mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
python: 'cv2.' -> 'cv.' via 'import cv2 as cv'
This commit is contained in:
parent
9665dde678
commit
5560db73bf
@ -68,5 +68,5 @@ this contour approximation method.
|
||||
If you pass cv.ContourApproximationModes.CHAIN_APPROX_NONE.value, all the boundary points are stored. But actually do we need all
|
||||
the points? For eg, you found the contour of a straight line. Do you need all the points on the line
|
||||
to represent that line? No, we need just two end points of that line. This is what
|
||||
cv2.CHAIN_APPROX_SIMPLE does. It removes all redundant points and compresses the contour, thereby
|
||||
saving memory.
|
||||
cv.CHAIN_APPROX_SIMPLE does. It removes all redundant points and compresses the contour, thereby
|
||||
saving memory.
|
||||
|
@ -80,7 +80,7 @@ pass in terms of square size).
|
||||
|
||||
### Setup
|
||||
|
||||
So to find pattern in chess board, we use the function, **cv2.findChessboardCorners()**. We also
|
||||
So to find pattern in chess board, we use the function, **cv.findChessboardCorners()**. We also
|
||||
need to pass what kind of pattern we are looking, like 8x8 grid, 5x5 grid etc. In this example, we
|
||||
use 7x6 grid. (Normally a chess board has 8x8 squares and 7x7 internal corners). It returns the
|
||||
corner points and retval which will be True if pattern is obtained. These corners will be placed in
|
||||
@ -95,19 +95,19 @@ are not sure out of 14 images given, how many are good. So we read all the image
|
||||
ones.
|
||||
|
||||
@sa Instead of chess board, we can use some circular grid, but then use the function
|
||||
**cv2.findCirclesGrid()** to find the pattern. It is said that less number of images are enough when
|
||||
**cv.findCirclesGrid()** to find the pattern. It is said that less number of images are enough when
|
||||
using circular grid.
|
||||
|
||||
Once we find the corners, we can increase their accuracy using **cv2.cornerSubPix()**. We can also
|
||||
draw the pattern using **cv2.drawChessboardCorners()**. All these steps are included in below code:
|
||||
Once we find the corners, we can increase their accuracy using **cv.cornerSubPix()**. We can also
|
||||
draw the pattern using **cv.drawChessboardCorners()**. All these steps are included in below code:
|
||||
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import glob
|
||||
|
||||
# termination criteria
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
|
||||
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
|
||||
objp = np.zeros((6*7,3), np.float32)
|
||||
@ -120,25 +120,25 @@ imgpoints = [] # 2d points in image plane.
|
||||
images = glob.glob('*.jpg')
|
||||
|
||||
for fname in images:
|
||||
img = cv2.imread(fname)
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread(fname)
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Find the chess board corners
|
||||
ret, corners = cv2.findChessboardCorners(gray, (7,6), None)
|
||||
ret, corners = cv.findChessboardCorners(gray, (7,6), None)
|
||||
|
||||
# If found, add object points, image points (after refining them)
|
||||
if ret == True:
|
||||
objpoints.append(objp)
|
||||
|
||||
corners2=cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
|
||||
corners2 = cv.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
|
||||
imgpoints.append(corners)
|
||||
|
||||
# Draw and display the corners
|
||||
cv2.drawChessboardCorners(img, (7,6), corners2, ret)
|
||||
cv2.imshow('img', img)
|
||||
cv2.waitKey(500)
|
||||
cv.drawChessboardCorners(img, (7,6), corners2, ret)
|
||||
cv.imshow('img', img)
|
||||
cv.waitKey(500)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
One image with pattern drawn on it is shown below:
|
||||
|
||||
@ -147,37 +147,37 @@ One image with pattern drawn on it is shown below:
|
||||
### Calibration
|
||||
|
||||
So now we have our object points and image points we are ready to go for calibration. For that we
|
||||
use the function, **cv2.calibrateCamera()**. It returns the camera matrix, distortion coefficients,
|
||||
use the function, **cv.calibrateCamera()**. It returns the camera matrix, distortion coefficients,
|
||||
rotation and translation vectors etc.
|
||||
@code{.py}
|
||||
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
|
||||
ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
|
||||
@endcode
|
||||
### Undistortion
|
||||
|
||||
We have got what we were trying. Now we can take an image and undistort it. OpenCV comes with two
|
||||
methods, we will see both. But before that, we can refine the camera matrix based on a free scaling
|
||||
parameter using **cv2.getOptimalNewCameraMatrix()**. If the scaling parameter alpha=0, it returns
|
||||
parameter using **cv.getOptimalNewCameraMatrix()**. If the scaling parameter alpha=0, it returns
|
||||
undistorted image with minimum unwanted pixels. So it may even remove some pixels at image corners.
|
||||
If alpha=1, all pixels are retained with some extra black images. It also returns an image ROI which
|
||||
can be used to crop the result.
|
||||
|
||||
So we take a new image (left12.jpg in this case. That is the first image in this chapter)
|
||||
@code{.py}
|
||||
img = cv2.imread('left12.jpg')
|
||||
img = cv.imread('left12.jpg')
|
||||
h, w = img.shape[:2]
|
||||
newcameramtx, roi=cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
|
||||
newcameramtx, roi = cv.getOptimalNewCameraMatrix(mtx, dist, (w,h), 1, (w,h))
|
||||
@endcode
|
||||
#### 1. Using **cv2.undistort()**
|
||||
#### 1. Using **cv.undistort()**
|
||||
|
||||
This is the shortest path. Just call the function and use ROI obtained above to crop the result.
|
||||
@code{.py}
|
||||
# undistort
|
||||
dst = cv2.undistort(img, mtx, dist, None, newcameramtx)
|
||||
dst = cv.undistort(img, mtx, dist, None, newcameramtx)
|
||||
|
||||
# crop the image
|
||||
x, y, w, h = roi
|
||||
dst = dst[y:y+h, x:x+w]
|
||||
cv2.imwrite('calibresult.png', dst)
|
||||
cv.imwrite('calibresult.png', dst)
|
||||
@endcode
|
||||
#### 2. Using **remapping**
|
||||
|
||||
@ -185,13 +185,13 @@ This is curved path. First find a mapping function from distorted image to undis
|
||||
use the remap function.
|
||||
@code{.py}
|
||||
# undistort
|
||||
mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5)
|
||||
dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)
|
||||
mapx, mapy = cv.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (w,h), 5)
|
||||
dst = cv.remap(img, mapx, mapy, cv.INTER_LINEAR)
|
||||
|
||||
# crop the image
|
||||
x, y, w, h = roi
|
||||
dst = dst[y:y+h, x:x+w]
|
||||
cv2.imwrite('calibresult.png', dst)
|
||||
cv.imwrite('calibresult.png', dst)
|
||||
@endcode
|
||||
Both the methods give the same result. See the result below:
|
||||
|
||||
@ -207,15 +207,15 @@ Re-projection Error
|
||||
|
||||
Re-projection error gives a good estimation of just how exact is the found parameters. This should
|
||||
be as close to zero as possible. Given the intrinsic, distortion, rotation and translation matrices,
|
||||
we first transform the object point to image point using **cv2.projectPoints()**. Then we calculate
|
||||
we first transform the object point to image point using **cv.projectPoints()**. Then we calculate
|
||||
the absolute norm between what we got with our transformation and the corner finding algorithm. To
|
||||
find the average error we calculate the arithmetical mean of the errors calculate for all the
|
||||
calibration images.
|
||||
@code{.py}
|
||||
mean_error = 0
|
||||
for i in xrange(len(objpoints)):
|
||||
imgpoints2, _ = cv2.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
|
||||
error = cv2.norm(imgpoints[i], imgpoints2, cv2.NORM_L2)/len(imgpoints2)
|
||||
imgpoints2, _ = cv.projectPoints(objpoints[i], rvecs[i], tvecs[i], mtx, dist)
|
||||
error = cv.norm(imgpoints[i], imgpoints2, cv.NORM_L2)/len(imgpoints2)
|
||||
mean_error += error
|
||||
|
||||
print( "total error: {}".format(mean_error/len(objpoints)) )
|
||||
|
@ -38,13 +38,13 @@ Code
|
||||
Below code snippet shows a simple procedure to create a disparity map.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
imgL = cv2.imread('tsukuba_l.png',0)
|
||||
imgR = cv2.imread('tsukuba_r.png',0)
|
||||
imgL = cv.imread('tsukuba_l.png',0)
|
||||
imgR = cv.imread('tsukuba_r.png',0)
|
||||
|
||||
stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)
|
||||
stereo = cv.StereoBM_create(numDisparities=16, blockSize=15)
|
||||
disparity = stereo.compute(imgL,imgR)
|
||||
plt.imshow(disparity,'gray')
|
||||
plt.show()
|
||||
|
@ -72,14 +72,14 @@ Code
|
||||
So first we need to find as many possible matches between two images to find the fundamental matrix.
|
||||
For this, we use SIFT descriptors with FLANN based matcher and ratio test.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img1 = cv2.imread('myleft.jpg',0) #queryimage # left image
|
||||
img2 = cv2.imread('myright.jpg',0) #trainimage # right image
|
||||
img1 = cv.imread('myleft.jpg',0) #queryimage # left image
|
||||
img2 = cv.imread('myright.jpg',0) #trainimage # right image
|
||||
|
||||
sift = cv2.SIFT()
|
||||
sift = cv.SIFT()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
@ -90,7 +90,7 @@ FLANN_INDEX_KDTREE = 1
|
||||
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
|
||||
search_params = dict(checks=50)
|
||||
|
||||
flann = cv2.FlannBasedMatcher(index_params,search_params)
|
||||
flann = cv.FlannBasedMatcher(index_params,search_params)
|
||||
matches = flann.knnMatch(des1,des2,k=2)
|
||||
|
||||
good = []
|
||||
@ -108,7 +108,7 @@ Now we have the list of best matches from both the images. Let's find the Fundam
|
||||
@code{.py}
|
||||
pts1 = np.int32(pts1)
|
||||
pts2 = np.int32(pts2)
|
||||
F, mask = cv2.findFundamentalMat(pts1,pts2,cv2.FM_LMEDS)
|
||||
F, mask = cv.findFundamentalMat(pts1,pts2,cv.FM_LMEDS)
|
||||
|
||||
# We select only inlier points
|
||||
pts1 = pts1[mask.ravel()==1]
|
||||
@ -122,28 +122,28 @@ def drawlines(img1,img2,lines,pts1,pts2):
|
||||
''' img1 - image on which we draw the epilines for the points in img2
|
||||
lines - corresponding epilines '''
|
||||
r,c = img1.shape
|
||||
img1 = cv2.cvtColor(img1,cv2.COLOR_GRAY2BGR)
|
||||
img2 = cv2.cvtColor(img2,cv2.COLOR_GRAY2BGR)
|
||||
img1 = cv.cvtColor(img1,cv.COLOR_GRAY2BGR)
|
||||
img2 = cv.cvtColor(img2,cv.COLOR_GRAY2BGR)
|
||||
for r,pt1,pt2 in zip(lines,pts1,pts2):
|
||||
color = tuple(np.random.randint(0,255,3).tolist())
|
||||
x0,y0 = map(int, [0, -r[2]/r[1] ])
|
||||
x1,y1 = map(int, [c, -(r[2]+r[0]*c)/r[1] ])
|
||||
img1 = cv2.line(img1, (x0,y0), (x1,y1), color,1)
|
||||
img1 = cv2.circle(img1,tuple(pt1),5,color,-1)
|
||||
img2 = cv2.circle(img2,tuple(pt2),5,color,-1)
|
||||
img1 = cv.line(img1, (x0,y0), (x1,y1), color,1)
|
||||
img1 = cv.circle(img1,tuple(pt1),5,color,-1)
|
||||
img2 = cv.circle(img2,tuple(pt2),5,color,-1)
|
||||
return img1,img2
|
||||
@endcode
|
||||
Now we find the epilines in both the images and draw them.
|
||||
@code{.py}
|
||||
# Find epilines corresponding to points in right image (second image) and
|
||||
# drawing its lines on left image
|
||||
lines1 = cv2.computeCorrespondEpilines(pts2.reshape(-1,1,2), 2,F)
|
||||
lines1 = cv.computeCorrespondEpilines(pts2.reshape(-1,1,2), 2,F)
|
||||
lines1 = lines1.reshape(-1,3)
|
||||
img5,img6 = drawlines(img1,img2,lines1,pts1,pts2)
|
||||
|
||||
# Find epilines corresponding to points in left image (first image) and
|
||||
# drawing its lines on right image
|
||||
lines2 = cv2.computeCorrespondEpilines(pts1.reshape(-1,1,2), 1,F)
|
||||
lines2 = cv.computeCorrespondEpilines(pts1.reshape(-1,1,2), 1,F)
|
||||
lines2 = lines2.reshape(-1,3)
|
||||
img3,img4 = drawlines(img2,img1,lines2,pts2,pts1)
|
||||
|
||||
|
@ -24,8 +24,8 @@ should feel like it is perpendicular to our chessboard plane.
|
||||
First, let's load the camera matrix and distortion coefficients from the previous calibration
|
||||
result.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import glob
|
||||
|
||||
# Load previously saved data
|
||||
@ -33,13 +33,13 @@ with np.load('B.npz') as X:
|
||||
mtx, dist, _, _ = [X[i] for i in ('mtx','dist','rvecs','tvecs')]
|
||||
@endcode
|
||||
Now let's create a function, draw which takes the corners in the chessboard (obtained using
|
||||
**cv2.findChessboardCorners()**) and **axis points** to draw a 3D axis.
|
||||
**cv.findChessboardCorners()**) and **axis points** to draw a 3D axis.
|
||||
@code{.py}
|
||||
def draw(img, corners, imgpts):
|
||||
corner = tuple(corners[0].ravel())
|
||||
img = cv2.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
|
||||
img = cv2.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
|
||||
img = cv2.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
|
||||
img = cv.line(img, corner, tuple(imgpts[0].ravel()), (255,0,0), 5)
|
||||
img = cv.line(img, corner, tuple(imgpts[1].ravel()), (0,255,0), 5)
|
||||
img = cv.line(img, corner, tuple(imgpts[2].ravel()), (0,0,255), 5)
|
||||
return img
|
||||
@endcode
|
||||
Then as in previous case, we create termination criteria, object points (3D points of corners in
|
||||
@ -48,7 +48,7 @@ of length 3 (units will be in terms of chess square size since we calibrated bas
|
||||
our X axis is drawn from (0,0,0) to (3,0,0), so for Y axis. For Z axis, it is drawn from (0,0,0) to
|
||||
(0,0,-3). Negative denotes it is drawn towards the camera.
|
||||
@code{.py}
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||
objp = np.zeros((6*7,3), np.float32)
|
||||
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)
|
||||
|
||||
@ -56,32 +56,32 @@ axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3)
|
||||
@endcode
|
||||
Now, as usual, we load each image. Search for 7x6 grid. If found, we refine it with subcorner
|
||||
pixels. Then to calculate the rotation and translation, we use the function,
|
||||
**cv2.solvePnPRansac()**. Once we those transformation matrices, we use them to project our **axis
|
||||
**cv.solvePnPRansac()**. Once we those transformation matrices, we use them to project our **axis
|
||||
points** to the image plane. In simple words, we find the points on image plane corresponding to
|
||||
each of (3,0,0),(0,3,0),(0,0,3) in 3D space. Once we get them, we draw lines from the first corner
|
||||
to each of these points using our draw() function. Done !!!
|
||||
@code{.py}
|
||||
for fname in glob.glob('left*.jpg'):
|
||||
img = cv2.imread(fname)
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
ret, corners = cv2.findChessboardCorners(gray, (7,6),None)
|
||||
img = cv.imread(fname)
|
||||
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
ret, corners = cv.findChessboardCorners(gray, (7,6),None)
|
||||
|
||||
if ret == True:
|
||||
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
|
||||
corners2 = cv.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
|
||||
|
||||
# Find the rotation and translation vectors.
|
||||
ret,rvecs, tvecs, inliers = cv2.solvePnP(objp, corners2, mtx, dist)
|
||||
ret,rvecs, tvecs, inliers = cv.solvePnP(objp, corners2, mtx, dist)
|
||||
|
||||
# project 3D points to image plane
|
||||
imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist)
|
||||
imgpts, jac = cv.projectPoints(axis, rvecs, tvecs, mtx, dist)
|
||||
|
||||
img = draw(img,corners2,imgpts)
|
||||
cv2.imshow('img',img)
|
||||
k = cv2.waitKey(0) & 0xFF
|
||||
cv.imshow('img',img)
|
||||
k = cv.waitKey(0) & 0xFF
|
||||
if k == ord('s'):
|
||||
cv2.imwrite(fname[:6]+'.png', img)
|
||||
cv.imwrite(fname[:6]+'.png', img)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
See some results below. Notice that each axis is 3 squares long.:
|
||||
|
||||
@ -97,14 +97,14 @@ def draw(img, corners, imgpts):
|
||||
imgpts = np.int32(imgpts).reshape(-1,2)
|
||||
|
||||
# draw ground floor in green
|
||||
img = cv2.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
|
||||
img = cv.drawContours(img, [imgpts[:4]],-1,(0,255,0),-3)
|
||||
|
||||
# draw pillars in blue color
|
||||
for i,j in zip(range(4),range(4,8)):
|
||||
img = cv2.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
|
||||
img = cv.line(img, tuple(imgpts[i]), tuple(imgpts[j]),(255),3)
|
||||
|
||||
# draw top layer in red color
|
||||
img = cv2.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
|
||||
img = cv.drawContours(img, [imgpts[4:]],-1,(0,0,255),3)
|
||||
|
||||
return img
|
||||
@endcode
|
||||
|
@ -21,10 +21,10 @@ Accessing and Modifying pixel values
|
||||
|
||||
Let's load a color image first:
|
||||
@code{.py}
|
||||
>>> import cv2
|
||||
>>> import numpy as np
|
||||
>>> import cv2 as cv
|
||||
|
||||
>>> img = cv2.imread('messi5.jpg')
|
||||
>>> img = cv.imread('messi5.jpg')
|
||||
@endcode
|
||||
You can access a pixel value by its row and column coordinates. For BGR image, it returns an array
|
||||
of Blue, Green, Red values. For grayscale image, just corresponding intensity is returned.
|
||||
@ -122,8 +122,8 @@ Sometimes you will need to work separately on B,G,R channels of image. In this c
|
||||
to split the BGR images to single channels. In other cases, you may need to join these individual
|
||||
channels to a BGR image. You can do it simply by:
|
||||
@code{.py}
|
||||
>>> b,g,r = cv2.split(img)
|
||||
>>> img = cv2.merge((b,g,r))
|
||||
>>> b,g,r = cv.split(img)
|
||||
>>> img = cv.merge((b,g,r))
|
||||
@endcode
|
||||
Or
|
||||
@code
|
||||
@ -137,14 +137,14 @@ Numpy indexing is faster:
|
||||
|
||||
**Warning**
|
||||
|
||||
cv2.split() is a costly operation (in terms of time). So do it only if you need it. Otherwise go
|
||||
cv.split() is a costly operation (in terms of time). So do it only if you need it. Otherwise go
|
||||
for Numpy indexing.
|
||||
|
||||
Making Borders for Images (Padding)
|
||||
-----------------------------------
|
||||
|
||||
If you want to create a border around the image, something like a photo frame, you can use
|
||||
**cv2.copyMakeBorder()**. But it has more applications for convolution operation, zero
|
||||
**cv.copyMakeBorder()**. But it has more applications for convolution operation, zero
|
||||
padding etc. This function takes following arguments:
|
||||
|
||||
- **src** - input image
|
||||
@ -152,34 +152,34 @@ padding etc. This function takes following arguments:
|
||||
directions
|
||||
|
||||
- **borderType** - Flag defining what kind of border to be added. It can be following types:
|
||||
- **cv2.BORDER_CONSTANT** - Adds a constant colored border. The value should be given
|
||||
- **cv.BORDER_CONSTANT** - Adds a constant colored border. The value should be given
|
||||
as next argument.
|
||||
- **cv2.BORDER_REFLECT** - Border will be mirror reflection of the border elements,
|
||||
- **cv.BORDER_REFLECT** - Border will be mirror reflection of the border elements,
|
||||
like this : *fedcba|abcdefgh|hgfedcb*
|
||||
- **cv2.BORDER_REFLECT_101** or **cv2.BORDER_DEFAULT** - Same as above, but with a
|
||||
- **cv.BORDER_REFLECT_101** or **cv.BORDER_DEFAULT** - Same as above, but with a
|
||||
slight change, like this : *gfedcb|abcdefgh|gfedcba*
|
||||
- **cv2.BORDER_REPLICATE** - Last element is replicated throughout, like this:
|
||||
- **cv.BORDER_REPLICATE** - Last element is replicated throughout, like this:
|
||||
*aaaaaa|abcdefgh|hhhhhhh*
|
||||
- **cv2.BORDER_WRAP** - Can't explain, it will look like this :
|
||||
- **cv.BORDER_WRAP** - Can't explain, it will look like this :
|
||||
*cdefgh|abcdefgh|abcdefg*
|
||||
|
||||
- **value** - Color of border if border type is cv2.BORDER_CONSTANT
|
||||
- **value** - Color of border if border type is cv.BORDER_CONSTANT
|
||||
|
||||
Below is a sample code demonstrating all these border types for better understanding:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
BLUE = [255,0,0]
|
||||
|
||||
img1 = cv2.imread('opencv-logo.png')
|
||||
img1 = cv.imread('opencv-logo.png')
|
||||
|
||||
replicate = cv2.copyMakeBorder(img1,10,10,10,10,cv2.BORDER_REPLICATE)
|
||||
reflect = cv2.copyMakeBorder(img1,10,10,10,10,cv2.BORDER_REFLECT)
|
||||
reflect101 = cv2.copyMakeBorder(img1,10,10,10,10,cv2.BORDER_REFLECT_101)
|
||||
wrap = cv2.copyMakeBorder(img1,10,10,10,10,cv2.BORDER_WRAP)
|
||||
constant= cv2.copyMakeBorder(img1,10,10,10,10,cv2.BORDER_CONSTANT,value=BLUE)
|
||||
replicate = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REPLICATE)
|
||||
reflect = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT)
|
||||
reflect101 = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_REFLECT_101)
|
||||
wrap = cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_WRAP)
|
||||
constant= cv.copyMakeBorder(img1,10,10,10,10,cv.BORDER_CONSTANT,value=BLUE)
|
||||
|
||||
plt.subplot(231),plt.imshow(img1,'gray'),plt.title('ORIGINAL')
|
||||
plt.subplot(232),plt.imshow(replicate,'gray'),plt.title('REPLICATE')
|
||||
|
@ -6,12 +6,12 @@ Goal
|
||||
|
||||
- Learn several arithmetic operations on images like addition, subtraction, bitwise operations
|
||||
etc.
