.shape
|
||||||
|
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||||
|
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||||
|
|
||||||
|
self.model.setLayerSizes(layer_sizes)
|
||||||
|
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||||
|
self.model.setBackpropMomentumScale(0)
|
||||||
|
self.model.setBackpropWeightScale(0.001)
|
||||||
|
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||||
|
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||||
|
|
||||||
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||||
|
|
||||||
|
def predict(self, samples):
|
||||||
|
ret, resp = self.model.predict(samples)
|
||||||
|
return resp.argmax(-1)
|
||||||
|
|
||||||
|
from tests_common import NewOpenCVTests
|
||||||
|
|
||||||
|
class letter_recog_test(NewOpenCVTests):
|
||||||
|
|
||||||
|
def test_letter_recog(self):
|
||||||
|
|
||||||
|
eps = 0.01
|
||||||
|
|
||||||
|
models = [RTrees, KNearest, Boost, SVM, MLP]
|
||||||
|
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||||
|
testErrors = {RTrees: (98.930000, 92.390000), KNearest: (94.960000, 92.010000),
|
||||||
|
Boost: (85.970000, 74.920000), SVM: (99.780000, 95.680000), MLP: (90.060000, 87.410000)}
|
||||||
|
|
||||||
|
for model in models:
|
||||||
|
Model = models[model]
|
||||||
|
classifier = Model()
|
||||||
|
|
||||||
|
samples, responses = load_base(self.repoPath + '/samples/data/letter-recognition.data')
|
||||||
|
train_n = int(len(samples)*classifier.train_ratio)
|
||||||
|
|
||||||
|
classifier.train(samples[:train_n], responses[:train_n])
|
||||||
|
train_rate = np.mean(classifier.predict(samples[:train_n]) == responses[:train_n].astype(int))
|
||||||
|
test_rate = np.mean(classifier.predict(samples[train_n:]) == responses[train_n:].astype(int))
|
||||||
|
|
||||||
|
self.assertLess(train_rate - testErrors[Model][0], eps)
|
||||||
|
self.assertLess(test_rate - testErrors[Model][1], eps)
|
73
modules/python/test/test_peopledetect.py
Normal file
73
modules/python/test/test_peopledetect.py
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
'''
|
||||||
|
example to detect upright people in images using HOG features
|
||||||
|
'''
|
||||||
|
|
||||||
|
# Python 2/3 compatibility
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
|
||||||
|
def inside(r, q):
|
||||||
|
rx, ry, rw, rh = r
|
||||||
|
qx, qy, qw, qh = q
|
||||||
|
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
|
||||||
|
|
||||||
|
def intersectionRate(s1, s2):
|
||||||
|
|
||||||
|
x1, y1, x2, y2 = s1
|
||||||
|
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
|
||||||
|
|
||||||
|
x1, y1, x2, y2 = s2
|
||||||
|
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
|
||||||
|
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2))
|
||||||
|
|
||||||
|
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2)))
|
||||||
|
|
||||||
|
from tests_common import NewOpenCVTests
|
||||||
|
|
||||||
|
class peopledetect_test(NewOpenCVTests):
|
||||||
|
def test_peopledetect(self):
|
||||||
|
|
||||||
|
hog = cv2.HOGDescriptor()
|
||||||
|
hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() )
|
||||||
|
|
||||||
|
dirPath = 'samples/data/'
|
||||||
|
samples = ['basketball1.png', 'basketball2.png']
|
||||||
|
|
||||||
|
testPeople = [
|
||||||
|
[[23, 76, 164, 477], [440, 22, 637, 478]],
|
||||||
|
[[23, 76, 164, 477], [440, 22, 637, 478]]
|
||||||
|
]
|
||||||
|
|
||||||
|
eps = 0.5
|
||||||
|
|
||||||
|
for sample in samples:
|
||||||
|
|
||||||
|
img = self.get_sample(dirPath + sample, 0)
|
||||||
|
|
||||||
|
found, w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
|
||||||
|
found_filtered = []
|
||||||
|
for ri, r in enumerate(found):
|
||||||
|
for qi, q in enumerate(found):
|
||||||
|
if ri != qi and inside(r, q):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
found_filtered.append(r)
|
||||||
|
|
||||||
|
matches = 0
|
||||||
|
|
||||||
|
for i in range(len(found_filtered)):
|
||||||
|
for j in range(len(testPeople)):
|
||||||
|
|
||||||
|
found_rect = (found_filtered[i][0], found_filtered[i][1],