|
||||
- You will learn these functions : **cv2.add()**, **cv2.addWeighted()** etc.
|
||||
- You will learn these functions : **cv.add()**, **cv.addWeighted()** etc.
|
||||
|
||||
Image Addition
|
||||
--------------
|
||||
|
||||
You can add two images by OpenCV function, cv2.add() or simply by numpy operation,
|
||||
You can add two images by OpenCV function, cv.add() or simply by numpy operation,
|
||||
res = img1 + img2. Both images should be of same depth and type, or second image can just be a
|
||||
scalar value.
|
||||
|
||||
@ -23,7 +23,7 @@ For example, consider below sample:
|
||||
>>> x = np.uint8([250])
|
||||
>>> y = np.uint8([10])
|
||||
|
||||
>>> print( cv2.add(x,y) ) # 250+10 = 260 => 255
|
||||
>>> print( cv.add(x,y) ) # 250+10 = 260 => 255
|
||||
[[255]]
|
||||
|
||||
>>> print( x+y ) # 250+10 = 260 % 256 = 4
|
||||
@ -44,20 +44,20 @@ By varying \f$\alpha\f$ from \f$0 \rightarrow 1\f$, you can perform a cool trans
|
||||
another.
|
||||
|
||||
Here I took two images to blend them together. First image is given a weight of 0.7 and second image
|
||||
is given 0.3. cv2.addWeighted() applies following equation on the image.
|
||||
is given 0.3. cv.addWeighted() applies following equation on the image.
|
||||
|
||||
\f[dst = \alpha \cdot img1 + \beta \cdot img2 + \gamma\f]
|
||||
|
||||
Here \f$\gamma\f$ is taken as zero.
|
||||
@code{.py}
|
||||
img1 = cv2.imread('ml.png')
|
||||
img2 = cv2.imread('opencv-logo.png')
|
||||
img1 = cv.imread('ml.png')
|
||||
img2 = cv.imread('opencv-logo.png')
|
||||
|
||||
dst = cv2.addWeighted(img1,0.7,img2,0.3,0)
|
||||
dst = cv.addWeighted(img1,0.7,img2,0.3,0)
|
||||
|
||||
cv2.imshow('dst',dst)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('dst',dst)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Check the result below:
|
||||
|
||||
@ -76,31 +76,31 @@ ROI as we did in last chapter. But OpenCV logo is a not a rectangular shape. So
|
||||
bitwise operations as below:
|
||||
@code{.py}
|
||||
# Load two images
|
||||
img1 = cv2.imread('messi5.jpg')
|
||||
img2 = cv2.imread('opencv-logo.png')
|
||||
img1 = cv.imread('messi5.jpg')
|
||||
img2 = cv.imread('opencv-logo.png')
|
||||
|
||||
# I want to put logo on top-left corner, So I create a ROI
|
||||
rows,cols,channels = img2.shape
|
||||
roi = img1[0:rows, 0:cols ]
|
||||
|
||||
# Now create a mask of logo and create its inverse mask also
|
||||
img2gray = cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)
|
||||
ret, mask = cv2.threshold(img2gray, 10, 255, cv2.THRESH_BINARY)
|
||||
mask_inv = cv2.bitwise_not(mask)
|
||||
img2gray = cv.cvtColor(img2,cv.COLOR_BGR2GRAY)
|
||||
ret, mask = cv.threshold(img2gray, 10, 255, cv.THRESH_BINARY)
|
||||
mask_inv = cv.bitwise_not(mask)
|
||||
|
||||
# Now black-out the area of logo in ROI
|
||||
img1_bg = cv2.bitwise_and(roi,roi,mask = mask_inv)
|
||||
img1_bg = cv.bitwise_and(roi,roi,mask = mask_inv)
|
||||
|
||||
# Take only region of logo from logo image.
|
||||
img2_fg = cv2.bitwise_and(img2,img2,mask = mask)
|
||||
img2_fg = cv.bitwise_and(img2,img2,mask = mask)
|
||||
|
||||
# Put logo in ROI and modify the main image
|
||||
dst = cv2.add(img1_bg,img2_fg)
|
||||
dst = cv.add(img1_bg,img2_fg)
|
||||
img1[0:rows, 0:cols ] = dst
|
||||
|
||||
cv2.imshow('res',img1)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('res',img1)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
See the result below. Left image shows the mask we created. Right image shows the final result. For
|
||||
more understanding, display all the intermediate images in the above code, especially img1_bg and
|
||||
@ -115,4 +115,4 @@ Exercises
|
||||
---------
|
||||
|
||||
-# Create a slide show of images in a folder with smooth transition between images using
|
||||
cv2.addWeighted function
|
||||
cv.addWeighted function
|
||||
|
@ -10,7 +10,7 @@ So in this chapter, you will learn
|
||||
|
||||
- To measure the performance of your code.
|
||||
- Some tips to improve the performance of your code.
|
||||
- You will see these functions : **cv2.getTickCount**, **cv2.getTickFrequency** etc.
|
||||
- You will see these functions : **cv.getTickCount**, **cv.getTickFrequency** etc.
|
||||
|
||||
Apart from OpenCV, Python also provides a module **time** which is helpful in measuring the time of
|
||||
execution. Another module **profile** helps to get detailed report on the code, like how much time
|
||||
@ -21,34 +21,34 @@ ones, and for more details, check links in **Additional Resouces** section.
|
||||
Measuring Performance with OpenCV
|
||||
---------------------------------
|
||||
|
||||
**cv2.getTickCount** function returns the number of clock-cycles after a reference event (like the
|
||||
**cv.getTickCount** function returns the number of clock-cycles after a reference event (like the
|
||||
moment machine was switched ON) to the moment this function is called. So if you call it before and
|
||||
after the function execution, you get number of clock-cycles used to execute a function.
|
||||
|
||||
**cv2.getTickFrequency** function returns the frequency of clock-cycles, or the number of
|
||||
**cv.getTickFrequency** function returns the frequency of clock-cycles, or the number of
|
||||
clock-cycles per second. So to find the time of execution in seconds, you can do following:
|
||||
@code{.py}
|
||||
e1 = cv2.getTickCount()
|
||||
e1 = cv.getTickCount()
|
||||
# your code execution
|
||||
e2 = cv2.getTickCount()
|
||||
time = (e2 - e1)/ cv2.getTickFrequency()
|
||||
e2 = cv.getTickCount()
|
||||
time = (e2 - e1)/ cv.getTickFrequency()
|
||||
@endcode
|
||||
We will demonstrate with following example. Following example apply median filtering with a kernel
|
||||
of odd size ranging from 5 to 49. (Don't worry about what will the result look like, that is not our
|
||||
goal):
|
||||
@code{.py}
|
||||
img1 = cv2.imread('messi5.jpg')
|
||||
img1 = cv.imread('messi5.jpg')
|
||||
|
||||
e1 = cv2.getTickCount()
|
||||
e1 = cv.getTickCount()
|
||||
for i in xrange(5,49,2):
|
||||
img1 = cv2.medianBlur(img1,i)
|
||||
e2 = cv2.getTickCount()
|
||||
t = (e2 - e1)/cv2.getTickFrequency()
|
||||
img1 = cv.medianBlur(img1,i)
|
||||
e2 = cv.getTickCount()
|
||||
t = (e2 - e1)/cv.getTickFrequency()
|
||||
print( t )
|
||||
|
||||
# Result I got is 0.521107655 seconds
|
||||
@endcode
|
||||
@note You can do the same with time module. Instead of cv2.getTickCount, use time.time() function.
|
||||
@note You can do the same with time module. Instead of cv.getTickCount, use time.time() function.
|
||||
Then take the difference of two times.
|
||||
|
||||
Default Optimization in OpenCV
|
||||
@ -57,23 +57,23 @@ Default Optimization in OpenCV
|
||||
Many of the OpenCV functions are optimized using SSE2, AVX etc. It contains unoptimized code also.
|
||||
So if our system support these features, we should exploit them (almost all modern day processors
|
||||
support them). It is enabled by default while compiling. So OpenCV runs the optimized code if it is
|
||||
enabled, else it runs the unoptimized code. You can use **cv2.useOptimized()** to check if it is
|
||||
enabled/disabled and **cv2.setUseOptimized()** to enable/disable it. Let's see a simple example.
|
||||
enabled, else it runs the unoptimized code. You can use **cv.useOptimized()** to check if it is
|
||||
enabled/disabled and **cv.setUseOptimized()** to enable/disable it. Let's see a simple example.
|
||||
@code{.py}
|
||||
# check if optimization is enabled
|
||||
In [5]: cv2.useOptimized()
|
||||
In [5]: cv.useOptimized()
|
||||
Out[5]: True
|
||||
|
||||
In [6]: %timeit res = cv2.medianBlur(img,49)
|
||||
In [6]: %timeit res = cv.medianBlur(img,49)
|
||||
10 loops, best of 3: 34.9 ms per loop
|
||||
|
||||
# Disable it
|
||||
In [7]: cv2.setUseOptimized(False)
|
||||
In [7]: cv.setUseOptimized(False)
|
||||
|
||||
In [8]: cv2.useOptimized()
|
||||
In [8]: cv.useOptimized()
|
||||
Out[8]: False
|
||||
|
||||
In [9]: %timeit res = cv2.medianBlur(img,49)
|
||||
In [9]: %timeit res = cv.medianBlur(img,49)
|
||||
10 loops, best of 3: 64.1 ms per loop
|
||||
@endcode
|
||||
See, optimized median filtering is \~2x faster than unoptimized version. If you check its source,
|
||||
@ -115,11 +115,11 @@ working on this issue)*
|
||||
one or two elements, Python scalar is better than Numpy arrays. Numpy takes advantage when size of
|
||||
array is a little bit bigger.
|
||||
|
||||
We will try one more example. This time, we will compare the performance of **cv2.countNonZero()**
|
||||
We will try one more example. This time, we will compare the performance of **cv.countNonZero()**
|
||||
and **np.count_nonzero()** for same image.
|
||||
|
||||
@code{.py}
|
||||
In [35]: %timeit z = cv2.countNonZero(img)
|
||||
In [35]: %timeit z = cv.countNonZero(img)
|
||||
100000 loops, best of 3: 15.8 us per loop
|
||||
|
||||
In [36]: %timeit z = np.count_nonzero(img)
|
||||
|
@ -52,16 +52,16 @@ detector is called STAR detector in OpenCV)
|
||||
note, that you need [opencv contrib](https://github.com/opencv/opencv_contrib)) to use this.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('simple.jpg',0)
|
||||
img = cv.imread('simple.jpg',0)
|
||||
|
||||
# Initiate FAST detector
|
||||
star = cv2.xfeatures2d.StarDetector_create()
|
||||
star = cv.xfeatures2d.StarDetector_create()
|
||||
|
||||
# Initiate BRIEF extractor
|
||||
brief = cv2.xfeatures2d.BriefDescriptorExtractor_create()
|
||||
brief = cv.xfeatures2d.BriefDescriptorExtractor_create()
|
||||
|
||||
# find the keypoints with STAR
|
||||
kp = star.detect(img,None)
|
||||
|
@ -90,22 +90,22 @@ FAST Feature Detector in OpenCV
|
||||
It is called as any other feature detector in OpenCV. If you want, you can specify the threshold,
|
||||
whether non-maximum suppression to be applied or not, the neighborhood to be used etc.
|
||||
|
||||
For the neighborhood, three flags are defined, cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
|
||||
cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. Below is a
|
||||
For the neighborhood, three flags are defined, cv.FAST_FEATURE_DETECTOR_TYPE_5_8,
|
||||
cv.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv.FAST_FEATURE_DETECTOR_TYPE_9_16. Below is a
|
||||
simple code on how to detect and draw the FAST feature points.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('simple.jpg',0)
|
||||
img = cv.imread('simple.jpg',0)
|
||||
|
||||
# Initiate FAST object with default values
|
||||
fast = cv2.FastFeatureDetector_create()
|
||||
fast = cv.FastFeatureDetector_create()
|
||||
|
||||
# find and draw the keypoints
|
||||
kp = fast.detect(img,None)
|
||||
img2 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
|
||||
img2 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
|
||||
|
||||
# Print all default params
|
||||
print( "Threshold: {}".format(fast.getThreshold()) )
|
||||
@ -113,7 +113,7 @@ print( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression()) )
|
||||
print( "neighborhood: {}".format(fast.getType()) )
|
||||
print( "Total Keypoints with nonmaxSuppression: {}".format(len(kp)) )
|
||||
|
||||
cv2.imwrite('fast_true.png',img2)
|
||||
cv.imwrite('fast_true.png',img2)
|
||||
|
||||
# Disable nonmaxSuppression
|
||||
fast.setNonmaxSuppression(0)
|
||||
@ -121,9 +121,9 @@ kp = fast.detect(img,None)
|
||||
|
||||
print( "Total Keypoints without nonmaxSuppression: {}".format(len(kp)) )
|
||||
|
||||
img3 = cv2.drawKeypoints(img, kp, None, color=(255,0,0))
|
||||
img3 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
|
||||
|
||||
cv2.imwrite('fast_false.png',img3)
|
||||
cv.imwrite('fast_false.png',img3)
|
||||
@endcode
|
||||
See the results. First image shows FAST with nonmaxSuppression and second one without
|
||||
nonmaxSuppression:
|
||||
|
@ -16,15 +16,15 @@ another trainImage, found the features in that image too and we found the best m
|
||||
In short, we found locations of some parts of an object in another cluttered image. This information
|
||||
is sufficient to find the object exactly on the trainImage.
|
||||
|
||||
For that, we can use a function from calib3d module, ie **cv2.findHomography()**. If we pass the set
|
||||
For that, we can use a function from calib3d module, ie **cv.findHomography()**. If we pass the set
|
||||
of points from both the images, it will find the perpective transformation of that object. Then we
|
||||
can use **cv2.perspectiveTransform()** to find the object. It needs atleast four correct points to
|
||||
can use **cv.perspectiveTransform()** to find the object. It needs atleast four correct points to
|
||||
find the transformation.
|
||||
|
||||
We have seen that there can be some possible errors while matching which may affect the result. To
|
||||
solve this problem, algorithm uses RANSAC or LEAST_MEDIAN (which can be decided by the flags). So
|
||||
good matches which provide correct estimation are called inliers and remaining are called outliers.
|
||||
**cv2.findHomography()** returns a mask which specifies the inlier and outlier points.
|
||||
**cv.findHomography()** returns a mask which specifies the inlier and outlier points.
|
||||
|
||||
So let's do it !!!
|
||||
|
||||
@ -35,16 +35,16 @@ First, as usual, let's find SIFT features in images and apply the ratio test to
|
||||
matches.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
MIN_MATCH_COUNT = 10
|
||||
|
||||
img1 = cv2.imread('box.png',0) # queryImage
|
||||
img2 = cv2.imread('box_in_scene.png',0) # trainImage
|
||||
img1 = cv.imread('box.png',0) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',0) # trainImage
|
||||
|
||||
# Initiate SIFT detector
|
||||
sift = cv2.xfeatures2d.SIFT_create()
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
@ -54,7 +54,7 @@ FLANN_INDEX_KDTREE = 1
|
||||
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
|
||||
search_params = dict(checks = 50)
|
||||
|
||||
flann = cv2.FlannBasedMatcher(index_params, search_params)
|
||||
flann = cv.FlannBasedMatcher(index_params, search_params)
|
||||
|
||||
matches = flann.knnMatch(des1,des2,k=2)
|
||||
|
||||
@ -75,14 +75,14 @@ if len(good)>MIN_MATCH_COUNT:
|
||||
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
|
||||
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
|
||||
|
||||
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
|
||||
M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC,5.0)
|
||||
matchesMask = mask.ravel().tolist()
|
||||
|
||||
h,w,d = img1.shape
|
||||
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
|
||||
dst = cv2.perspectiveTransform(pts,M)
|
||||
dst = cv.perspectiveTransform(pts,M)
|
||||
|
||||
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
|
||||
img2 = cv.polylines(img2,[np.int32(dst)],True,255,3, cv.LINE_AA)
|
||||
|
||||
else:
|
||||
print( "Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT) )
|
||||
@ -95,7 +95,7 @@ draw_params = dict(matchColor = (0,255,0), # draw matches in green color
|
||||
matchesMask = matchesMask, # draw only inliers
|
||||
flags = 2)
|
||||
|
||||
img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
|
||||
img3 = cv.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)
|
||||
|
||||
plt.imshow(img3, 'gray'),plt.show()
|
||||
@endcode
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter,
|
||||
|
||||
- We will understand the concepts behind Harris Corner Detection.
|
||||
- We will see the functions: **cv2.cornerHarris()**, **cv2.cornerSubPix()**
|
||||
- We will see the functions: **cv.cornerHarris()**, **cv.cornerSubPix()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -35,7 +35,7 @@ where
|
||||
I_x I_y & I_y I_y \end{bmatrix}\f]
|
||||
|
||||
Here, \f$I_x\f$ and \f$I_y\f$ are image derivatives in x and y directions respectively. (Can be easily found
|
||||
out using **cv2.Sobel()**).
|
||||
out using **cv.Sobel()**).
|
||||
|
||||
Then comes the main part. After this, they created a score, basically an equation, which will
|
||||
determine if a window can contain a corner or not.
|
||||
@ -65,7 +65,7 @@ suitable give you the corners in the image. We will do it with a simple image.
|
||||
Harris Corner Detector in OpenCV
|
||||
--------------------------------
|
||||
|
||||
OpenCV has the function **cv2.cornerHarris()** for this purpose. Its arguments are :
|
||||
OpenCV has the function **cv.cornerHarris()** for this purpose. Its arguments are :
|
||||
|
||||
- **img** - Input image, it should be grayscale and float32 type.
|
||||
- **blockSize** - It is the size of neighbourhood considered for corner detection
|
||||
@ -74,25 +74,25 @@ OpenCV has the function **cv2.cornerHarris()** for this purpose. Its arguments a
|
||||
|
||||
See the example below:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
filename = 'chessboard.png'
|
||||
img = cv2.imread(filename)
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread(filename)
|
||||
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
|
||||
gray = np.float32(gray)
|
||||
dst = cv2.cornerHarris(gray,2,3,0.04)
|
||||
dst = cv.cornerHarris(gray,2,3,0.04)
|
||||
|
||||
#result is dilated for marking the corners, not important
|
||||
dst = cv2.dilate(dst,None)
|
||||
dst = cv.dilate(dst,None)
|
||||
|
||||
# Threshold for an optimal value, it may vary depending on the image.
|
||||
img[dst>0.01*dst.max()]=[0,0,255]
|
||||
|
||||
cv2.imshow('dst',img)
|
||||
if cv2.waitKey(0) & 0xff == 27:
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('dst',img)
|
||||
if cv.waitKey(0) & 0xff == 27:
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Below are the three results:
|
||||
|
||||
@ -102,7 +102,7 @@ Corner with SubPixel Accuracy
|
||||
-----------------------------
|
||||
|
||||
Sometimes, you may need to find the corners with maximum accuracy. OpenCV comes with a function
|
||||
**cv2.cornerSubPix()** which further refines the corners detected with sub-pixel accuracy. Below is
|
||||
**cv.cornerSubPix()** which further refines the corners detected with sub-pixel accuracy. Below is
|
||||
an example. As usual, we need to find the harris corners first. Then we pass the centroids of these
|
||||
corners (There may be a bunch of pixels at a corner, we take their centroid) to refine them. Harris
|
||||
corners are marked in red pixels and refined corners are marked in green pixels. For this function,
|
||||
@ -110,26 +110,26 @@ we have to define the criteria when to stop the iteration. We stop it after a sp
|
||||
iteration or a certain accuracy is achieved, whichever occurs first. We also need to define the size
|
||||
of neighbourhood it would search for corners.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
filename = 'chessboard2.jpg'
|
||||
img = cv2.imread(filename)
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread(filename)
|
||||
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
|
||||
# find Harris corners
|
||||
gray = np.float32(gray)
|
||||
dst = cv2.cornerHarris(gray,2,3,0.04)
|
||||
dst = cv2.dilate(dst,None)
|
||||
ret, dst = cv2.threshold(dst,0.01*dst.max(),255,0)
|
||||
dst = cv.cornerHarris(gray,2,3,0.04)
|
||||
dst = cv.dilate(dst,None)
|
||||
ret, dst = cv.threshold(dst,0.01*dst.max(),255,0)
|
||||
dst = np.uint8(dst)
|
||||
|
||||
# find centroids
|
||||
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst)
|
||||
ret, labels, stats, centroids = cv.connectedComponentsWithStats(dst)
|
||||
|
||||
# define the criteria to stop and refine the corners
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001)
|
||||
corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 100, 0.001)
|
||||
corners = cv.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria)
|
||||
|
||||
# Now draw them
|
||||
res = np.hstack((centroids,corners))
|
||||
@ -137,7 +137,7 @@ res = np.int0(res)
|
||||
img[res[:,1],res[:,0]]=[0,0,255]
|
||||
img[res[:,3],res[:,2]] = [0,255,0]
|
||||
|
||||
cv2.imwrite('subpixel5.png',img)
|
||||
cv.imwrite('subpixel5.png',img)
|
||||
@endcode
|
||||
Below is the result, where some important locations are shown in zoomed window to visualize:
|
||||
|
||||
|
@ -15,11 +15,11 @@ Brute-Force matcher is simple. It takes the descriptor of one feature in first s
|
||||
with all other features in second set using some distance calculation. And the closest one is
|
||||
returned.
|
||||
|
||||
For BF matcher, first we have to create the BFMatcher object using **cv2.BFMatcher()**. It takes two
|
||||
For BF matcher, first we have to create the BFMatcher object using **cv.BFMatcher()**. It takes two
|
||||
optional params. First one is normType. It specifies the distance measurement to be used. By
|
||||
default, it is cv2.NORM_L2. It is good for SIFT, SURF etc (cv2.NORM_L1 is also there). For binary
|
||||
string based descriptors like ORB, BRIEF, BRISK etc, cv2.NORM_HAMMING should be used, which used
|
||||
Hamming distance as measurement. If ORB is using WTA_K == 3 or 4, cv2.NORM_HAMMING2 should be
|
||||
default, it is cv.NORM_L2. It is good for SIFT, SURF etc (cv.NORM_L1 is also there). For binary
|
||||
string based descriptors like ORB, BRIEF, BRISK etc, cv.NORM_HAMMING should be used, which used
|
||||
Hamming distance as measurement. If ORB is using WTA_K == 3 or 4, cv.NORM_HAMMING2 should be
|
||||
used.
|
||||
|
||||
Second param is boolean variable, crossCheck which is false by default. If it is true, Matcher
|
||||
@ -32,9 +32,9 @@ Once it is created, two important methods are *BFMatcher.match()* and *BFMatcher
|
||||
one returns the best match. Second method returns k best matches where k is specified by the user.
|
||||
It may be useful when we need to do additional work on that.
|
||||
|
||||
Like we used cv2.drawKeypoints() to draw keypoints, **cv2.drawMatches()** helps us to draw the
|
||||
Like we used cv.drawKeypoints() to draw keypoints, **cv.drawMatches()** helps us to draw the
|
||||
matches. It stacks two images horizontally and draw lines from first image to second image showing
|
||||
best matches. There is also **cv2.drawMatchesKnn** which draws all the k best matches. If k=2, it
|
||||
best matches. There is also **cv.drawMatchesKnn** which draws all the k best matches. If k=2, it
|
||||
will draw two match-lines for each keypoint. So we have to pass a mask if we want to selectively
|
||||
draw it.
|
||||
|
||||
@ -50,27 +50,27 @@ We are using ORB descriptors to match features. So let's start with loading imag
|
||||
descriptors etc.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
img1 = cv2.imread('box.png',0) # queryImage
|
||||
img2 = cv2.imread('box_in_scene.png',0) # trainImage
|
||||
img1 = cv.imread('box.png',0) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',0) # trainImage
|
||||
|
||||
# Initiate ORB detector
|
||||
orb = cv2.ORB_create()
|
||||
orb = cv.ORB_create()
|
||||
|
||||
# find the keypoints and descriptors with ORB
|
||||
kp1, des1 = orb.detectAndCompute(img1,None)
|
||||
kp2, des2 = orb.detectAndCompute(img2,None)
|
||||
@endcode
|
||||
Next we create a BFMatcher object with distance measurement cv2.NORM_HAMMING (since we are using
|
||||
Next we create a BFMatcher object with distance measurement cv.NORM_HAMMING (since we are using
|
||||
ORB) and crossCheck is switched on for better results. Then we use Matcher.match() method to get the
|
||||
best matches in two images. We sort them in ascending order of their distances so that best matches
|
||||
(with low distance) come to front. Then we draw only first 10 matches (Just for sake of visibility.
|
||||
You can increase it as you like)
|
||||
@code{.py}
|
||||
# create BFMatcher object
|
||||
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
||||
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
|
||||
|
||||
# Match descriptors.
|
||||
matches = bf.match(des1,des2)
|
||||
@ -79,7 +79,7 @@ matches = bf.match(des1,des2)
|
||||
matches = sorted(matches, key = lambda x:x.distance)
|
||||
|
||||
# Draw first 10 matches.
|
||||
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10], flags=2)
|
||||
img3 = cv.drawMatches(img1,kp1,img2,kp2,matches[:10], flags=2)
|
||||
|
||||
plt.imshow(img3),plt.show()
|
||||
@endcode
|
||||
@ -103,21 +103,21 @@ This time, we will use BFMatcher.knnMatch() to get k best matches. In this examp
|
||||
so that we can apply ratio test explained by D.Lowe in his paper.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img1 = cv2.imread('box.png',0) # queryImage
|
||||
img2 = cv2.imread('box_in_scene.png',0) # trainImage
|
||||
img1 = cv.imread('box.png',0) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',0) # trainImage
|
||||
|
||||
# Initiate SIFT detector
|
||||
sift = cv2.SIFT()
|
||||
sift = cv.SIFT()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
kp2, des2 = sift.detectAndCompute(img2,None)
|
||||
|
||||
# BFMatcher with default params
|
||||
bf = cv2.BFMatcher()
|
||||
bf = cv.BFMatcher()
|
||||
matches = bf.knnMatch(des1,des2, k=2)
|
||||
|
||||
# Apply ratio test
|
||||
@ -126,8 +126,8 @@ for m,n in matches:
|
||||
if m.distance < 0.75*n.distance:
|
||||
good.append([m])
|
||||
|
||||
# cv2.drawMatchesKnn expects list of lists as matches.
|
||||
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,flags=2)
|
||||
# cv.drawMatchesKnn expects list of lists as matches.
|
||||
img3 = cv.drawMatchesKnn(img1,kp1,img2,kp2,good,flags=2)
|
||||
|
||||
plt.imshow(img3),plt.show()
|
||||
@endcode
|
||||
@ -167,14 +167,14 @@ you want to change the value, pass search_params = dict(checks=100).
|
||||
With these informations, we are good to go.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img1 = cv2.imread('box.png',0) # queryImage
|
||||
img2 = cv2.imread('box_in_scene.png',0) # trainImage
|
||||
img1 = cv.imread('box.png',0) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',0) # trainImage
|
||||
|
||||
# Initiate SIFT detector
|
||||
sift = cv2.SIFT()
|
||||
sift = cv.SIFT()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
@ -185,7 +185,7 @@ FLANN_INDEX_KDTREE = 1
|
||||
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
|
||||
search_params = dict(checks=50) # or pass empty dictionary
|
||||
|
||||
flann = cv2.FlannBasedMatcher(index_params,search_params)
|
||||
flann = cv.FlannBasedMatcher(index_params,search_params)
|
||||
|
||||
matches = flann.knnMatch(des1,des2,k=2)
|
||||
|
||||
@ -202,7 +202,7 @@ draw_params = dict(matchColor = (0,255,0),
|
||||
matchesMask = matchesMask,
|
||||
flags = 0)
|
||||
|
||||
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,**draw_params)
|
||||
img3 = cv.drawMatchesKnn(img1,kp1,img2,kp2,matches,None,**draw_params)
|
||||
|
||||
plt.imshow(img3,),plt.show()
|
||||
@endcode
|
||||
|
@ -52,7 +52,7 @@ choice in low-power devices for panorama stitching etc.
|
||||
ORB in OpenCV
|
||||
-------------
|
||||
|
||||
As usual, we have to create an ORB object with the function, **cv2.ORB()** or using feature2d common
|
||||
As usual, we have to create an ORB object with the function, **cv.ORB()** or using feature2d common
|
||||
interface. It has a number of optional parameters. Most useful ones are nFeatures which denotes
|
||||
maximum number of features to be retained (by default 500), scoreType which denotes whether Harris
|
||||
score or FAST score to rank the features (by default, Harris score) etc. Another parameter, WTA_K
|
||||
@ -64,13 +64,13 @@ is defined by NORM_HAMMING2.
|
||||
Below is a simple code which shows the use of ORB.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('simple.jpg',0)
|
||||
img = cv.imread('simple.jpg',0)
|
||||
|
||||
# Initiate ORB detector
|
||||
orb = cv2.ORB_create()
|
||||
orb = cv.ORB_create()
|
||||
|
||||
# find the keypoints with ORB
|
||||
kp = orb.detect(img,None)
|
||||
@ -79,7 +79,7 @@ kp = orb.detect(img,None)
|
||||
kp, des = orb.compute(img, kp)
|
||||
|
||||
# draw only keypoints location,not size and orientation
|
||||
img2 = cv2.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
|
||||
img2 = cv.drawKeypoints(img, kp, None, color=(0,255,0), flags=0)
|
||||
plt.imshow(img2), plt.show()
|
||||
@endcode
|
||||
See the result below:
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter,
|
||||
|
||||
- We will learn about the another corner detector: Shi-Tomasi Corner Detector
|
||||
- We will see the function: **cv2.goodFeaturesToTrack()**
|
||||
- We will see the function: **cv.goodFeaturesToTrack()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -33,7 +33,7 @@ From the figure, you can see that only when \f$\lambda_1\f$ and \f$\lambda_2\f$
|
||||
Code
|
||||
----
|
||||
|
||||
OpenCV has a function, **cv2.goodFeaturesToTrack()**. It finds N strongest corners in the image by
|
||||
OpenCV has a function, **cv.goodFeaturesToTrack()**. It finds N strongest corners in the image by
|
||||
Shi-Tomasi method (or Harris Corner Detection, if you specify it). As usual, image should be a
|
||||
grayscale image. Then you specify number of corners you want to find. Then you specify the quality
|
||||
level, which is a value between 0-1, which denotes the minimum quality of corner below which
|
||||
@ -47,18 +47,18 @@ minimum distance and returns N strongest corners.
|
||||
In below example, we will try to find 25 best corners:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('blox.jpg')
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread('blox.jpg')
|
||||
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
|
||||
corners = cv2.goodFeaturesToTrack(gray,25,0.01,10)
|
||||
corners = cv.goodFeaturesToTrack(gray,25,0.01,10)
|
||||
corners = np.int0(corners)
|
||||
|
||||
for i in corners:
|
||||
x,y = i.ravel()
|
||||
cv2.circle(img,(x,y),3,255,-1)
|
||||
cv.circle(img,(x,y),3,255,-1)
|
||||
|
||||
plt.imshow(img),plt.show()
|
||||
@endcode
|
||||
|
@ -113,30 +113,30 @@ So now let's see SIFT functionalities available in OpenCV. Let's start with keyp
|
||||
draw them. First we have to construct a SIFT object. We can pass different parameters to it which
|
||||
are optional and they are well explained in docs.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('home.jpg')
|
||||
gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread('home.jpg')
|
||||
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
|
||||
sift = cv2.xfeatures2d.SIFT_create()
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
kp = sift.detect(gray,None)
|
||||
|
||||
img=cv2.drawKeypoints(gray,kp,img)
|
||||
img=cv.drawKeypoints(gray,kp,img)
|
||||
|
||||
cv2.imwrite('sift_keypoints.jpg',img)
|
||||
cv.imwrite('sift_keypoints.jpg',img)
|
||||
@endcode
|
||||
**sift.detect()** function finds the keypoint in the images. You can pass a mask if you want to
|
||||
search only a part of image. Each keypoint is a special structure which has many attributes like its
|
||||
(x,y) coordinates, size of the meaningful neighbourhood, angle which specifies its orientation,
|
||||
response that specifies strength of keypoints etc.
|
||||
|
||||
OpenCV also provides **cv2.drawKeyPoints()** function which draws the small circles on the locations
|
||||
of keypoints. If you pass a flag, **cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS** to it, it will
|
||||
OpenCV also provides **cv.drawKeyPoints()** function which draws the small circles on the locations
|
||||
of keypoints. If you pass a flag, **cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS** to it, it will
|
||||
draw a circle with size of keypoint and it will even show its orientation. See below example.
|
||||
@code{.py}
|
||||
img=cv2.drawKeypoints(gray,kp,img,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
|
||||
cv2.imwrite('sift_keypoints.jpg',img)
|
||||
img=cv.drawKeypoints(gray,kp,img,flags=cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
|
||||
cv.imwrite('sift_keypoints.jpg',img)
|
||||
@endcode
|
||||
See the two results below:
|
||||
|
||||
@ -151,7 +151,7 @@ Now to calculate the descriptor, OpenCV provides two methods.
|
||||
|
||||
We will see the second method:
|
||||
@code{.py}
|
||||
sift = cv2.xfeatures2d.SIFT_create()
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
kp, des = sift.detectAndCompute(gray,None)
|
||||
@endcode
|
||||
Here kp will be a list of keypoints and des is a numpy array of shape
|
||||
|
@ -76,11 +76,11 @@ and descriptors.
|
||||
First we will see a simple demo on how to find SURF keypoints and descriptors and draw it. All
|
||||
examples are shown in Python terminal since it is just same as SIFT only.
|
||||
@code{.py}
|
||||
>>> img = cv2.imread('fly.png',0)
|
||||
>>> img = cv.imread('fly.png',0)
|
||||
|
||||
# Create SURF object. You can specify params here or later.
|
||||
# Here I set Hessian Threshold to 400
|
||||
>>> surf = cv2.xfeatures2d.SURF_create(400)
|
||||
>>> surf = cv.xfeatures2d.SURF_create(400)
|
||||
|
||||
# Find keypoints and descriptors directly
|
||||
>>> kp, des = surf.detectAndCompute(img,None)
|
||||
@ -107,7 +107,7 @@ While matching, we may need all those features, but not now. So we increase the
|
||||
@endcode
|
||||
It is less than 50. Let's draw it on the image.
|
||||
@code{.py}
|
||||
>>> img2 = cv2.drawKeypoints(img,kp,None,(255,0,0),4)
|
||||
>>> img2 = cv.drawKeypoints(img,kp,None,(255,0,0),4)
|
||||
|
||||
>>> plt.imshow(img2),plt.show()
|
||||
@endcode
|
||||
@ -126,7 +126,7 @@ False
|
||||
|
||||
# Recompute the feature points and draw it
|
||||
>>> kp = surf.detect(img,None)
|
||||
>>> img2 = cv2.drawKeypoints(img,kp,None,(255,0,0),4)
|
||||
>>> img2 = cv.drawKeypoints(img,kp,None,(255,0,0),4)
|
||||
|
||||
>>> plt.imshow(img2),plt.show()
|
||||
@endcode
|
||||
|
@ -5,8 +5,8 @@ Goal
|
||||
----
|
||||
|
||||
- Learn to draw different geometric shapes with OpenCV
|
||||
- You will learn these functions : **cv2.line()**, **cv2.circle()** , **cv2.rectangle()**,
|
||||
**cv2.ellipse()**, **cv2.putText()** etc.
|
||||
- You will learn these functions : **cv.line()**, **cv.circle()** , **cv.rectangle()**,
|
||||
**cv.ellipse()**, **cv.putText()** etc.
|
||||
|
||||
Code
|
||||
----
|
||||
@ -19,7 +19,7 @@ In all the above functions, you will see some common arguments as given below:
|
||||
- thickness : Thickness of the line or circle etc. If **-1** is passed for closed figures like
|
||||
circles, it will fill the shape. *default thickness = 1*
|
||||
- lineType : Type of line, whether 8-connected, anti-aliased line etc. *By default, it is
|
||||
8-connected.* cv2.LINE_AA gives anti-aliased line which looks great for curves.
|
||||
8-connected.* cv.LINE_AA gives anti-aliased line which looks great for curves.
|
||||
|
||||
### Drawing Line
|
||||
|
||||
@ -27,27 +27,27 @@ To draw a line, you need to pass starting and ending coordinates of line. We wil
|
||||
image and draw a blue line on it from top-left to bottom-right corners.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# Create a black image
|
||||
img = np.zeros((512,512,3), np.uint8)
|
||||
|
||||
# Draw a diagonal blue line with thickness of 5 px
|
||||
cv2.line(img,(0,0),(511,511),(255,0,0),5)
|
||||
cv.line(img,(0,0),(511,511),(255,0,0),5)
|
||||
@endcode
|
||||
### Drawing Rectangle
|
||||
|
||||
To draw a rectangle, you need top-left corner and bottom-right corner of rectangle. This time we
|
||||
will draw a green rectangle at the top-right corner of image.
|
||||
@code{.py}
|
||||
cv2.rectangle(img,(384,0),(510,128),(0,255,0),3)
|
||||
cv.rectangle(img,(384,0),(510,128),(0,255,0),3)
|
||||
@endcode
|
||||
### Drawing Circle
|
||||
|
||||
To draw a circle, you need its center coordinates and radius. We will draw a circle inside the
|
||||
rectangle drawn above.
|
||||
@code{.py}
|
||||
cv2.circle(img,(447,63), 63, (0,0,255), -1)
|
||||
cv.circle(img,(447,63), 63, (0,0,255), -1)
|
||||
@endcode
|
||||
### Drawing Ellipse
|
||||
|
||||
@ -55,10 +55,10 @@ To draw the ellipse, we need to pass several arguments. One argument is the cent
|
||||
Next argument is axes lengths (major axis length, minor axis length). angle is the angle of rotation
|
||||
of ellipse in anti-clockwise direction. startAngle and endAngle denotes the starting and ending of
|
||||
ellipse arc measured in clockwise direction from major axis. i.e. giving values 0 and 360 gives the
|
||||
full ellipse. For more details, check the documentation of **cv2.ellipse()**. Below example draws a
|
||||
full ellipse. For more details, check the documentation of **cv.ellipse()**. Below example draws a
|
||||
half ellipse at the center of the image.
|
||||
@code{.py}
|
||||
cv2.ellipse(img,(256,256),(100,50),0,0,180,255,-1)
|
||||
cv.ellipse(img,(256,256),(100,50),0,0,180,255,-1)
|
||||
@endcode
|
||||
### Drawing Polygon
|
||||
|
||||
@ -68,30 +68,30 @@ polygon of with four vertices in yellow color.
|
||||
@code{.py}
|
||||
pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32)
|
||||
pts = pts.reshape((-1,1,2))
|
||||
cv2.polylines(img,[pts],True,(0,255,255))
|
||||
cv.polylines(img,[pts],True,(0,255,255))
|
||||
@endcode
|
||||
|
||||
@note If third argument is False, you will get a polylines joining all the points, not a closed
|
||||
shape.
|
||||
|
||||
@note cv2.polylines() can be used to draw multiple lines. Just create a list of all the lines you
|
||||
@note cv.polylines() can be used to draw multiple lines. Just create a list of all the lines you
|
||||
want to draw and pass it to the function. All lines will be drawn individually. It is a much better
|
||||
and faster way to draw a group of lines than calling cv2.line() for each line.
|
||||
and faster way to draw a group of lines than calling cv.line() for each line.
|
||||
|
||||
### Adding Text to Images:
|
||||
|
||||
To put texts in images, you need specify following things.
|
||||
- Text data that you want to write
|
||||
- Position coordinates of where you want put it (i.e. bottom-left corner where data starts).
|
||||
- Font type (Check **cv2.putText()** docs for supported fonts)
|
||||
- Font type (Check **cv.putText()** docs for supported fonts)
|
||||
- Font Scale (specifies the size of font)
|
||||
- regular things like color, thickness, lineType etc. For better look, lineType = cv2.LINE_AA
|
||||
- regular things like color, thickness, lineType etc. For better look, lineType = cv.LINE_AA
|
||||
is recommended.
|
||||
|
||||
We will write **OpenCV** on our image in white color.
|
||||
@code{.py}
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
cv2.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv2.LINE_AA)
|
||||
font = cv.FONT_HERSHEY_SIMPLEX
|
||||
cv.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv.LINE_AA)
|
||||
@endcode
|
||||
|
||||
### Result
|
||||
|
@ -5,7 +5,7 @@ Goals
|
||||
-----
|
||||
|
||||
- Here, you will learn how to read an image, how to display it and how to save it back
|
||||
- You will learn these functions : **cv2.imread()**, **cv2.imshow()** , **cv2.imwrite()**
|
||||
- You will learn these functions : **cv.imread()**, **cv.imshow()** , **cv.imwrite()**
|
||||
- Optionally, you will learn how to display images with Matplotlib
|
||||
|
||||
Using OpenCV
|
||||
@ -13,25 +13,25 @@ Using OpenCV
|
||||
|
||||
### Read an image
|
||||
|
||||
Use the function **cv2.imread()** to read an image. The image should be in the working directory or
|
||||
Use the function **cv.imread()** to read an image. The image should be in the working directory or
|
||||
a full path of image should be given.
|
||||
|
||||
Second argument is a flag which specifies the way image should be read.
|
||||
|
||||
- cv2.IMREAD_COLOR : Loads a color image. Any transparency of image will be neglected. It is the
|
||||
- cv.IMREAD_COLOR : Loads a color image. Any transparency of image will be neglected. It is the
|
||||
default flag.