|
||||||
|
found_filtered[i][0] + found_filtered[i][2],
|
||||||
|
found_filtered[i][1] + found_filtered[i][3])
|
||||||
|
|
||||||
|
if intersectionRate(found_rect, testPeople[j][0]) > eps or intersectionRate(found_rect, testPeople[j][1]) > eps:
|
||||||
|
matches += 1
|
||||||
|
|
||||||
|
self.assertGreater(matches, 0)
|
67
modules/python/test/tst_scene_render.py
Normal file
67
modules/python/test/tst_scene_render.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
|
||||||
|
|
||||||
|
# Python 2/3 compatibility
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from numpy import pi, sin, cos
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
defaultSize = 512
|
||||||
|
|
||||||
|
class TestSceneRender():
|
||||||
|
|
||||||
|
def __init__(self, bgImg = None, **params):
|
||||||
|
self.time = 0.0
|
||||||
|
self.timeStep = 1.0 / 30.0
|
||||||
|
|
||||||
|
if bgImg != None:
|
||||||
|
self.sceneBg = bgImg.copy()
|
||||||
|
else:
|
||||||
|
self.sceneBg = np.zeros((defaultSize, defaultSize, 3), np.uint8)
|
||||||
|
|
||||||
|
self.w = self.sceneBg.shape[0]
|
||||||
|
self.h = self.sceneBg.shape[1]
|
||||||
|
|
||||||
|
self.initialRect = np.array([ (self.h/2, self.w/2), (self.h/2, self.w/2 + self.w/10),
|
||||||
|
(self.h/2 + self.h/10, self.w/2 + self.w/10), (self.h/2 + self.h/10, self.w/2)])
|
||||||
|
self.currentRect = self.initialRect
|
||||||
|
|
||||||
|
def setInitialRect(self, rect):
|
||||||
|
self.initialRect = rect
|
||||||
|
|
||||||
|
def getCurrentRect(self):
|
||||||
|
x0, y0 = self.currentRect[0]
|
||||||
|
x1, y1 = self.currentRect[2]
|
||||||
|
return np.array([x0, y0, x1, y1])
|
||||||
|
|
||||||
|
def getNextFrame(self):
|
||||||
|
self.time += self.timeStep
|
||||||
|
img = self.sceneBg.copy()
|
||||||
|
|
||||||
|
self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3))
|
||||||
|
cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255))
|
||||||
|
|
||||||
|
return img
|
||||||
|
|
||||||
|
def resetTime(self):
|
||||||
|
self.time = 0.0
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
backGr = cv2.imread('../../../samples/data/lena.jpg')
|
||||||
|
|
||||||
|
render = TestSceneRender(backGr)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
img = render.getNextFrame()
|
||||||
|
cv2.imshow('img', img)
|
||||||
|
|
||||||
|
ch = 0xFF & cv2.waitKey(3)
|
||||||
|
if ch == 27:
|
||||||
|
break
|
||||||
|
cv2.destroyAllWindows()
|
@ -95,7 +95,8 @@ class Boost(LetterStatModel):
|
|||||||
new_responses = self.unroll_responses(responses)
|
new_responses = self.unroll_responses(responses)
|
||||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||||
|
|
||||||
self.model.setMaxDepth(5)
|
self.model.setWeakCount(15)
|
||||||
|
self.model.setMaxDepth(10)
|
||||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||||
|
|
||||||
def predict(self, samples):
|
def predict(self, samples):
|
||||||
@ -112,7 +113,8 @@ class SVM(LetterStatModel):
|
|||||||
def train(self, samples, responses):
|
def train(self, samples, responses):
|
||||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||||
self.model.setC(1)
|
self.model.setC(1)
|
||||||
self.model.setKernel(cv2.ml.SVM_LINEAR)
|
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||||
|
self.model.setGamma(.1)
|
||||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||||
|
|
||||||
def predict(self, samples):
|
def predict(self, samples):
|
||||||
@ -131,10 +133,10 @@ class MLP(LetterStatModel):
|
|||||||
|
|
||||||
self.model.setLayerSizes(layer_sizes)
|
self.model.setLayerSizes(layer_sizes)
|
||||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||||
self.model.setBackpropMomentumScale(0)
|
self.model.setBackpropMomentumScale(0.0)
|
||||||
self.model.setBackpropWeightScale(0.001)
|
self.model.setBackpropWeightScale(0.001)
|
||||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 300, 0.01))
|
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
|
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||||
|
|
||||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user