|
||||
- cv2.IMREAD_GRAYSCALE : Loads image in grayscale mode
|
||||
- cv2.IMREAD_UNCHANGED : Loads image as such including alpha channel
|
||||
- cv.IMREAD_GRAYSCALE : Loads image in grayscale mode
|
||||
- cv.IMREAD_UNCHANGED : Loads image as such including alpha channel
|
||||
|
||||
@note Instead of these three flags, you can simply pass integers 1, 0 or -1 respectively.
|
||||
|
||||
See the code below:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# Load an color image in grayscale
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
@endcode
|
||||
|
||||
**warning**
|
||||
@ -40,21 +40,21 @@ Even if the image path is wrong, it won't throw any error, but `print img` will
|
||||
|
||||
### Display an image
|
||||
|
||||
Use the function **cv2.imshow()** to display an image in a window. The window automatically fits to
|
||||
Use the function **cv.imshow()** to display an image in a window. The window automatically fits to
|
||||
the image size.
|
||||
|
||||
First argument is a window name which is a string. second argument is our image. You can create as
|
||||
many windows as you wish, but with different window names.
|
||||
@code{.py}
|
||||
cv2.imshow('image',img)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('image',img)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
A screenshot of the window will look like this (in Fedora-Gnome machine):
|
||||
|
||||
![image](images/opencv_screenshot.jpg)
|
||||
|
||||
**cv2.waitKey()** is a keyboard binding function. Its argument is the time in milliseconds. The
|
||||
**cv.waitKey()** is a keyboard binding function. Its argument is the time in milliseconds. The
|
||||
function waits for specified milliseconds for any keyboard event. If you press any key in that time,
|
||||
the program continues. If **0** is passed, it waits indefinitely for a key stroke. It can also be
|
||||
set to detect specific key strokes like, if key a is pressed etc which we will discuss below.
|
||||
@ -62,30 +62,30 @@ set to detect specific key strokes like, if key a is pressed etc which we will d
|
||||
@note Besides binding keyboard events this function also processes many other GUI events, so you
|
||||
MUST use it to actually display the image.
|
||||
|
||||
**cv2.destroyAllWindows()** simply destroys all the windows we created. If you want to destroy any
|
||||
specific window, use the function **cv2.destroyWindow()** where you pass the exact window name as
|
||||
**cv.destroyAllWindows()** simply destroys all the windows we created. If you want to destroy any
|
||||
specific window, use the function **cv.destroyWindow()** where you pass the exact window name as
|
||||
the argument.
|
||||
|
||||
@note There is a special case where you can already create a window and load image to it later. In
|
||||
that case, you can specify whether window is resizable or not. It is done with the function
|
||||
**cv2.namedWindow()**. By default, the flag is cv2.WINDOW_AUTOSIZE. But if you specify flag to be
|
||||
cv2.WINDOW_NORMAL, you can resize window. It will be helpful when image is too large in dimension
|
||||
**cv.namedWindow()**. By default, the flag is cv.WINDOW_AUTOSIZE. But if you specify flag to be
|
||||
cv.WINDOW_NORMAL, you can resize window. It will be helpful when image is too large in dimension
|
||||
and adding track bar to windows.
|
||||
|
||||
See the code below:
|
||||
@code{.py}
|
||||
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
|
||||
cv2.imshow('image',img)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.namedWindow('image', cv.WINDOW_NORMAL)
|
||||
cv.imshow('image',img)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
### Write an image
|
||||
|
||||
Use the function **cv2.imwrite()** to save an image.
|
||||
Use the function **cv.imwrite()** to save an image.
|
||||
|
||||
First argument is the file name, second argument is the image you want to save.
|
||||
@code{.py}
|
||||
cv2.imwrite('messigray.png',img)
|
||||
cv.imwrite('messigray.png',img)
|
||||
@endcode
|
||||
This will save the image in PNG format in the working directory.
|
||||
|
||||
@ -95,22 +95,22 @@ Below program loads an image in grayscale, displays it, save the image if you pr
|
||||
simply exit without saving if you press ESC key.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
cv2.imshow('image',img)
|
||||
k = cv2.waitKey(0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
cv.imshow('image',img)
|
||||
k = cv.waitKey(0)
|
||||
if k == 27: # wait for ESC key to exit
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
elif k == ord('s'): # wait for 's' key to save and exit
|
||||
cv2.imwrite('messigray.png',img)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imwrite('messigray.png',img)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
|
||||
**warning**
|
||||
|
||||
If you are using a 64-bit machine, you will have to modify `k = cv2.waitKey(0)` line as follows :
|
||||
`k = cv2.waitKey(0) & 0xFF`
|
||||
If you are using a 64-bit machine, you will have to modify `k = cv.waitKey(0)` line as follows :
|
||||
`k = cv.waitKey(0) & 0xFF`
|
||||
|
||||
Using Matplotlib
|
||||
----------------
|
||||
@ -120,10 +120,10 @@ will see them in coming articles. Here, you will learn how to display image with
|
||||
zoom images, save it etc using Matplotlib.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
|
||||
plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis
|
||||
plt.show()
|
||||
|
@ -5,7 +5,7 @@ Goal
|
||||
----
|
||||
|
||||
- Learn to handle mouse events in OpenCV
|
||||
- You will learn these functions : **cv2.setMouseCallback()**
|
||||
- You will learn these functions : **cv.setMouseCallback()**
|
||||
|
||||
Simple Demo
|
||||
-----------
|
||||
@ -19,32 +19,32 @@ double-click etc. It gives us the coordinates (x,y) for every mouse event. With
|
||||
location, we can do whatever we like. To list all available events available, run the following code
|
||||
in Python terminal:
|
||||
@code{.py}
|
||||
import cv2
|
||||
events = [i for i in dir(cv2) if 'EVENT' in i]
|
||||
import cv2 as cv
|
||||
events = [i for i in dir(cv) if 'EVENT' in i]
|
||||
print( events )
|
||||
@endcode
|
||||
Creating mouse callback function has a specific format which is same everywhere. It differs only in
|
||||
what the function does. So our mouse callback function does one thing, it draws a circle where we
|
||||
double-click. So see the code below. Code is self-explanatory from comments :
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
# mouse callback function
|
||||
def draw_circle(event,x,y,flags,param):
|
||||
if event == cv2.EVENT_LBUTTONDBLCLK:
|
||||
cv2.circle(img,(x,y),100,(255,0,0),-1)
|
||||
if event == cv.EVENT_LBUTTONDBLCLK:
|
||||
cv.circle(img,(x,y),100,(255,0,0),-1)
|
||||
|
||||
# Create a black image, a window and bind the function to window
|
||||
img = np.zeros((512,512,3), np.uint8)
|
||||
cv2.namedWindow('image')
|
||||
cv2.setMouseCallback('image',draw_circle)
|
||||
cv.namedWindow('image')
|
||||
cv.setMouseCallback('image',draw_circle)
|
||||
|
||||
while(1):
|
||||
cv2.imshow('image',img)
|
||||
if cv2.waitKey(20) & 0xFF == 27:
|
||||
cv.imshow('image',img)
|
||||
if cv.waitKey(20) & 0xFF == 27:
|
||||
break
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
More Advanced Demo
|
||||
------------------
|
||||
@ -55,8 +55,8 @@ function has two parts, one to draw rectangle and other to draw the circles. Thi
|
||||
will be really helpful in creating and understanding some interactive applications like object
|
||||
tracking, image segmentation etc.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
drawing = False # true if mouse is pressed
|
||||
mode = True # if True, draw rectangle. Press 'm' to toggle to curve
|
||||
@ -66,40 +66,40 @@ ix,iy = -1,-1
|
||||
def draw_circle(event,x,y,flags,param):
|
||||
global ix,iy,drawing,mode
|
||||
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
if event == cv.EVENT_LBUTTONDOWN:
|
||||
drawing = True
|
||||
ix,iy = x,y
|
||||
|
||||
elif event == cv2.EVENT_MOUSEMOVE:
|
||||
elif event == cv.EVENT_MOUSEMOVE:
|
||||
if drawing == True:
|
||||
if mode == True:
|
||||
cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
|
||||
cv.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
|
||||
else:
|
||||
cv2.circle(img,(x,y),5,(0,0,255),-1)
|
||||
cv.circle(img,(x,y),5,(0,0,255),-1)
|
||||
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
elif event == cv.EVENT_LBUTTONUP:
|
||||
drawing = False
|
||||
if mode == True:
|
||||
cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
|
||||
cv.rectangle(img,(ix,iy),(x,y),(0,255,0),-1)
|
||||
else:
|
||||
cv2.circle(img,(x,y),5,(0,0,255),-1)
|
||||
cv.circle(img,(x,y),5,(0,0,255),-1)
|
||||
@endcode
|
||||
Next we have to bind this mouse callback function to OpenCV window. In the main loop, we should set
|
||||
a keyboard binding for key 'm' to toggle between rectangle and circle.
|
||||
@code{.py}
|
||||
img = np.zeros((512,512,3), np.uint8)
|
||||
cv2.namedWindow('image')
|
||||
cv2.setMouseCallback('image',draw_circle)
|
||||
cv.namedWindow('image')
|
||||
cv.setMouseCallback('image',draw_circle)
|
||||
|
||||
while(1):
|
||||
cv2.imshow('image',img)
|
||||
k = cv2.waitKey(1) & 0xFF
|
||||
cv.imshow('image',img)
|
||||
k = cv.waitKey(1) & 0xFF
|
||||
if k == ord('m'):
|
||||
mode = not mode
|
||||
elif k == 27:
|
||||
break
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Additional Resources
|
||||
--------------------
|
||||
|
@ -5,7 +5,7 @@ Goal
|
||||
----
|
||||
|
||||
- Learn to bind trackbar to OpenCV windows
|
||||
- You will learn these functions : **cv2.getTrackbarPos()**, **cv2.createTrackbar()** etc.
|
||||
- You will learn these functions : **cv.getTrackbarPos()**, **cv.createTrackbar()** etc.
|
||||
|
||||
Code Demo
|
||||
---------
|
||||
@ -14,7 +14,7 @@ Here we will create a simple application which shows the color you specify. You
|
||||
shows the color and three trackbars to specify each of B,G,R colors. You slide the trackbar and
|
||||
correspondingly window color changes. By default, initial color will be set to Black.
|
||||
|
||||
For cv2.getTrackbarPos() function, first argument is the trackbar name, second one is the window
|
||||
For cv.getTrackbarPos() function, first argument is the trackbar name, second one is the window
|
||||
name to which it is attached, third argument is the default value, fourth one is the maximum value
|
||||
and fifth one is the callback function which is executed everytime trackbar value changes. The
|
||||
callback function always has a default argument which is the trackbar position. In our case,
|
||||
@ -25,43 +25,43 @@ doesn't have button functionality. So you can use trackbar to get such functiona
|
||||
application, we have created one switch in which application works only if switch is ON, otherwise
|
||||
screen is always black.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
def nothing(x):
|
||||
pass
|
||||
|
||||
# Create a black image, a window
|
||||
img = np.zeros((300,512,3), np.uint8)
|
||||
cv2.namedWindow('image')
|
||||
cv.namedWindow('image')
|
||||
|
||||
# create trackbars for color change
|
||||
cv2.createTrackbar('R','image',0,255,nothing)
|
||||
cv2.createTrackbar('G','image',0,255,nothing)
|
||||
cv2.createTrackbar('B','image',0,255,nothing)
|
||||
cv.createTrackbar('R','image',0,255,nothing)
|
||||
cv.createTrackbar('G','image',0,255,nothing)
|
||||
cv.createTrackbar('B','image',0,255,nothing)
|
||||
|
||||
# create switch for ON/OFF functionality
|
||||
switch = '0 : OFF \n1 : ON'
|
||||
cv2.createTrackbar(switch, 'image',0,1,nothing)
|
||||
cv.createTrackbar(switch, 'image',0,1,nothing)
|
||||
|
||||
while(1):
|
||||
cv2.imshow('image',img)
|
||||
k = cv2.waitKey(1) & 0xFF
|
||||
cv.imshow('image',img)
|
||||
k = cv.waitKey(1) & 0xFF
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
# get current positions of four trackbars
|
||||
r = cv2.getTrackbarPos('R','image')
|
||||
g = cv2.getTrackbarPos('G','image')
|
||||
b = cv2.getTrackbarPos('B','image')
|
||||
s = cv2.getTrackbarPos(switch,'image')
|
||||
r = cv.getTrackbarPos('R','image')
|
||||
g = cv.getTrackbarPos('G','image')
|
||||
b = cv.getTrackbarPos('B','image')
|
||||
s = cv.getTrackbarPos(switch,'image')
|
||||
|
||||
if s == 0:
|
||||
img[:] = 0
|
||||
else:
|
||||
img[:] = [b,g,r]
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
The screenshot of the application looks like below :
|
||||
|
||||
|
@ -6,7 +6,7 @@ Goal
|
||||
|
||||
- Learn to read video, display video and save video.
|
||||
- Learn to capture from Camera and display it.
|
||||
- You will learn these functions : **cv2.VideoCapture()**, **cv2.VideoWriter()**
|
||||
- You will learn these functions : **cv.VideoCapture()**, **cv.VideoWriter()**
|
||||
|
||||
Capture Video from Camera
|
||||
-------------------------
|
||||
@ -22,25 +22,25 @@ the second camera by passing 1 and so on. After that, you can capture frame-by-f
|
||||
end, don't forget to release the capture.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap = cv.VideoCapture(0)
|
||||
|
||||
while(True):
|
||||
# Capture frame-by-frame
|
||||
ret, frame = cap.read()
|
||||
|
||||
# Our operations on the frame come here
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Display the resulting frame
|
||||
cv2.imshow('frame',gray)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
cv.imshow('frame',gray)
|
||||
if cv.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
# When everything done, release the capture
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
`cap.read()` returns a bool (`True`/`False`). If frame is read correctly, it will be `True`. So you can
|
||||
check end of the video by checking this return value.
|
||||
@ -55,9 +55,9 @@ video) and full details can be seen here: cv::VideoCapture::get().
|
||||
Some of these values can be modified using **cap.set(propId, value)**. Value is the new value you
|
||||
want.
|
||||
|
||||
For example, I can check the frame width and height by `cap.get(cv2.CAP_PROP_FRAME_WIDTH)` and `cap.get(cv2.CAP_PROP_FRAME_HEIGHT)`. It gives me
|
||||
640x480 by default. But I want to modify it to 320x240. Just use `ret = cap.set(cv2.CAP_PROP_FRAME_WIDTH,320)` and
|
||||
`ret = cap.set(cv2.CAP_PROP_FRAME_HEIGHT,240)`.
|
||||
For example, I can check the frame width and height by `cap.get(cv.CAP_PROP_FRAME_WIDTH)` and `cap.get(cv.CAP_PROP_FRAME_HEIGHT)`. It gives me
|
||||
640x480 by default. But I want to modify it to 320x240. Just use `ret = cap.set(cv.CAP_PROP_FRAME_WIDTH,320)` and
|
||||
`ret = cap.set(cv.CAP_PROP_FRAME_HEIGHT,240)`.
|
||||
|
||||
@note If you are getting error, make sure camera is working fine using any other camera application
|
||||
(like Cheese in Linux).
|
||||
@ -66,26 +66,26 @@ Playing Video from file
|
||||
-----------------------
|
||||
|
||||
It is same as capturing from Camera, just change camera index with video file name. Also while
|
||||
displaying the frame, use appropriate time for `cv2.waitKey()`. If it is too less, video will be very
|
||||
displaying the frame, use appropriate time for `cv.waitKey()`. If it is too less, video will be very
|
||||
fast and if it is too high, video will be slow (Well, that is how you can display videos in slow
|
||||
motion). 25 milliseconds will be OK in normal cases.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('vtest.avi')
|
||||
cap = cv.VideoCapture('vtest.avi')
|
||||
|
||||
while(cap.isOpened()):
|
||||
ret, frame = cap.read()
|
||||
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
|
||||
cv2.imshow('frame',gray)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
cv.imshow('frame',gray)
|
||||
if cv.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
|
||||
@note Make sure proper versions of ffmpeg or gstreamer is installed. Sometimes, it is a headache to
|
||||
@ -95,7 +95,7 @@ Saving a Video
|
||||
--------------
|
||||
|
||||
So we capture a video, process it frame-by-frame and we want to save that video. For images, it is
|
||||
very simple, just use `cv2.imwrite()`. Here a little more work is required.
|
||||
very simple, just use `cv.imwrite()`. Here a little more work is required.
|
||||
|
||||
This time we create a **VideoWriter** object. We should specify the output file name (eg:
|
||||
output.avi). Then we should specify the **FourCC** code (details in next paragraph). Then number of
|
||||
@ -111,30 +111,30 @@ platform dependent. Following codecs works fine for me.
|
||||
- In Windows: DIVX (More to be tested and added)
|
||||
- In OSX: MJPG (.mp4), DIVX (.avi), X264 (.mkv).
|
||||
|
||||
FourCC code is passed as `cv2.VideoWriter_fourcc('M','J','P','G')` or
|
||||
`cv2.VideoWriter_fourcc(*'MJPG')` for MJPG.
|
||||
FourCC code is passed as `cv.VideoWriter_fourcc('M','J','P','G')` or
|
||||
`cv.VideoWriter_fourcc(*'MJPG')` for MJPG.
|
||||
|
||||
Below code capture from a Camera, flip every frame in vertical direction and saves it.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap = cv.VideoCapture(0)
|
||||
|
||||
# Define the codec and create VideoWriter object
|
||||
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
||||
out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))
|
||||
fourcc = cv.VideoWriter_fourcc(*'XVID')
|
||||
out = cv.VideoWriter('output.avi',fourcc, 20.0, (640,480))
|
||||
|
||||
while(cap.isOpened()):
|
||||
ret, frame = cap.read()
|
||||
if ret==True:
|
||||
frame = cv2.flip(frame,0)
|
||||
frame = cv.flip(frame,0)
|
||||
|
||||
# write the flipped frame
|
||||
out.write(frame)
|
||||
|
||||
cv2.imshow('frame',frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
cv.imshow('frame',frame)
|
||||
if cv.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
else:
|
||||
break
|
||||
@ -142,7 +142,7 @@ while(cap.isOpened()):
|
||||
# Release everything if job is finished
|
||||
cap.release()
|
||||
out.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
|
||||
Additional Resources
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter, we will learn about
|
||||
|
||||
- Concept of Canny edge detection
|
||||
- OpenCV functions for that : **cv2.Canny()**
|
||||
- OpenCV functions for that : **cv.Canny()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -72,19 +72,19 @@ So what we finally get is strong edges in the image.
|
||||
Canny Edge Detection in OpenCV
|
||||
------------------------------
|
||||
|
||||
OpenCV puts all the above in single function, **cv2.Canny()**. We will see how to use it. First
|
||||
OpenCV puts all the above in single function, **cv.Canny()**. We will see how to use it. First
|
||||
argument is our input image. Second and third arguments are our minVal and maxVal respectively.
|
||||
Third argument is aperture_size. It is the size of Sobel kernel used for find image gradients. By
|
||||
default it is 3. Last argument is L2gradient which specifies the equation for finding gradient
|
||||
magnitude. If it is True, it uses the equation mentioned above which is more accurate, otherwise it
|
||||
uses this function: \f$Edge\_Gradient \; (G) = |G_x| + |G_y|\f$. By default, it is False.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
edges = cv2.Canny(img,100,200)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
edges = cv.Canny(img,100,200)
|
||||
|
||||
plt.subplot(121),plt.imshow(img,cmap = 'gray')
|
||||
plt.title('Original Image'), plt.xticks([]), plt.yticks([])
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
- In this tutorial, you will learn how to convert images from one color-space to another, like
|
||||
BGR \f$\leftrightarrow\f$ Gray, BGR \f$\leftrightarrow\f$ HSV etc.
|
||||
- In addition to that, we will create an application which extracts a colored object in a video
|
||||
- You will learn following functions : **cv2.cvtColor()**, **cv2.inRange()** etc.
|
||||
- You will learn following functions : **cv.cvtColor()**, **cv.inRange()** etc.
|
||||
|
||||
Changing Color-space
|
||||
--------------------
|
||||
@ -15,15 +15,15 @@ Changing Color-space
|
||||
There are more than 150 color-space conversion methods available in OpenCV. But we will look into
|
||||
only two which are most widely used ones, BGR \f$\leftrightarrow\f$ Gray and BGR \f$\leftrightarrow\f$ HSV.
|
||||
|
||||
For color conversion, we use the function cv2.cvtColor(input_image, flag) where flag determines the
|
||||
For color conversion, we use the function cv.cvtColor(input_image, flag) where flag determines the
|
||||
type of conversion.
|
||||
|
||||
For BGR \f$\rightarrow\f$ Gray conversion we use the flags cv2.COLOR_BGR2GRAY. Similarly for BGR
|
||||
\f$\rightarrow\f$ HSV, we use the flag cv2.COLOR_BGR2HSV. To get other flags, just run following
|
||||
For BGR \f$\rightarrow\f$ Gray conversion we use the flags cv.COLOR_BGR2GRAY. Similarly for BGR
|
||||
\f$\rightarrow\f$ HSV, we use the flag cv.COLOR_BGR2HSV. To get other flags, just run following
|
||||
commands in your Python terminal :
|
||||
@code{.py}
|
||||
>>> import cv2
|
||||
>>> flags = [i for i in dir(cv2) if i.startswith('COLOR_')]
|
||||
>>> import cv2 as cv
|
||||
>>> flags = [i for i in dir(cv) if i.startswith('COLOR_')]
|
||||
>>> print( flags )
|
||||
@endcode
|
||||
@note For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255].
|
||||
@ -44,10 +44,10 @@ a blue colored object. So here is the method:
|
||||
|
||||
Below is the code which are commented in detail :
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap = cv.VideoCapture(0)
|
||||
|
||||
while(1):
|
||||
|
||||
@ -55,26 +55,26 @@ while(1):
|
||||
_, frame = cap.read()
|
||||
|
||||
# Convert BGR to HSV
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
|
||||
# define range of blue color in HSV
|
||||
lower_blue = np.array([110,50,50])
|
||||
upper_blue = np.array([130,255,255])
|
||||
|
||||
# Threshold the HSV image to get only blue colors
|
||||
mask = cv2.inRange(hsv, lower_blue, upper_blue)
|
||||
mask = cv.inRange(hsv, lower_blue, upper_blue)
|
||||
|
||||
# Bitwise-AND mask and original image
|
||||
res = cv2.bitwise_and(frame,frame, mask= mask)
|
||||
res = cv.bitwise_and(frame,frame, mask= mask)
|
||||
|
||||
cv2.imshow('frame',frame)
|
||||
cv2.imshow('mask',mask)
|
||||
cv2.imshow('res',res)
|
||||
k = cv2.waitKey(5) & 0xFF
|
||||
cv.imshow('frame',frame)
|
||||
cv.imshow('mask',mask)
|
||||
cv.imshow('res',res)
|
||||
k = cv.waitKey(5) & 0xFF
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Below image shows tracking of the blue object:
|
||||
|
||||
@ -90,12 +90,12 @@ How to find HSV values to track?
|
||||
--------------------------------
|
||||
|
||||
This is a common question found in [stackoverflow.com](http://www.stackoverflow.com). It is very simple and
|
||||
you can use the same function, cv2.cvtColor(). Instead of passing an image, you just pass the BGR
|
||||
you can use the same function, cv.cvtColor(). Instead of passing an image, you just pass the BGR
|
||||
values you want. For example, to find the HSV value of Green, try following commands in Python
|
||||
terminal:
|
||||
@code{.py}
|
||||
>>> green = np.uint8([[[0,255,0 ]]])
|
||||
>>> hsv_green = cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
|
||||
>>> hsv_green = cv.cvtColor(green,cv.COLOR_BGR2HSV)
|
||||
>>> print( hsv_green )
|
||||
[[[ 60 255 255]]]
|
||||
@endcode
|
||||
|
@ -16,17 +16,17 @@ Image moments help you to calculate some features like center of mass of the obj
|
||||
object etc. Check out the wikipedia page on [Image
|
||||
Moments](http://en.wikipedia.org/wiki/Image_moment)
|
||||
|
||||
The function **cv2.moments()** gives a dictionary of all moment values calculated. See below:
|
||||
The function **cv.moments()** gives a dictionary of all moment values calculated. See below:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('star.jpg',0)
|
||||
ret,thresh = cv2.threshold(img,127,255,0)
|
||||
im2,contours,hierarchy = cv2.findContours(thresh, 1, 2)
|
||||
img = cv.imread('star.jpg',0)
|
||||
ret,thresh = cv.threshold(img,127,255,0)
|
||||
im2,contours,hierarchy = cv.findContours(thresh, 1, 2)
|
||||
|
||||
cnt = contours[0]
|
||||
M = cv2.moments(cnt)
|
||||
M = cv.moments(cnt)
|
||||
print( M )
|
||||
@endcode
|
||||
From this moments, you can extract useful data like area, centroid etc. Centroid is given by the
|
||||
@ -40,18 +40,18 @@ cy = int(M['m01']/M['m00'])
|
||||
2. Contour Area
|
||||
---------------
|
||||
|
||||
Contour area is given by the function **cv2.contourArea()** or from moments, **M['m00']**.
|
||||
Contour area is given by the function **cv.contourArea()** or from moments, **M['m00']**.
|
||||
@code{.py}
|
||||
area = cv2.contourArea(cnt)
|
||||
area = cv.contourArea(cnt)
|
||||
@endcode
|
||||
|
||||
3. Contour Perimeter
|
||||
--------------------
|
||||
|
||||
It is also called arc length. It can be found out using **cv2.arcLength()** function. Second
|
||||
It is also called arc length. It can be found out using **cv.arcLength()** function. Second
|
||||
argument specify whether shape is a closed contour (if passed True), or just a curve.
|
||||
@code{.py}
|
||||
perimeter = cv2.arcLength(cnt,True)
|
||||
perimeter = cv.arcLength(cnt,True)
|
||||
@endcode
|
||||
|
||||
4. Contour Approximation
|
||||
@ -68,8 +68,8 @@ you can use this function to approximate the shape. In this, second argument is
|
||||
which is maximum distance from contour to approximated contour. It is an accuracy parameter. A wise
|
||||
selection of epsilon is needed to get the correct output.
|
||||
@code{.py}
|
||||
epsilon = 0.1*cv2.arcLength(cnt,True)
|
||||
approx = cv2.approxPolyDP(cnt,epsilon,True)
|
||||
epsilon = 0.1*cv.arcLength(cnt,True)
|
||||
approx = cv.approxPolyDP(cnt,epsilon,True)
|
||||
@endcode
|
||||
Below, in second image, green line shows the approximated curve for epsilon = 10% of arc length.
|
||||
Third image shows the same for epsilon = 1% of the arc length. Third argument specifies whether
|
||||
@ -81,7 +81,7 @@ curve is closed or not.
|
||||
--------------
|
||||
|
||||
Convex Hull will look similar to contour approximation, but it is not (Both may provide same results
|
||||
in some cases). Here, **cv2.convexHull()** function checks a curve for convexity defects and
|
||||
in some cases). Here, **cv.convexHull()** function checks a curve for convexity defects and
|
||||
corrects it. Generally speaking, convex curves are the curves which are always bulged out, or
|
||||
at-least flat. And if it is bulged inside, it is called convexity defects. For example, check the
|
||||
below image of hand. Red line shows the convex hull of hand. The double-sided arrow marks shows the
|
||||
@ -91,7 +91,7 @@ convexity defects, which are the local maximum deviations of hull from contours.
|
||||
|
||||
There is a little bit things to discuss about it its syntax:
|
||||
@code{.py}
|
||||
hull = cv2.convexHull(points[, hull[, clockwise[, returnPoints]]
|
||||
hull = cv.convexHull(points[, hull[, clockwise[, returnPoints]]
|
||||
@endcode
|
||||
Arguments details:
|
||||
|
||||
@ -104,7 +104,7 @@ Arguments details:
|
||||
|
||||
So to get a convex hull as in above image, following is sufficient:
|
||||
@code{.py}
|
||||
hull = cv2.convexHull(cnt)
|
||||
hull = cv.convexHull(cnt)
|
||||
@endcode
|
||||
But if you want to find convexity defects, you need to pass returnPoints = False. To understand it,
|
||||
we will take the rectangle image above. First I found its contour as cnt. Now I found its convex
|
||||
@ -119,10 +119,10 @@ You will see it again when we discuss about convexity defects.
|
||||
6. Checking Convexity
|
||||
---------------------
|
||||
|
||||
There is a function to check if a curve is convex or not, **cv2.isContourConvex()**. It just return
|
||||
There is a function to check if a curve is convex or not, **cv.isContourConvex()**. It just return
|
||||
whether True or False. Not a big deal.
|
||||
@code{.py}
|
||||
k = cv2.isContourConvex(cnt)
|
||||
k = cv.isContourConvex(cnt)
|
||||
@endcode
|
||||
|
||||
7. Bounding Rectangle
|
||||
@ -133,25 +133,25 @@ There are two types of bounding rectangles.
|
||||
### 7.a. Straight Bounding Rectangle
|
||||
|
||||
It is a straight rectangle, it doesn't consider the rotation of the object. So area of the bounding
|
||||
rectangle won't be minimum. It is found by the function **cv2.boundingRect()**.
|
||||
rectangle won't be minimum. It is found by the function **cv.boundingRect()**.
|
||||
|
||||
Let (x,y) be the top-left coordinate of the rectangle and (w,h) be its width and height.
|
||||
@code{.py}
|
||||
x,y,w,h = cv2.boundingRect(cnt)
|
||||
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
|
||||
x,y,w,h = cv.boundingRect(cnt)
|
||||
cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
|
||||
@endcode
|
||||
|
||||
### 7.b. Rotated Rectangle
|
||||
|
||||
Here, bounding rectangle is drawn with minimum area, so it considers the rotation also. The function
|
||||
used is **cv2.minAreaRect()**. It returns a Box2D structure which contains following detals - (
|
||||
used is **cv.minAreaRect()**. It returns a Box2D structure which contains following detals - (
|
||||
center (x,y), (width, height), angle of rotation ). But to draw this rectangle, we need 4 corners of
|
||||
the rectangle. It is obtained by the function **cv2.boxPoints()**
|
||||
the rectangle. It is obtained by the function **cv.boxPoints()**
|
||||
@code{.py}
|
||||
rect = cv2.minAreaRect(cnt)
|
||||
box = cv2.boxPoints(rect)
|
||||
rect = cv.minAreaRect(cnt)
|
||||
box = cv.boxPoints(rect)
|
||||
box = np.int0(box)
|
||||
cv2.drawContours(img,[box],0,(0,0,255),2)
|
||||
cv.drawContours(img,[box],0,(0,0,255),2)
|
||||
@endcode
|
||||
Both the rectangles are shown in a single image. Green rectangle shows the normal bounding rect. Red
|
||||
rectangle is the rotated rect.
|
||||
@ -161,13 +161,13 @@ rectangle is the rotated rect.
|
||||
8. Minimum Enclosing Circle
|
||||
---------------------------
|
||||
|
||||
Next we find the circumcircle of an object using the function **cv2.minEnclosingCircle()**. It is a
|
||||
Next we find the circumcircle of an object using the function **cv.minEnclosingCircle()**. It is a
|
||||
circle which completely covers the object with minimum area.
|
||||
@code{.py}
|
||||
(x,y),radius = cv2.minEnclosingCircle(cnt)
|
||||
(x,y),radius = cv.minEnclosingCircle(cnt)
|
||||
center = (int(x),int(y))
|
||||
radius = int(radius)
|
||||
cv2.circle(img,center,radius,(0,255,0),2)
|
||||
cv.circle(img,center,radius,(0,255,0),2)
|
||||
@endcode
|
||||
![image](images/circumcircle.png)
|
||||
|
||||
@ -177,8 +177,8 @@ cv2.circle(img,center,radius,(0,255,0),2)
|
||||
Next one is to fit an ellipse to an object. It returns the rotated rectangle in which the ellipse is
|
||||
inscribed.
|
||||
@code{.py}
|
||||
ellipse = cv2.fitEllipse(cnt)
|
||||
cv2.ellipse(img,ellipse,(0,255,0),2)
|
||||
ellipse = cv.fitEllipse(cnt)
|
||||
cv.ellipse(img,ellipse,(0,255,0),2)
|
||||
@endcode
|
||||
![image](images/fitellipse.png)
|
||||
|
||||
@ -189,10 +189,10 @@ Similarly we can fit a line to a set of points. Below image contains a set of wh
|
||||
approximate a straight line to it.
|
||||
@code{.py}
|
||||
rows,cols = img.shape[:2]
|
||||
[vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01)
|
||||
[vx,vy,x,y] = cv.fitLine(cnt, cv.DIST_L2,0,0.01,0.01)
|
||||
lefty = int((-x*vy/vx) + y)
|
||||
righty = int(((cols-x)*vy/vx)+y)
|
||||
cv2.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||
cv.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
|
||||
@endcode
|
||||
![image](images/fitline.jpg)
|
||||
|
||||
|
@ -15,7 +15,7 @@ It is the ratio of width to height of bounding rect of the object.
|
||||
|
||||
\f[Aspect \; Ratio = \frac{Width}{Height}\f]
|
||||
@code{.py}
|
||||
x,y,w,h = cv2.boundingRect(cnt)
|
||||
x,y,w,h = cv.boundingRect(cnt)
|
||||
aspect_ratio = float(w)/h
|
||||
@endcode
|
||||
|
||||
@ -26,8 +26,8 @@ Extent is the ratio of contour area to bounding rectangle area.
|
||||
|
||||
\f[Extent = \frac{Object \; Area}{Bounding \; Rectangle \; Area}\f]
|
||||
@code{.py}
|
||||
area = cv2.contourArea(cnt)
|
||||
x,y,w,h = cv2.boundingRect(cnt)
|
||||
area = cv.contourArea(cnt)
|
||||
x,y,w,h = cv.boundingRect(cnt)
|
||||
rect_area = w*h
|
||||
extent = float(area)/rect_area
|
||||
@endcode
|
||||
@ -39,9 +39,9 @@ Solidity is the ratio of contour area to its convex hull area.
|
||||
|
||||
\f[Solidity = \frac{Contour \; Area}{Convex \; Hull \; Area}\f]
|
||||
@code{.py}
|
||||
area = cv2.contourArea(cnt)
|
||||
hull = cv2.convexHull(cnt)
|
||||
hull_area = cv2.contourArea(hull)
|
||||
area = cv.contourArea(cnt)
|
||||
hull = cv.convexHull(cnt)
|
||||
hull_area = cv.contourArea(hull)
|
||||
solidity = float(area)/hull_area
|
||||
@endcode
|
||||
|
||||
@ -52,7 +52,7 @@ Equivalent Diameter is the diameter of the circle whose area is same as the cont
|
||||
|
||||
\f[Equivalent \; Diameter = \sqrt{\frac{4 \times Contour \; Area}{\pi}}\f]
|
||||
@code{.py}
|
||||
area = cv2.contourArea(cnt)
|
||||
area = cv.contourArea(cnt)
|
||||
equi_diameter = np.sqrt(4*area/np.pi)
|
||||
@endcode
|
||||
|
||||
@ -62,7 +62,7 @@ equi_diameter = np.sqrt(4*area/np.pi)
|
||||
Orientation is the angle at which object is directed. Following method also gives the Major Axis and
|
||||
Minor Axis lengths.
|
||||
@code{.py}
|
||||
(x,y),(MA,ma),angle = cv2.fitEllipse(cnt)
|
||||
(x,y),(MA,ma),angle = cv.fitEllipse(cnt)
|
||||
@endcode
|
||||
|
||||
6. Mask and Pixel Points
|
||||
@ -71,9 +71,9 @@ Minor Axis lengths.
|
||||
In some cases, we may need all the points which comprises that object. It can be done as follows:
|
||||
@code{.py}
|
||||
mask = np.zeros(imgray.shape,np.uint8)
|
||||
cv2.drawContours(mask,[cnt],0,255,-1)
|
||||
cv.drawContours(mask,[cnt],0,255,-1)
|
||||
pixelpoints = np.transpose(np.nonzero(mask))
|
||||
#pixelpoints = cv2.findNonZero(mask)
|
||||
#pixelpoints = cv.findNonZero(mask)
|
||||
@endcode
|
||||
Here, two methods, one using Numpy functions, next one using OpenCV function (last commented line)
|
||||
are given to do the same. Results are also same, but with a slight difference. Numpy gives
|
||||
@ -85,7 +85,7 @@ basically the answers will be interchanged. Note that, **row = x** and **column
|
||||
|
||||
We can find these parameters using a mask image.
|
||||
@code{.py}
|
||||
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)
|
||||
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(imgray,mask = mask)
|
||||
@endcode
|
||||
|
||||
8. Mean Color or Mean Intensity
|
||||
@ -94,7 +94,7 @@ min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(imgray,mask = mask)
|
||||
Here, we can find the average color of an object. Or it can be average intensity of the object in
|
||||
grayscale mode. We again use the same mask to do it.
|
||||
@code{.py}
|
||||
mean_val = cv2.mean(im,mask = mask)
|
||||
mean_val = cv.mean(im,mask = mask)
|
||||
@endcode
|
||||
|
||||
9. Extreme Points
|
||||
|
@ -6,7 +6,7 @@ Goal
|
||||
|
||||
- Understand what contours are.
|
||||
- Learn to find contours, draw contours etc
|
||||
- You will see these functions : **cv2.findContours()**, **cv2.drawContours()**
|
||||
- You will see these functions : **cv.findContours()**, **cv.drawContours()**
|
||||
|
||||
What are contours?
|
||||
------------------
|
||||
@ -24,14 +24,14 @@ detection and recognition.
|
||||
Let's see how to find contours of a binary image:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
im = cv2.imread('test.jpg')
|
||||
imgray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv2.threshold(imgray, 127, 255, 0)
|
||||
im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
im = cv.imread('test.jpg')
|
||||
imgray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv.threshold(imgray, 127, 255, 0)
|
||||
im2, contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
@endcode
|
||||
See, there are three arguments in **cv2.findContours()** function, first one is source image, second
|
||||
See, there are three arguments in **cv.findContours()** function, first one is source image, second
|
||||
is contour retrieval mode, third is contour approximation method. And it outputs a modified image, the contours and
|
||||
hierarchy. contours is a Python list of all the contours in the image. Each individual contour is a
|
||||
Numpy array of (x,y) coordinates of boundary points of the object.
|
||||
@ -42,7 +42,7 @@ the values given to them in code sample will work fine for all images.
|
||||
How to draw the contours?
|
||||
-------------------------
|
||||
|
||||
To draw the contours, cv2.drawContours function is used. It can also be used to draw any shape
|
||||
To draw the contours, cv.drawContours function is used. It can also be used to draw any shape
|
||||
provided you have its boundary points. Its first argument is source image, second argument is the
|
||||
contours which should be passed as a Python list, third argument is index of contours (useful when
|
||||
drawing individual contour. To draw all contours, pass -1) and remaining arguments are color,
|
||||
@ -50,16 +50,16 @@ thickness etc.
|
||||
|
||||
* To draw all the contours in an image:
|
||||
@code{.py}
|
||||
cv2.drawContours(img, contours, -1, (0,255,0), 3)
|
||||
cv.drawContours(img, contours, -1, (0,255,0), 3)
|
||||
@endcode
|
||||
* To draw an individual contour, say 4th contour:
|
||||
@code{.py}
|
||||
cv2.drawContours(img, contours, 3, (0,255,0), 3)
|
||||
cv.drawContours(img, contours, 3, (0,255,0), 3)
|
||||
@endcode
|
||||
* But most of the time, below method will be useful:
|
||||
@code{.py}
|
||||
cnt = contours[4]
|
||||
cv2.drawContours(img, [cnt], 0, (0,255,0), 3)
|
||||
cv.drawContours(img, [cnt], 0, (0,255,0), 3)
|
||||
@endcode
|
||||
|
||||
@note Last two methods are same, but when you go forward, you will see last one is more useful.
|
||||
@ -67,21 +67,21 @@ cv2.drawContours(img, [cnt], 0, (0,255,0), 3)
|
||||
Contour Approximation Method
|
||||
============================
|
||||
|
||||
This is the third argument in cv2.findContours function. What does it denote actually?
|
||||
This is the third argument in cv.findContours function. What does it denote actually?
|
||||
|
||||
Above, we told that contours are the boundaries of a shape with same intensity. It stores the (x,y)
|
||||
coordinates of the boundary of a shape. But does it store all the coordinates ? That is specified by
|
||||
this contour approximation method.
|
||||
|
||||
If you pass cv2.CHAIN_APPROX_NONE, all the boundary points are stored. But actually do we need all
|
||||
If you pass cv.CHAIN_APPROX_NONE, all the boundary points are stored. But actually do we need all
|
||||
the points? For eg, you found the contour of a straight line. Do you need all the points on the line
|
||||
to represent that line? No, we need just two end points of that line. This is what
|
||||
cv2.CHAIN_APPROX_SIMPLE does. It removes all redundant points and compresses the contour, thereby
|
||||
cv.CHAIN_APPROX_SIMPLE does. It removes all redundant points and compresses the contour, thereby
|
||||
saving memory.
|
||||
|
||||
Below image of a rectangle demonstrate this technique. Just draw a circle on all the coordinates in
|
||||
the contour array (drawn in blue color). First image shows points I got with cv2.CHAIN_APPROX_NONE
|
||||
(734 points) and second image shows the one with cv2.CHAIN_APPROX_SIMPLE (only 4 points). See, how
|
||||
the contour array (drawn in blue color). First image shows points I got with cv.CHAIN_APPROX_NONE
|
||||
(734 points) and second image shows the one with cv.CHAIN_APPROX_SIMPLE (only 4 points). See, how
|
||||
much memory it saves!!!
|
||||
|
||||
![image](images/none.jpg)
|
||||
|
@ -10,9 +10,9 @@ Theory
|
||||
------
|
||||
|
||||
In the last few articles on contours, we have worked with several functions related to contours
|
||||
provided by OpenCV. But when we found the contours in image using **cv2.findContours()** function,
|
||||
we have passed an argument, **Contour Retrieval Mode**. We usually passed **cv2.RETR_LIST** or
|
||||
**cv2.RETR_TREE** and it worked nice. But what does it actually mean ?
|
||||
provided by OpenCV. But when we found the contours in image using **cv.findContours()** function,
|
||||
we have passed an argument, **Contour Retrieval Mode**. We usually passed **cv.RETR_LIST** or
|
||||
**cv.RETR_TREE** and it worked nice. But what does it actually mean ?
|
||||
|
||||
Also, in the output, we got three arrays, first is the image, second is our contours, and one more
|
||||
output which we named as **hierarchy** (Please checkout the codes in previous articles). But we
|
||||
@ -23,7 +23,7 @@ That is what we are going to deal in this article.
|
||||
|
||||
### What is Hierarchy?
|
||||
|
||||
Normally we use the **cv2.findContours()** function to detect objects in an image, right ? Sometimes
|
||||
Normally we use the **cv.findContours()** function to detect objects in an image, right ? Sometimes
|
||||
objects are in different locations. But in some cases, some shapes are inside other shapes. Just
|
||||
like nested figures. In this case, we call outer one as **parent** and inner one as **child**. This
|
||||
way, contours in an image has some relationship to each other. And we can specify how one contour is
|
||||
@ -82,8 +82,8 @@ contour-3a. For contour-3a, it is contour-3 and so on.
|
||||
@note If there is no child or parent, that field is taken as -1
|
||||
|
||||
So now we know about the hierarchy style used in OpenCV, we can check into Contour Retrieval Modes
|
||||
in OpenCV with the help of same image given above. ie what do flags like cv2.RETR_LIST,
|
||||
cv2.RETR_TREE, cv2.RETR_CCOMP, cv2.RETR_EXTERNAL etc mean?
|
||||
in OpenCV with the help of same image given above. ie what do flags like cv.RETR_LIST,
|
||||
cv.RETR_TREE, cv.RETR_CCOMP, cv.RETR_EXTERNAL etc mean?
|
||||
|
||||
Contour Retrieval Mode
|
||||
----------------------
|
||||
@ -185,7 +185,7 @@ array([[[ 3, -1, 1, -1],
|
||||
And this is the final guy, Mr.Perfect. It retrieves all the contours and creates a full family
|
||||
hierarchy list. **It even tells, who is the grandpa, father, son, grandson and even beyond... :)**.
|
||||
|
||||
For examle, I took above image, rewrite the code for cv2.RETR_TREE, reorder the contours as per the
|
||||
For examle, I took above image, rewrite the code for cv.RETR_TREE, reorder the contours as per the
|
||||
result given by OpenCV and analyze it. Again, red letters give the contour number and green letters
|
||||
give the hierarchy order.
|
||||
|
||||
|
@ -17,11 +17,11 @@ Theory and Code
|
||||
We saw what is convex hull in second chapter about contours. Any deviation of the object from this
|
||||
hull can be considered as convexity defect.
|
||||
|
||||
OpenCV comes with a ready-made function to find this, **cv2.convexityDefects()**. A basic function
|
||||
OpenCV comes with a ready-made function to find this, **cv.convexityDefects()**. A basic function
|
||||
call would look like below:
|
||||
@code{.py}
|
||||
hull = cv2.convexHull(cnt,returnPoints = False)
|
||||
defects = cv2.convexityDefects(cnt,hull)
|
||||
hull = cv.convexHull(cnt,returnPoints = False)
|
||||
defects = cv.convexityDefects(cnt,hull)
|
||||
@endcode
|
||||
|
||||
@note Remember we have to pass returnPoints = False while finding convex hull, in order to find
|
||||
@ -33,29 +33,29 @@ line joining start point and end point, then draw a circle at the farthest point
|
||||
three values returned are indices of cnt. So we have to bring those values from cnt.
|
||||
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
img = cv2.imread('star.jpg')
|
||||
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
ret,thresh = cv2.threshold(img_gray, 127, 255,0)
|
||||
im2,contours,hierarchy = cv2.findContours(thresh,2,1)
|
||||
img = cv.imread('star.jpg')
|
||||
img_gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
ret,thresh = cv.threshold(img_gray, 127, 255,0)
|
||||
im2,contours,hierarchy = cv.findContours(thresh,2,1)
|
||||
cnt = contours[0]
|
||||
|
||||
hull = cv2.convexHull(cnt,returnPoints = False)
|
||||
defects = cv2.convexityDefects(cnt,hull)
|
||||
hull = cv.convexHull(cnt,returnPoints = False)
|
||||
defects = cv.convexityDefects(cnt,hull)
|
||||
|
||||
for i in range(defects.shape[0]):
|
||||
s,e,f,d = defects[i,0]
|
||||
start = tuple(cnt[s][0])
|
||||
end = tuple(cnt[e][0])
|
||||
far = tuple(cnt[f][0])
|
||||
cv2.line(img,start,end,[0,255,0],2)
|
||||
cv2.circle(img,far,5,[0,0,255],-1)
|
||||
cv.line(img,start,end,[0,255,0],2)
|
||||
cv.circle(img,far,5,[0,0,255],-1)
|
||||
|
||||
cv2.imshow('img',img)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('img',img)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
And see the result:
|
||||
|
||||
@ -69,7 +69,7 @@ if point is on the contour.
|
||||
|
||||
For example, we can check the point (50,50) as follows:
|
||||
@code{.py}
|
||||
dist = cv2.pointPolygonTest(cnt,(50,50),True)
|
||||
dist = cv.pointPolygonTest(cnt,(50,50),True)
|
||||
@endcode
|
||||
In the function, third argument is measureDist. If it is True, it finds the signed distance. If
|
||||
False, it finds whether the point is inside or outside or on the contour (it returns +1, -1, 0
|
||||
@ -80,25 +80,25 @@ time consuming process. So, making it False gives about 2-3X speedup.
|
||||
|
||||
### 3. Match Shapes
|
||||
|
||||
OpenCV comes with a function **cv2.matchShapes()** which enables us to compare two shapes, or two
|
||||
OpenCV comes with a function **cv.matchShapes()** which enables us to compare two shapes, or two
|
||||
contours and returns a metric showing the similarity. The lower the result, the better match it is.
|
||||
It is calculated based on the hu-moment values. Different measurement methods are explained in the
|
||||
docs.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
img1 = cv2.imread('star.jpg',0)
|
||||
img2 = cv2.imread('star2.jpg',0)
|
||||
img1 = cv.imread('star.jpg',0)
|
||||
img2 = cv.imread('star2.jpg',0)
|
||||
|
||||
ret, thresh = cv2.threshold(img1, 127, 255,0)
|
||||
ret, thresh2 = cv2.threshold(img2, 127, 255,0)
|
||||
im2,contours,hierarchy = cv2.findContours(thresh,2,1)
|
||||
ret, thresh = cv.threshold(img1, 127, 255,0)
|
||||
ret, thresh2 = cv.threshold(img2, 127, 255,0)
|
||||
im2,contours,hierarchy = cv.findContours(thresh,2,1)
|
||||
cnt1 = contours[0]
|
||||
im2,contours,hierarchy = cv2.findContours(thresh2,2,1)
|
||||
im2,contours,hierarchy = cv.findContours(thresh2,2,1)
|
||||
cnt2 = contours[0]
|
||||
|
||||
ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
|
||||
ret = cv.matchShapes(cnt1,cnt2,1,0.0)
|
||||
print( ret )
|
||||
@endcode
|
||||
I tried matching shapes with different shapes given below:
|
||||
@ -115,7 +115,7 @@ See, even image rotation doesn't affect much on this comparison.
|
||||
|
||||
@sa [Hu-Moments](http://en.wikipedia.org/wiki/Image_moment#Rotation_invariant_moments) are seven
|
||||
moments invariant to translation, rotation and scale. Seventh one is skew-invariant. Those values
|
||||
can be found using **cv2.HuMoments()** function.
|
||||
can be found using **cv.HuMoments()** function.
|
||||
|
||||
Additional Resources
|
||||
====================
|
||||
@ -123,10 +123,10 @@ Additional Resources
|
||||
Exercises
|
||||
---------
|
||||
|
||||
-# Check the documentation for **cv2.pointPolygonTest()**, you can find a nice image in Red and
|
||||
-# Check the documentation for **cv.pointPolygonTest()**, you can find a nice image in Red and
|
||||
Blue color. It represents the distance from all pixels to the white curve on it. All pixels
|
||||
inside curve is blue depending on the distance. Similarly outside points are red. Contour edges
|
||||
are marked with White. So problem is simple. Write a code to create such a representation of
|
||||
distance.
|
||||
-# Compare images of digits or letters using **cv2.matchShapes()**. ( That would be a simple step
|
||||
-# Compare images of digits or letters using **cv.matchShapes()**. ( That would be a simple step
|
||||
towards OCR )
|
||||
|
@ -15,7 +15,7 @@ As in one-dimensional signals, images also can be filtered with various low-pass
|
||||
high-pass filters(HPF) etc. LPF helps in removing noises, blurring the images etc. HPF filters helps
|
||||
in finding edges in the images.
|
||||
|
||||
OpenCV provides a function **cv2.filter2D()** to convolve a kernel with an image. As an example, we
|
||||
OpenCV provides a function **cv.filter2D()** to convolve a kernel with an image. As an example, we
|
||||
will try an averaging filter on an image. A 5x5 averaging filter kernel will look like below:
|
||||
|
||||
\f[K = \frac{1}{25} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}\f]
|
||||
@ -24,14 +24,14 @@ Operation is like this: keep this kernel above a pixel, add all the 25 pixels be
|
||||
take its average and replace the central pixel with the new average value. It continues this
|
||||
operation for all the pixels in the image. Try this code and check the result:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('opencv_logo.png')
|
||||
img = cv.imread('opencv_logo.png')
|
||||
|
||||
kernel = np.ones((5,5),np.float32)/25
|
||||
dst = cv2.filter2D(img,-1,kernel)
|
||||
dst = cv.filter2D(img,-1,kernel)
|
||||
|
||||
plt.subplot(121),plt.imshow(img),plt.title('Original')
|
||||
plt.xticks([]), plt.yticks([])
|
||||
@ -55,23 +55,23 @@ blur the edges too). OpenCV provides mainly four types of blurring techniques.
|
||||
|
||||
This is done by convolving image with a normalized box filter. It simply takes the average of all
|
||||
the pixels under kernel area and replace the central element. This is done by the function
|
||||
**cv2.blur()** or **cv2.boxFilter()**. Check the docs for more details about the kernel. We should
|
||||
**cv.blur()** or **cv.boxFilter()**. Check the docs for more details about the kernel. We should
|
||||
specify the width and height of kernel. A 3x3 normalized box filter would look like below:
|
||||
|
||||
\f[K = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}\f]
|
||||
|
||||
@note If you don't want to use normalized box filter, use **cv2.boxFilter()**. Pass an argument
|
||||
@note If you don't want to use normalized box filter, use **cv.boxFilter()**. Pass an argument
|
||||
normalize=False to the function.
|
||||
|
||||
Check a sample demo below with a kernel of 5x5 size:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('opencv-logo-white.png')
|
||||
img = cv.imread('opencv-logo-white.png')
|
||||
|
||||
blur = cv2.blur(img,(5,5))
|
||||
blur = cv.blur(img,(5,5))
|
||||
|
||||
plt.subplot(121),plt.imshow(img),plt.title('Original')
|
||||
plt.xticks([]), plt.yticks([])
|
||||
@ -86,17 +86,17 @@ Result:
|
||||
### 2. Gaussian Blurring
|
||||
|
||||
In this, instead of box filter, gaussian kernel is used. It is done with the function,
|
||||
**cv2.GaussianBlur()**. We should specify the width and height of kernel which should be positive
|
||||
**cv.GaussianBlur()**. We should specify the width and height of kernel which should be positive
|
||||
and odd. We also should specify the standard deviation in X and Y direction, sigmaX and sigmaY
|
||||
respectively. If only sigmaX is specified, sigmaY is taken as same as sigmaX. If both are given as
|
||||
zeros, they are calculated from kernel size. Gaussian blurring is highly effective in removing
|
||||
gaussian noise from the image.
|
||||
|
||||
If you want, you can create a Gaussian kernel with the function, **cv2.getGaussianKernel()**.
|
||||
If you want, you can create a Gaussian kernel with the function, **cv.getGaussianKernel()**.
|
||||
|
||||
The above code can be modified for Gaussian blurring:
|
||||
@code{.py}
|
||||
blur = cv2.GaussianBlur(img,(5,5),0)
|
||||
blur = cv.GaussianBlur(img,(5,5),0)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -104,7 +104,7 @@ Result:
|
||||
|
||||
### 3. Median Blurring
|
||||
|
||||
Here, the function **cv2.medianBlur()** takes median of all the pixels under kernel area and central
|
||||
Here, the function **cv.medianBlur()** takes median of all the pixels under kernel area and central
|
||||
element is replaced with this median value. This is highly effective against salt-and-pepper noise
|
||||
in the images. Interesting thing is that, in the above filters, central element is a newly
|
||||
calculated value which may be a pixel value in the image or a new value. But in median blurring,
|
||||
@ -113,7 +113,7 @@ effectively. Its kernel size should be a positive odd integer.
|
||||
|
||||
In this demo, I added a 50% noise to our original image and applied median blur. Check the result:
|
||||
@code{.py}
|
||||
median = cv2.medianBlur(img,5)
|
||||
median = cv.medianBlur(img,5)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -121,7 +121,7 @@ Result:
|
||||
|
||||
### 4. Bilateral Filtering
|
||||
|
||||
**cv2.bilateralFilter()** is highly effective in noise removal while keeping edges sharp. But the
|
||||
**cv.bilateralFilter()** is highly effective in noise removal while keeping edges sharp. But the
|
||||
operation is slower compared to other filters. We already saw that gaussian filter takes the a
|
||||
neighbourhood around the pixel and find its gaussian weighted average. This gaussian filter is a
|
||||
function of space alone, that is, nearby pixels are considered while filtering. It doesn't consider
|
||||
@ -136,7 +136,7 @@ pixels at edges will have large intensity variation.
|
||||
|
||||
Below samples shows use bilateral filter (For details on arguments, visit docs).
|
||||
@code{.py}
|
||||
blur = cv2.bilateralFilter(img,9,75,75)
|
||||
blur = cv.bilateralFilter(img,9,75,75)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
|
@ -6,35 +6,35 @@ Goals
|
||||
|
||||
- Learn to apply different geometric transformation to images like translation, rotation, affine
|
||||
transformation etc.
|
||||
- You will see these functions: **cv2.getPerspectiveTransform**
|
||||
- You will see these functions: **cv.getPerspectiveTransform**
|
||||
|
||||
Transformations
|
||||
---------------
|
||||
|
||||
OpenCV provides two transformation functions, **cv2.warpAffine** and **cv2.warpPerspective**, with
|
||||
which you can have all kinds of transformations. **cv2.warpAffine** takes a 2x3 transformation
|
||||
matrix while **cv2.warpPerspective** takes a 3x3 transformation matrix as input.
|
||||
OpenCV provides two transformation functions, **cv.warpAffine** and **cv.warpPerspective**, with
|
||||
which you can have all kinds of transformations. **cv.warpAffine** takes a 2x3 transformation
|
||||
matrix while **cv.warpPerspective** takes a 3x3 transformation matrix as input.
|
||||
|
||||
### Scaling
|
||||
|
||||
Scaling is just resizing of the image. OpenCV comes with a function **cv2.resize()** for this
|
||||
Scaling is just resizing of the image. OpenCV comes with a function **cv.resize()** for this
|
||||
purpose. The size of the image can be specified manually, or you can specify the scaling factor.
|
||||
Different interpolation methods are used. Preferable interpolation methods are **cv2.INTER_AREA**
|
||||
for shrinking and **cv2.INTER_CUBIC** (slow) & **cv2.INTER_LINEAR** for zooming. By default,
|
||||
interpolation method used is **cv2.INTER_LINEAR** for all resizing purposes. You can resize an
|
||||
Different interpolation methods are used. Preferable interpolation methods are **cv.INTER_AREA**
|
||||
for shrinking and **cv.INTER_CUBIC** (slow) & **cv.INTER_LINEAR** for zooming. By default,
|
||||
interpolation method used is **cv.INTER_LINEAR** for all resizing purposes. You can resize an
|
||||
input image either of following methods:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('messi5.jpg')
|
||||
img = cv.imread('messi5.jpg')
|
||||
|
||||
res = cv2.resize(img,None,fx=2, fy=2, interpolation = cv2.INTER_CUBIC)
|
||||
res = cv.resize(img,None,fx=2, fy=2, interpolation = cv.INTER_CUBIC)
|
||||
|
||||
#OR
|
||||
|
||||
height, width = img.shape[:2]
|
||||
res = cv2.resize(img,(2*width, 2*height), interpolation = cv2.INTER_CUBIC)
|
||||
res = cv.resize(img,(2*width, 2*height), interpolation = cv.INTER_CUBIC)
|
||||
@endcode
|
||||
### Translation
|
||||
|
||||
@ -43,25 +43,25 @@ be \f$(t_x,t_y)\f$, you can create the transformation matrix \f$\textbf{M}\f$ as
|
||||
|
||||
\f[M = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix}\f]
|
||||
|
||||
You can take make it into a Numpy array of type np.float32 and pass it into **cv2.warpAffine()**
|
||||
You can take make it into a Numpy array of type np.float32 and pass it into **cv.warpAffine()**
|
||||
function. See below example for a shift of (100,50):
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
rows,cols = img.shape
|
||||
|
||||
M = np.float32([[1,0,100],[0,1,50]])
|
||||
dst = cv2.warpAffine(img,M,(cols,rows))
|
||||
dst = cv.warpAffine(img,M,(cols,rows))
|
||||
|
||||
cv2.imshow('img',dst)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('img',dst)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
**warning**
|
||||
|
||||
Third argument of the **cv2.warpAffine()** function is the size of the output image, which should
|
||||
Third argument of the **cv.warpAffine()** function is the size of the output image, which should
|
||||
be in the form of **(width, height)**. Remember width = number of columns, and height = number of
|
||||
rows.
|
||||
|
||||
@ -84,14 +84,14 @@ where:
|
||||
|
||||
\f[\begin{array}{l} \alpha = scale \cdot \cos \theta , \\ \beta = scale \cdot \sin \theta \end{array}\f]
|
||||
|
||||
To find this transformation matrix, OpenCV provides a function, **cv2.getRotationMatrix2D**. Check
|
||||
To find this transformation matrix, OpenCV provides a function, **cv.getRotationMatrix2D**. Check
|
||||
below example which rotates the image by 90 degree with respect to center without any scaling.
|
||||
@code{.py}
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
rows,cols = img.shape
|
||||
|
||||
M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1)
|
||||
dst = cv2.warpAffine(img,M,(cols,rows))
|
||||
M = cv.getRotationMatrix2D((cols/2,rows/2),90,1)
|
||||
dst = cv.warpAffine(img,M,(cols,rows))
|
||||
@endcode
|
||||
See the result:
|
||||
|
||||
@ -101,20 +101,20 @@ See the result:
|
||||
|
||||
In affine transformation, all parallel lines in the original image will still be parallel in the
|
||||
output image. To find the transformation matrix, we need three points from input image and their
|
||||
corresponding locations in output image. Then **cv2.getAffineTransform** will create a 2x3 matrix
|
||||
which is to be passed to **cv2.warpAffine**.
|
||||
corresponding locations in output image. Then **cv.getAffineTransform** will create a 2x3 matrix
|
||||
which is to be passed to **cv.warpAffine**.
|
||||
|
||||
Check below example, and also look at the points I selected (which are marked in Green color):
|
||||
@code{.py}
|
||||
img = cv2.imread('drawing.png')
|
||||
img = cv.imread('drawing.png')
|
||||
rows,cols,ch = img.shape
|
||||
|
||||
pts1 = np.float32([[50,50],[200,50],[50,200]])
|
||||
pts2 = np.float32([[10,100],[200,50],[100,250]])
|
||||
|
||||
M = cv2.getAffineTransform(pts1,pts2)
|
||||
M = cv.getAffineTransform(pts1,pts2)
|
||||
|
||||
dst = cv2.warpAffine(img,M,(cols,rows))
|
||||
dst = cv.warpAffine(img,M,(cols,rows))
|
||||
|
||||
plt.subplot(121),plt.imshow(img),plt.title('Input')
|
||||
plt.subplot(122),plt.imshow(dst),plt.title('Output')
|
||||
@ -130,20 +130,20 @@ For perspective transformation, you need a 3x3 transformation matrix. Straight l
|
||||
straight even after the transformation. To find this transformation matrix, you need 4 points on the
|
||||
input image and corresponding points on the output image. Among these 4 points, 3 of them should not
|
||||
be collinear. Then transformation matrix can be found by the function
|
||||
**cv2.getPerspectiveTransform**. Then apply **cv2.warpPerspective** with this 3x3 transformation
|
||||
**cv.getPerspectiveTransform**. Then apply **cv.warpPerspective** with this 3x3 transformation
|
||||
matrix.
|
||||
|
||||
See the code below:
|
||||
@code{.py}
|
||||
img = cv2.imread('sudoku.png')
|
||||
img = cv.imread('sudoku.png')
|
||||
rows,cols,ch = img.shape
|
||||
|
||||
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
|
||||
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
|
||||
|
||||
M = cv2.getPerspectiveTransform(pts1,pts2)
|
||||
M = cv.getPerspectiveTransform(pts1,pts2)
|
||||
|
||||
dst = cv2.warpPerspective(img,M,(300,300))
|
||||
dst = cv.warpPerspective(img,M,(300,300))
|
||||
|
||||
plt.subplot(121),plt.imshow(img),plt.title('Input')
|
||||
plt.subplot(122),plt.imshow(dst),plt.title('Output')
|
||||
|
@ -64,24 +64,24 @@ It is illustrated in below image (Image Courtesy: <http://www.cs.ru.ac.za/resear
|
||||
Demo
|
||||
----
|
||||
|
||||
Now we go for grabcut algorithm with OpenCV. OpenCV has the function, **cv2.grabCut()** for this. We
|
||||
Now we go for grabcut algorithm with OpenCV. OpenCV has the function, **cv.grabCut()** for this. We
|
||||
will see its arguments first:
|
||||
|
||||
- *img* - Input image
|
||||
- *mask* - It is a mask image where we specify which areas are background, foreground or
|
||||
probable background/foreground etc. It is done by the following flags, **cv2.GC_BGD,
|
||||
cv2.GC_FGD, cv2.GC_PR_BGD, cv2.GC_PR_FGD**, or simply pass 0,1,2,3 to image.
|
||||
probable background/foreground etc. It is done by the following flags, **cv.GC_BGD,
|
||||
cv.GC_FGD, cv.GC_PR_BGD, cv.GC_PR_FGD**, or simply pass 0,1,2,3 to image.
|
||||
- *rect* - It is the coordinates of a rectangle which includes the foreground object in the
|
||||
format (x,y,w,h)
|
||||
- *bdgModel*, *fgdModel* - These are arrays used by the algorithm internally. You just create
|
||||
two np.float64 type zero arrays of size (1,65).
|
||||
- *iterCount* - Number of iterations the algorithm should run.
|
||||
- *mode* - It should be **cv2.GC_INIT_WITH_RECT** or **cv2.GC_INIT_WITH_MASK** or combined
|
||||
- *mode* - It should be **cv.GC_INIT_WITH_RECT** or **cv.GC_INIT_WITH_MASK** or combined
|
||||
which decides whether we are drawing rectangle or final touchup strokes.
|
||||
|
||||
First let's see with rectangular mode. We load the image, create a similar mask image. We create
|
||||
*fgdModel* and *bgdModel*. We give the rectangle parameters. It's all straight-forward. Let the
|
||||
algorithm run for 5 iterations. Mode should be *cv2.GC_INIT_WITH_RECT* since we are using
|
||||
algorithm run for 5 iterations. Mode should be *cv.GC_INIT_WITH_RECT* since we are using
|
||||
rectangle. Then run the grabcut. It modifies the mask image. In the new mask image, pixels will be
|
||||
marked with four flags denoting background/foreground as specified above. So we modify the mask such
|
||||
that all 0-pixels and 2-pixels are put to 0 (ie background) and all 1-pixels and 3-pixels are put to
|
||||
@ -89,17 +89,17 @@ that all 0-pixels and 2-pixels are put to 0 (ie background) and all 1-pixels and
|
||||
segmented image.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('messi5.jpg')
|
||||
img = cv.imread('messi5.jpg')
|
||||
mask = np.zeros(img.shape[:2],np.uint8)
|
||||
|
||||
bgdModel = np.zeros((1,65),np.float64)
|
||||
fgdModel = np.zeros((1,65),np.float64)
|
||||
|
||||
rect = (50,50,450,290)
|
||||
cv2.grabCut(img,mask,rect,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
|
||||
cv.grabCut(img,mask,rect,bgdModel,fgdModel,5,cv.GC_INIT_WITH_RECT)
|
||||
|
||||
mask2 = np.where((mask==2)|(mask==0),0,1).astype('uint8')
|
||||
img = img*mask2[:,:,np.newaxis]
|
||||
@ -122,14 +122,14 @@ remaining background with gray. Then loaded that mask image in OpenCV, edited or
|
||||
got with corresponding values in newly added mask image. Check the code below:*
|
||||
@code{.py}
|
||||
# newmask is the mask image I manually labelled
|
||||
newmask = cv2.imread('newmask.png',0)
|
||||
newmask = cv.imread('newmask.png',0)
|
||||
|
||||
# whereever it is marked white (sure foreground), change mask=1
|
||||
# whereever it is marked black (sure background), change mask=0
|
||||
mask[newmask == 0] = 0
|
||||
mask[newmask == 255] = 1
|
||||
|
||||
mask, bgdModel, fgdModel = cv2.grabCut(img,mask,None,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_MASK)
|
||||
mask, bgdModel, fgdModel = cv.grabCut(img,mask,None,bgdModel,fgdModel,5,cv.GC_INIT_WITH_MASK)
|
||||
|
||||
mask = np.where((mask==2)|(mask==0),0,1).astype('uint8')
|
||||
img = img*mask[:,:,np.newaxis]
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter, we will learn to:
|
||||
|
||||
- Find Image gradients, edges etc
|
||||
- We will see following functions : **cv2.Sobel()**, **cv2.Scharr()**, **cv2.Laplacian()** etc
|
||||
- We will see following functions : **cv.Sobel()**, **cv.Scharr()**, **cv.Laplacian()** etc
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -38,15 +38,15 @@ Code
|
||||
Below code shows all operators in a single diagram. All kernels are of 5x5 size. Depth of output
|
||||
image is passed -1 to get the result in np.uint8 type.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('dave.jpg',0)
|
||||
img = cv.imread('dave.jpg',0)
|
||||
|
||||
laplacian = cv2.Laplacian(img,cv2.CV_64F)
|
||||
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
|
||||
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5)
|
||||
laplacian = cv.Laplacian(img,cv.CV_64F)
|
||||
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
|
||||
sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5)
|
||||
|
||||
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
|
||||
plt.title('Original'), plt.xticks([]), plt.yticks([])
|
||||
@ -66,26 +66,26 @@ Result:
|
||||
One Important Matter!
|
||||
---------------------
|
||||
|
||||
In our last example, output datatype is cv2.CV_8U or np.uint8. But there is a slight problem with
|
||||
In our last example, output datatype is cv.CV_8U or np.uint8. But there is a slight problem with
|
||||
that. Black-to-White transition is taken as Positive slope (it has a positive value) while
|
||||
White-to-Black transition is taken as a Negative slope (It has negative value). So when you convert
|
||||
data to np.uint8, all negative slopes are made zero. In simple words, you miss that edge.
|
||||
|
||||
If you want to detect both edges, better option is to keep the output datatype to some higher forms,
|
||||
like cv2.CV_16S, cv2.CV_64F etc, take its absolute value and then convert back to cv2.CV_8U.
|
||||
like cv.CV_16S, cv.CV_64F etc, take its absolute value and then convert back to cv.CV_8U.
|
||||
Below code demonstrates this procedure for a horizontal Sobel filter and difference in results.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('box.png',0)
|
||||
img = cv.imread('box.png',0)
|
||||
|
||||
# Output dtype = cv2.CV_8U
|
||||
sobelx8u = cv2.Sobel(img,cv2.CV_8U,1,0,ksize=5)
|
||||
# Output dtype = cv.CV_8U
|
||||
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)
|
||||
|
||||
# Output dtype = cv2.CV_64F. Then take its absolute and convert to cv2.CV_8U
|
||||
sobelx64f = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5)
|
||||
# Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U
|
||||
sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
|
||||
abs_sobel64f = np.absolute(sobelx64f)
|
||||
sobel_8u = np.uint8(abs_sobel64f)
|
||||
|
||||
|
@ -23,7 +23,7 @@ will be useful in understanding further topics like Histogram Back-Projection.
|
||||
2D Histogram in OpenCV
|
||||
----------------------
|
||||
|
||||
It is quite simple and calculated using the same function, **cv2.calcHist()**. For color histograms,
|
||||
It is quite simple and calculated using the same function, **cv.calcHist()**. For color histograms,
|
||||
we need to convert the image from BGR to HSV. (Remember, for 1D histogram, we converted from BGR to
|
||||
Grayscale). For 2D histograms, its parameters will be modified as follows:
|
||||
|
||||
@ -34,13 +34,13 @@ Grayscale). For 2D histograms, its parameters will be modified as follows:
|
||||
|
||||
Now check the code below:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('home.jpg')
|
||||
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
|
||||
img = cv.imread('home.jpg')
|
||||
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
|
||||
|
||||
hist = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
|
||||
hist = cv.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
|
||||
@endcode
|
||||
That's it.
|
||||
|
||||
@ -50,12 +50,12 @@ That's it.
|
||||
Numpy also provides a specific function for this : **np.histogram2d()**. (Remember, for 1D histogram
|
||||
we used **np.histogram()** ).
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('home.jpg')
|
||||
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
|
||||
img = cv.imread('home.jpg')
|
||||
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
|
||||
|
||||
hist, xbins, ybins = np.histogram2d(h.ravel(),s.ravel(),[180,256],[[0,180],[0,256]])
|
||||
@endcode
|
||||
@ -67,10 +67,10 @@ Now we can check how to plot this color histogram.
|
||||
Plotting 2D Histograms
|
||||
----------------------
|
||||
|
||||
### Method - 1 : Using cv2.imshow()
|
||||
### Method - 1 : Using cv.imshow()
|
||||
|
||||
The result we get is a two dimensional array of size 180x256. So we can show them as we do normally,
|
||||
using cv2.imshow() function. It will be a grayscale image and it won't give much idea what colors
|
||||
using cv.imshow() function. It will be a grayscale image and it won't give much idea what colors
|
||||
are there, unless you know the Hue values of different colors.
|
||||
|
||||
### Method - 2 : Using Matplotlib
|
||||
@ -84,13 +84,13 @@ I prefer this method. It is simple and better.
|
||||
|
||||
Consider code:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('home.jpg')
|
||||
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
|
||||
hist = cv2.calcHist( [hsv], [0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
img = cv.imread('home.jpg')
|
||||
hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
|
||||
hist = cv.calcHist( [hsv], [0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
|
||||
plt.imshow(hist,interpolation = 'nearest')
|
||||
plt.show()
|
||||
|
@ -33,82 +33,81 @@ Algorithm in Numpy
|
||||
-# First we need to calculate the color histogram of both the object we need to find (let it be
|
||||
'M') and the image where we are going to search (let it be 'I').
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
import cv2 as cvfrom matplotlib import pyplot as plt
|
||||
|
||||
#roi is the object or region of object we need to find
|
||||
roi = cv2.imread('rose_red.png')
|
||||
hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV)
|
||||
roi = cv.imread('rose_red.png')
|
||||
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
|
||||
|
||||
#target is the image we search in
|
||||
target = cv2.imread('rose.png')
|
||||
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
|
||||
target = cv.imread('rose.png')
|
||||
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
|
||||
|
||||
# Find the histograms using calcHist. Can be done with np.histogram2d also
|
||||
M = cv2.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
I = cv2.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
M = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
I = cv.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
@endcode
|
||||
2. Find the ratio \f$R = \frac{M}{I}\f$. Then backproject R, ie use R as palette and create a new image
|
||||
with every pixel as its corresponding probability of being target. ie B(x,y) = R[h(x,y),s(x,y)]
|
||||
where h is hue and s is saturation of the pixel at (x,y). After that apply the condition
|
||||
\f$B(x,y) = min[B(x,y), 1]\f$.
|
||||
@code{.py}
|
||||
h,s,v = cv2.split(hsvt)
|
||||
h,s,v = cv.split(hsvt)
|
||||
B = R[h.ravel(),s.ravel()]
|
||||
B = np.minimum(B,1)
|
||||
B = B.reshape(hsvt.shape[:2])
|
||||
@endcode
|
||||
3. Now apply a convolution with a circular disc, \f$B = D \ast B\f$, where D is the disc kernel.
|
||||
@code{.py}
|
||||
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
|
||||
cv2.filter2D(B,-1,disc,B)
|
||||
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
|
||||
cv.filter2D(B,-1,disc,B)
|
||||
B = np.uint8(B)
|
||||
cv2.normalize(B,B,0,255,cv2.NORM_MINMAX)
|
||||
cv.normalize(B,B,0,255,cv.NORM_MINMAX)
|
||||
@endcode
|
||||
4. Now the location of maximum intensity gives us the location of object. If we are expecting a
|
||||
region in the image, thresholding for a suitable value gives a nice result.
|
||||
@code{.py}
|
||||
ret,thresh = cv2.threshold(B,50,255,0)
|
||||
ret,thresh = cv.threshold(B,50,255,0)
|
||||
@endcode
|
||||
That's it !!
|
||||
|
||||
Backprojection in OpenCV
|
||||
------------------------
|
||||
|
||||
OpenCV provides an inbuilt function **cv2.calcBackProject()**. Its parameters are almost same as the
|
||||
**cv2.calcHist()** function. One of its parameter is histogram which is histogram of the object and
|
||||
OpenCV provides an inbuilt function **cv.calcBackProject()**. Its parameters are almost same as the
|
||||
**cv.calcHist()** function. One of its parameter is histogram which is histogram of the object and
|
||||
we have to find it. Also, the object histogram should be normalized before passing on to the
|
||||
backproject function. It returns the probability image. Then we convolve the image with a disc
|
||||
kernel and apply threshold. Below is my code and output :
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
roi = cv2.imread('rose_red.png')
|
||||
hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV)
|
||||
roi = cv.imread('rose_red.png')
|
||||
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
|
||||
|
||||
target = cv2.imread('rose.png')
|
||||
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)
|
||||
target = cv.imread('rose.png')
|
||||
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
|
||||
|
||||
# calculating object histogram
|
||||
roihist = cv2.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
roihist = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
|
||||
|
||||
# normalize histogram and apply backprojection
|
||||
cv2.normalize(roihist,roihist,0,255,cv2.NORM_MINMAX)
|
||||
dst = cv2.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
|
||||
cv.normalize(roihist,roihist,0,255,cv.NORM_MINMAX)
|
||||
dst = cv.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
|
||||
|
||||
# Now convolute with circular disc
|
||||
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
|
||||
cv2.filter2D(dst,-1,disc,dst)
|
||||
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
|
||||
cv.filter2D(dst,-1,disc,dst)
|
||||
|
||||
# threshold and binary AND
|
||||
ret,thresh = cv2.threshold(dst,50,255,0)
|
||||
thresh = cv2.merge((thresh,thresh,thresh))
|
||||
res = cv2.bitwise_and(target,thresh)
|
||||
ret,thresh = cv.threshold(dst,50,255,0)
|
||||
thresh = cv.merge((thresh,thresh,thresh))
|
||||
res = cv.bitwise_and(target,thresh)
|
||||
|
||||
res = np.vstack((target,thresh,res))
|
||||
cv2.imwrite('res.jpg',res)
|
||||
cv.imwrite('res.jpg',res)
|
||||
@endcode
|
||||
Below is one example I worked with. I used the region inside blue rectangle as sample object and I
|
||||
wanted to extract the full ground.
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
Learn to
|
||||
- Find histograms, using both OpenCV and Numpy functions
|
||||
- Plot histograms, using OpenCV and Matplotlib functions
|
||||
- You will see these functions : **cv2.calcHist()**, **np.histogram()** etc.
|
||||
- You will see these functions : **cv.calcHist()**, **np.histogram()** etc.
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -57,10 +57,10 @@ intensity values.
|
||||
|
||||
### 1. Histogram Calculation in OpenCV
|
||||
|
||||
So now we use **cv2.calcHist()** function to find the histogram. Let's familiarize with the function
|
||||
So now we use **cv.calcHist()** function to find the histogram. Let's familiarize with the function
|
||||
and its parameters :
|
||||
|
||||
<center><em>cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])</em></center>
|
||||
<center><em>cv.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])</em></center>
|
||||
|
||||
-# images : it is the source image of type uint8 or float32. it should be given in square brackets,
|
||||
ie, "[img]".
|
||||
@ -78,8 +78,8 @@ and its parameters :
|
||||
So let's start with a sample image. Simply load an image in grayscale mode and find its full
|
||||
histogram.
|
||||
@code{.py}
|
||||
img = cv2.imread('home.jpg',0)
|
||||
hist = cv2.calcHist([img],[0],None,[256],[0,256])
|
||||
img = cv.imread('home.jpg',0)
|
||||
hist = cv.calcHist([img],[0],None,[256],[0,256])
|
||||
@endcode
|
||||
hist is a 256x1 array, each value corresponds to number of pixels in that image with its
|
||||
corresponding pixel value.
|
||||
@ -118,11 +118,11 @@ Matplotlib comes with a histogram plotting function : matplotlib.pyplot.hist()
|
||||
It directly finds the histogram and plot it. You need not use calcHist() or np.histogram() function
|
||||
to find the histogram. See the code below:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('home.jpg',0)
|
||||
img = cv.imread('home.jpg',0)
|
||||
plt.hist(img.ravel(),256,[0,256]); plt.show()
|
||||
@endcode
|
||||
You will get a plot as below :
|
||||
@ -132,14 +132,14 @@ You will get a plot as below :
|
||||
Or you can use normal plot of matplotlib, which would be good for BGR plot. For that, you need to
|
||||
find the histogram data first. Try below code:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('home.jpg')
|
||||
img = cv.imread('home.jpg')
|
||||
color = ('b','g','r')
|
||||
for i,col in enumerate(color):
|
||||
histr = cv2.calcHist([img],[i],None,[256],[0,256])
|
||||
histr = cv.calcHist([img],[i],None,[256],[0,256])
|
||||
plt.plot(histr,color = col)
|
||||
plt.xlim([0,256])
|
||||
plt.show()
|
||||
@ -154,28 +154,28 @@ should be due to the sky)
|
||||
### 2. Using OpenCV
|
||||
|
||||
Well, here you adjust the values of histograms along with its bin values to look like x,y
|
||||
coordinates so that you can draw it using cv2.line() or cv2.polyline() function to generate same
|
||||
coordinates so that you can draw it using cv.line() or cv.polyline() function to generate same
|
||||
image as above. This is already available with OpenCV-Python2 official samples. Check the
|
||||
code at samples/python/hist.py.
|
||||
|
||||
Application of Mask
|
||||
-------------------
|
||||
|
||||
We used cv2.calcHist() to find the histogram of the full image. What if you want to find histograms
|
||||
We used cv.calcHist() to find the histogram of the full image. What if you want to find histograms
|
||||
of some regions of an image? Just create a mask image with white color on the region you want to
|
||||
find histogram and black otherwise. Then pass this as the mask.
|
||||
@code{.py}
|
||||
img = cv2.imread('home.jpg',0)
|
||||
img = cv.imread('home.jpg',0)
|
||||
|
||||
# create a mask
|
||||
mask = np.zeros(img.shape[:2], np.uint8)
|
||||
mask[100:300, 100:400] = 255
|
||||
masked_img = cv2.bitwise_and(img,img,mask = mask)
|
||||
masked_img = cv.bitwise_and(img,img,mask = mask)
|
||||
|
||||
# Calculate histogram with mask and without mask
|
||||
# Check third argument for mask
|
||||
hist_full = cv2.calcHist([img],[0],None,[256],[0,256])
|
||||
hist_mask = cv2.calcHist([img],[0],mask,[256],[0,256])
|
||||
hist_full = cv.calcHist([img],[0],None,[256],[0,256])
|
||||
hist_mask = cv.calcHist([img],[0],mask,[256],[0,256])
|
||||
|
||||
plt.subplot(221), plt.imshow(img, 'gray')
|
||||
plt.subplot(222), plt.imshow(mask,'gray')
|
||||
|
@ -26,11 +26,11 @@ a very good explanation with worked out examples, so that you would understand a
|
||||
after reading that. Instead, here we will see its Numpy implementation. After that, we will see
|
||||
OpenCV function.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('wiki.jpg',0)
|
||||
img = cv.imread('wiki.jpg',0)
|
||||
|
||||
hist,bins = np.histogram(img.flatten(),256,[0,256])
|
||||
|
||||
@ -76,15 +76,15 @@ histogram equalized to make them all with same lighting conditions.
|
||||
Histograms Equalization in OpenCV
|
||||
---------------------------------
|
||||
|
||||
OpenCV has a function to do this, **cv2.equalizeHist()**. Its input is just grayscale image and
|
||||
OpenCV has a function to do this, **cv.equalizeHist()**. Its input is just grayscale image and
|
||||
output is our histogram equalized image.
|
||||
|
||||
Below is a simple code snippet showing its usage for same image we used :
|
||||
@code{.py}
|
||||
img = cv2.imread('wiki.jpg',0)
|
||||
equ = cv2.equalizeHist(img)
|
||||
img = cv.imread('wiki.jpg',0)
|
||||
equ = cv.equalizeHist(img)
|
||||
res = np.hstack((img,equ)) #stacking images side-by-side
|
||||
cv2.imwrite('res.png',res)
|
||||
cv.imwrite('res.png',res)
|
||||
@endcode
|
||||
![image](images/equalization_opencv.jpg)
|
||||
|
||||
@ -122,15 +122,15 @@ applied.
|
||||
Below code snippet shows how to apply CLAHE in OpenCV:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('tsukuba_l.png',0)
|
||||
img = cv.imread('tsukuba_l.png',0)
|
||||
|
||||
# create a CLAHE object (Arguments are optional).
|
||||
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
||||
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
|
||||
cl1 = clahe.apply(img)
|
||||
|
||||
cv2.imwrite('clahe_2.jpg',cl1)
|
||||
cv.imwrite('clahe_2.jpg',cl1)
|
||||
@endcode
|
||||
See the result below and compare it with results above, especially the statue region:
|
||||
|
||||
|
@ -6,7 +6,7 @@ Goal
|
||||
|
||||
In this chapter,
|
||||
- We will learn to use Hough Transform to find circles in an image.
|
||||
- We will see these functions: **cv2.HoughCircles()**
|
||||
- We will see these functions: **cv.HoughCircles()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -17,29 +17,29 @@ equation, we can see we have 3 parameters, so we need a 3D accumulator for hough
|
||||
would be highly ineffective. So OpenCV uses more trickier method, **Hough Gradient Method** which
|
||||
uses the gradient information of edges.
|
||||
|
||||
The function we use here is **cv2.HoughCircles()**. It has plenty of arguments which are well
|
||||
The function we use here is **cv.HoughCircles()**. It has plenty of arguments which are well
|
||||
explained in the documentation. So we directly go to the code.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('opencv-logo-white.png',0)
|
||||
img = cv2.medianBlur(img,5)
|
||||
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
|
||||
img = cv.imread('opencv-logo-white.png',0)
|
||||
img = cv.medianBlur(img,5)
|
||||
cimg = cv.cvtColor(img,cv.COLOR_GRAY2BGR)
|
||||
|
||||
circles = cv2.HoughCircles(img,cv2.HOUGH_GRADIENT,1,20,
|
||||
circles = cv.HoughCircles(img,cv.HOUGH_GRADIENT,1,20,
|
||||
param1=50,param2=30,minRadius=0,maxRadius=0)
|
||||
|
||||
circles = np.uint16(np.around(circles))
|
||||
for i in circles[0,:]:
|
||||
# draw the outer circle
|
||||
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
|
||||
cv.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
|
||||
# draw the center of the circle
|
||||
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
|
||||
cv.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
|
||||
|
||||
cv2.imshow('detected circles',cimg)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('detected circles',cimg)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Result is shown below:
|
||||
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter,
|
||||
- We will understand the concept of the Hough Transform.
|
||||
- We will see how to use it to detect lines in an image.
|
||||
- We will see the following functions: **cv2.HoughLines()**, **cv2.HoughLinesP()**
|
||||
- We will see the following functions: **cv.HoughLines()**, **cv.HoughLinesP()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -62,7 +62,7 @@ denote they are the parameters of possible lines in the image. (Image courtesy:
|
||||
Hough Transform in OpenCV
|
||||
=========================
|
||||
|
||||
Everything explained above is encapsulated in the OpenCV function, **cv2.HoughLines()**. It simply returns an array of :math:(rho,
|
||||
Everything explained above is encapsulated in the OpenCV function, **cv.HoughLines()**. It simply returns an array of :math:(rho,
|
||||
theta)\` values. \f$\rho\f$ is measured in pixels and \f$\theta\f$ is measured in radians. First parameter,
|
||||
Input image should be a binary image, so apply threshold or use canny edge detection before
|
||||
applying hough transform. Second and third parameters are \f$\rho\f$ and \f$\theta\f$ accuracies
|
||||
@ -88,7 +88,7 @@ Hough Transform and Probabilistic Hough Transform in Hough space. (Image Courtes
|
||||
|
||||
OpenCV implementation is based on Robust Detection of Lines Using the Progressive Probabilistic
|
||||
Hough Transform by Matas, J. and Galambos, C. and Kittler, J.V. @cite Matas00. The function used is
|
||||
**cv2.HoughLinesP()**. It has two new arguments.
|
||||
**cv.HoughLinesP()**. It has two new arguments.
|
||||
- **minLineLength** - Minimum length of line. Line segments shorter than this are rejected.
|
||||
- **maxLineGap** - Maximum allowed gap between line segments to treat them as a single line.
|
||||
|
||||
|
@ -7,8 +7,8 @@ Goal
|
||||
In this chapter,
|
||||
- We will learn different morphological operations like Erosion, Dilation, Opening, Closing
|
||||
etc.
|
||||
- We will see different functions like : **cv2.erode()**, **cv2.dilate()**,
|
||||
**cv2.morphologyEx()** etc.
|
||||
- We will see different functions like : **cv.erode()**, **cv.dilate()**,
|
||||
**cv.morphologyEx()** etc.
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -35,12 +35,12 @@ detach two connected objects etc.
|
||||
|
||||
Here, as an example, I would use a 5x5 kernel with full of ones. Let's see it how it works:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
img = cv2.imread('j.png',0)
|
||||
img = cv.imread('j.png',0)
|
||||
kernel = np.ones((5,5),np.uint8)
|
||||
erosion = cv2.erode(img,kernel,iterations = 1)
|
||||
erosion = cv.erode(img,kernel,iterations = 1)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -54,7 +54,7 @@ Normally, in cases like noise removal, erosion is followed by dilation. Because,
|
||||
white noises, but it also shrinks our object. So we dilate it. Since noise is gone, they won't come
|
||||
back, but our object area increases. It is also useful in joining broken parts of an object.
|
||||
@code{.py}
|
||||
dilation = cv2.dilate(img,kernel,iterations = 1)
|
||||
dilation = cv.dilate(img,kernel,iterations = 1)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -63,9 +63,9 @@ Result:
|
||||
### 3. Opening
|
||||
|
||||
Opening is just another name of **erosion followed by dilation**. It is useful in removing noise, as
|
||||
we explained above. Here we use the function, **cv2.morphologyEx()**
|
||||
we explained above. Here we use the function, **cv.morphologyEx()**
|
||||
@code{.py}
|
||||
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
|
||||
opening = cv.morphologyEx(img, cv.MORPH_OPEN, kernel)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -76,7 +76,7 @@ Result:
|
||||
Closing is reverse of Opening, **Dilation followed by Erosion**. It is useful in closing small holes
|
||||
inside the foreground objects, or small black points on the object.
|
||||
@code{.py}
|
||||
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
|
||||
closing = cv.morphologyEx(img, cv.MORPH_CLOSE, kernel)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -88,7 +88,7 @@ It is the difference between dilation and erosion of an image.
|
||||
|
||||
The result will look like the outline of the object.
|
||||
@code{.py}
|
||||
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
|
||||
gradient = cv.morphologyEx(img, cv.MORPH_GRADIENT, kernel)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -99,7 +99,7 @@ Result:
|
||||
It is the difference between input image and Opening of the image. Below example is done for a 9x9
|
||||
kernel.
|
||||
@code{.py}
|
||||
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
|
||||
tophat = cv.morphologyEx(img, cv.MORPH_TOPHAT, kernel)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -109,7 +109,7 @@ Result:
|
||||
|
||||
It is the difference between the closing of the input image and input image.
|
||||
@code{.py}
|
||||
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
|
||||
blackhat = cv.morphologyEx(img, cv.MORPH_BLACKHAT, kernel)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -120,11 +120,11 @@ Structuring Element
|
||||
|
||||
We manually created a structuring elements in the previous examples with help of Numpy. It is
|
||||
rectangular shape. But in some cases, you may need elliptical/circular shaped kernels. So for this
|
||||
purpose, OpenCV has a function, **cv2.getStructuringElement()**. You just pass the shape and size of
|
||||
purpose, OpenCV has a function, **cv.getStructuringElement()**. You just pass the shape and size of
|
||||
the kernel, you get the desired kernel.
|
||||
@code{.py}
|
||||
# Rectangular Kernel
|
||||
>>> cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))
|
||||
>>> cv.getStructuringElement(cv.MORPH_RECT,(5,5))
|
||||
array([[1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1],
|
||||
@ -132,7 +132,7 @@ array([[1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1]], dtype=uint8)
|
||||
|
||||
# Elliptical Kernel
|
||||
>>> cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
|
||||
>>> cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
|
||||
array([[0, 0, 1, 0, 0],
|
||||
[1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1],
|
||||
@ -140,7 +140,7 @@ array([[0, 0, 1, 0, 0],
|
||||
[0, 0, 1, 0, 0]], dtype=uint8)
|
||||
|
||||
# Cross-shaped Kernel
|
||||
>>> cv2.getStructuringElement(cv2.MORPH_CROSS,(5,5))
|
||||
>>> cv.getStructuringElement(cv.MORPH_CROSS,(5,5))
|
||||
array([[0, 0, 1, 0, 0],
|
||||
[0, 0, 1, 0, 0],
|
||||
[1, 1, 1, 1, 1],
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter,
|
||||
- We will learn about Image Pyramids
|
||||
- We will use Image pyramids to create a new fruit, "Orapple"
|
||||
- We will see these functions: **cv2.pyrUp()**, **cv2.pyrDown()**
|
||||
- We will see these functions: **cv.pyrUp()**, **cv.pyrDown()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -28,18 +28,18 @@ contribution from 5 pixels in underlying level with gaussian weights. By doing s
|
||||
image becomes \f$M/2 \times N/2\f$ image. So area reduces to one-fourth of original area. It is called
|
||||
an Octave. The same pattern continues as we go upper in pyramid (ie, resolution decreases).
|
||||
Similarly while expanding, area becomes 4 times in each level. We can find Gaussian pyramids using
|
||||
**cv2.pyrDown()** and **cv2.pyrUp()** functions.
|
||||
**cv.pyrDown()** and **cv.pyrUp()** functions.
|
||||
@code{.py}
|
||||
img = cv2.imread('messi5.jpg')
|
||||
lower_reso = cv2.pyrDown(higher_reso)
|
||||
img = cv.imread('messi5.jpg')
|
||||
lower_reso = cv.pyrDown(higher_reso)
|
||||
@endcode
|
||||
Below is the 4 levels in an image pyramid.
|
||||
|
||||
![image](images/messipyr.jpg)
|
||||
|
||||
Now you can go down the image pyramid with **cv2.pyrUp()** function.
|
||||
Now you can go down the image pyramid with **cv.pyrUp()** function.
|
||||
@code{.py}
|
||||
higher_reso2 = cv2.pyrUp(lower_reso)
|
||||
higher_reso2 = cv.pyrUp(lower_reso)
|
||||
@endcode
|
||||
Remember, higher_reso2 is not equal to higher_reso, because once you decrease the resolution, you
|
||||
loose the information. Below image is 3 level down the pyramid created from smallest image in
|
||||
@ -79,38 +79,38 @@ blending, Laplacian Pyramids etc. Simply it is done as follows:
|
||||
Below is the full code. (For sake of simplicity, each step is done separately which may take more
|
||||
memory. You can optimize it if you want so).
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np,sys
|
||||
|
||||
A = cv2.imread('apple.jpg')
|
||||
B = cv2.imread('orange.jpg')
|
||||
A = cv.imread('apple.jpg')
|
||||
B = cv.imread('orange.jpg')
|
||||
|
||||
# generate Gaussian pyramid for A
|
||||
G = A.copy()
|
||||
gpA = [G]
|
||||
for i in xrange(6):
|
||||
G = cv2.pyrDown(G)
|
||||
G = cv.pyrDown(G)
|
||||
gpA.append(G)
|
||||
|
||||
# generate Gaussian pyramid for B
|
||||
G = B.copy()
|
||||
gpB = [G]
|
||||
for i in xrange(6):
|
||||
G = cv2.pyrDown(G)
|
||||
G = cv.pyrDown(G)
|
||||
gpB.append(G)
|
||||
|
||||
# generate Laplacian Pyramid for A
|
||||
lpA = [gpA[5]]
|
||||
for i in xrange(5,0,-1):
|
||||
GE = cv2.pyrUp(gpA[i])
|
||||
L = cv2.subtract(gpA[i-1],GE)
|
||||
GE = cv.pyrUp(gpA[i])
|
||||
L = cv.subtract(gpA[i-1],GE)
|
||||
lpA.append(L)
|
||||
|
||||
# generate Laplacian Pyramid for B
|
||||
lpB = [gpB[5]]
|
||||
for i in xrange(5,0,-1):
|
||||
GE = cv2.pyrUp(gpB[i])
|
||||
L = cv2.subtract(gpB[i-1],GE)
|
||||
GE = cv.pyrUp(gpB[i])
|
||||
L = cv.subtract(gpB[i-1],GE)
|
||||
lpB.append(L)
|
||||
|
||||
# Now add left and right halves of images in each level
|
||||
@ -123,14 +123,14 @@ for la,lb in zip(lpA,lpB):
|
||||
# now reconstruct
|
||||
ls_ = LS[0]
|
||||
for i in xrange(1,6):
|
||||
ls_ = cv2.pyrUp(ls_)
|
||||
ls_ = cv2.add(ls_, LS[i])
|
||||
ls_ = cv.pyrUp(ls_)
|
||||
ls_ = cv.add(ls_, LS[i])
|
||||
|
||||
# image with direct connecting each half
|
||||
real = np.hstack((A[:,:cols/2],B[:,cols/2:]))
|
||||
|
||||
cv2.imwrite('Pyramid_blending2.jpg',ls_)
|
||||
cv2.imwrite('Direct_blending.jpg',real)
|
||||
cv.imwrite('Pyramid_blending2.jpg',ls_)
|
||||
cv.imwrite('Direct_blending.jpg',real)
|
||||
@endcode
|
||||
Additional Resources
|
||||
--------------------
|
||||
|
@ -6,24 +6,24 @@ Goals
|
||||
|
||||
In this chapter, you will learn
|
||||
- To find objects in an image using Template Matching
|
||||
- You will see these functions : **cv2.matchTemplate()**, **cv2.minMaxLoc()**
|
||||
- You will see these functions : **cv.matchTemplate()**, **cv.minMaxLoc()**
|
||||
|
||||
Theory
|
||||
------
|
||||
|
||||
Template Matching is a method for searching and finding the location of a template image in a larger
|
||||
image. OpenCV comes with a function **cv2.matchTemplate()** for this purpose. It simply slides the
|
||||
image. OpenCV comes with a function **cv.matchTemplate()** for this purpose. It simply slides the
|
||||
template image over the input image (as in 2D convolution) and compares the template and patch of
|
||||
input image under the template image. Several comparison methods are implemented in OpenCV. (You can
|
||||
check docs for more details). It returns a grayscale image, where each pixel denotes how much does
|
||||
the neighbourhood of that pixel match with template.
|
||||
|
||||
If input image is of size (WxH) and template image is of size (wxh), output image will have a size
|
||||
of (W-w+1, H-h+1). Once you got the result, you can use **cv2.minMaxLoc()** function to find where
|
||||
of (W-w+1, H-h+1). Once you got the result, you can use **cv.minMaxLoc()** function to find where
|
||||
is the maximum/minimum value. Take it as the top-left corner of rectangle and take (w,h) as width
|
||||
and height of the rectangle. That rectangle is your region of template.
|
||||
|
||||
@note If you are using cv2.TM_SQDIFF as comparison method, minimum value gives the best match.
|
||||
@note If you are using cv.TM_SQDIFF as comparison method, minimum value gives the best match.
|
||||
|
||||
Template Matching in OpenCV
|
||||
---------------------------
|
||||
@ -34,35 +34,35 @@ Here, as an example, we will search for Messi's face in his photo. So I created
|
||||
|
||||
We will try all the comparison methods so that we can see how their results look like:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
img2 = img.copy()
|
||||
template = cv2.imread('template.jpg',0)
|
||||
template = cv.imread('template.jpg',0)
|
||||
w, h = template.shape[::-1]
|
||||
|
||||
# All the 6 methods for comparison in a list
|
||||
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
|
||||
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
|
||||
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
|
||||
'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
|
||||
|
||||
for meth in methods:
|
||||
img = img2.copy()
|
||||
method = eval(meth)
|
||||
|
||||
# Apply template Matching
|
||||
res = cv2.matchTemplate(img,template,method)
|
||||
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
|
||||
res = cv.matchTemplate(img,template,method)
|
||||
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
|
||||
|
||||
# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
|
||||
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
|
||||
if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:
|
||||
top_left = min_loc
|
||||
else:
|
||||
top_left = max_loc
|
||||
bottom_right = (top_left[0] + w, top_left[1] + h)
|
||||
|
||||
cv2.rectangle(img,top_left, bottom_right, 255, 2)
|
||||
cv.rectangle(img,top_left, bottom_right, 255, 2)
|
||||
|
||||
plt.subplot(121),plt.imshow(res,cmap = 'gray')
|
||||
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
|
||||
@ -74,56 +74,56 @@ for meth in methods:
|
||||
@endcode
|
||||
See the results below:
|
||||
|
||||
- cv2.TM_CCOEFF
|
||||
- cv.TM_CCOEFF
|
||||
|
||||
![image](images/template_ccoeff_1.jpg)
|
||||
|
||||
- cv2.TM_CCOEFF_NORMED
|
||||
- cv.TM_CCOEFF_NORMED
|
||||
|
||||
![image](images/template_ccoeffn_2.jpg)
|
||||
|
||||
- cv2.TM_CCORR
|
||||
- cv.TM_CCORR
|
||||
|
||||
![image](images/template_ccorr_3.jpg)
|
||||
|
||||
- cv2.TM_CCORR_NORMED
|
||||
- cv.TM_CCORR_NORMED
|
||||
|
||||
![image](images/template_ccorrn_4.jpg)
|
||||
|
||||
- cv2.TM_SQDIFF
|
||||
- cv.TM_SQDIFF
|
||||
|
||||
![image](images/template_sqdiff_5.jpg)
|
||||
|
||||
- cv2.TM_SQDIFF_NORMED
|
||||
- cv.TM_SQDIFF_NORMED
|
||||
|
||||
![image](images/template_sqdiffn_6.jpg)
|
||||
|
||||
You can see that the result using **cv2.TM_CCORR** is not good as we expected.
|
||||
You can see that the result using **cv.TM_CCORR** is not good as we expected.
|
||||
|
||||
Template Matching with Multiple Objects
|
||||
---------------------------------------
|
||||
|
||||
In the previous section, we searched image for Messi's face, which occurs only once in the image.
|
||||
Suppose you are searching for an object which has multiple occurances, **cv2.minMaxLoc()** won't
|
||||
Suppose you are searching for an object which has multiple occurances, **cv.minMaxLoc()** won't
|
||||
give you all the locations. In that case, we will use thresholding. So in this example, we will use
|
||||
a screenshot of the famous game **Mario** and we will find the coins in it.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img_rgb = cv2.imread('mario.png')
|
||||
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
|
||||
template = cv2.imread('mario_coin.png',0)
|
||||
img_rgb = cv.imread('mario.png')
|
||||
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
|
||||
template = cv.imread('mario_coin.png',0)
|
||||
w, h = template.shape[::-1]
|
||||
|
||||
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
|
||||
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)
|
||||
threshold = 0.8
|
||||
loc = np.where( res >= threshold)
|
||||
for pt in zip(*loc[::-1]):
|
||||
cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
|
||||
cv.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
|
||||
|
||||
cv2.imwrite('res.png',img_rgb)
|
||||
cv.imwrite('res.png',img_rgb)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
|
@ -6,24 +6,24 @@ Goal
|
||||
|
||||
- In this tutorial, you will learn Simple thresholding, Adaptive thresholding, Otsu's thresholding
|
||||
etc.
|
||||
- You will learn these functions : **cv2.threshold**, **cv2.adaptiveThreshold** etc.
|
||||
- You will learn these functions : **cv.threshold**, **cv.adaptiveThreshold** etc.
|
||||
|
||||
Simple Thresholding
|
||||
-------------------
|
||||
|
||||
Here, the matter is straight forward. If pixel value is greater than a threshold value, it is
|
||||
assigned one value (may be white), else it is assigned another value (may be black). The function
|
||||
used is **cv2.threshold**. First argument is the source image, which **should be a grayscale
|
||||
used is **cv.threshold**. First argument is the source image, which **should be a grayscale
|
||||
image**. Second argument is the threshold value which is used to classify the pixel values. Third
|
||||
argument is the maxVal which represents the value to be given if pixel value is more than (sometimes
|
||||
less than) the threshold value. OpenCV provides different styles of thresholding and it is decided
|
||||
by the fourth parameter of the function. Different types are:
|
||||
|
||||
- cv2.THRESH_BINARY
|
||||
- cv2.THRESH_BINARY_INV
|
||||
- cv2.THRESH_TRUNC
|
||||
- cv2.THRESH_TOZERO
|
||||
- cv2.THRESH_TOZERO_INV
|
||||
- cv.THRESH_BINARY
|
||||
- cv.THRESH_BINARY_INV
|
||||
- cv.THRESH_TRUNC
|
||||
- cv.THRESH_TOZERO
|
||||
- cv.THRESH_TOZERO_INV
|
||||
|
||||
Documentation clearly explain what each type is meant for. Please check out the documentation.
|
||||
|
||||
@ -32,16 +32,16 @@ our **thresholded image**.
|
||||
|
||||
Code :
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('gradient.png',0)
|
||||
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
||||
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
|
||||
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
|
||||
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
|
||||
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
|
||||
img = cv.imread('gradient.png',0)
|
||||
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
|
||||
ret,thresh2 = cv.threshold(img,127,255,cv.THRESH_BINARY_INV)
|
||||
ret,thresh3 = cv.threshold(img,127,255,cv.THRESH_TRUNC)
|
||||
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
|
||||
ret,thresh5 = cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
|
||||
|
||||
titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
|
||||
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
|
||||
@ -72,8 +72,8 @@ results for images with varying illumination.
|
||||
It has three ‘special’ input params and only one output argument.
|
||||
|
||||
**Adaptive Method** - It decides how thresholding value is calculated.
|
||||
- cv2.ADAPTIVE_THRESH_MEAN_C : threshold value is the mean of neighbourhood area.
|
||||
- cv2.ADAPTIVE_THRESH_GAUSSIAN_C : threshold value is the weighted sum of neighbourhood
|
||||
- cv.ADAPTIVE_THRESH_MEAN_C : threshold value is the mean of neighbourhood area.
|
||||
- cv.ADAPTIVE_THRESH_GAUSSIAN_C : threshold value is the weighted sum of neighbourhood
|
||||
values where weights are a gaussian window.
|
||||
|
||||
**Block Size** - It decides the size of neighbourhood area.
|
||||
@ -83,18 +83,18 @@ It has three ‘special’ input params and only one output argument.
|
||||
Below piece of code compares global thresholding and adaptive thresholding for an image with varying
|
||||
illumination:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('sudoku.png',0)
|
||||
img = cv2.medianBlur(img,5)
|
||||
img = cv.imread('sudoku.png',0)
|
||||
img = cv.medianBlur(img,5)
|
||||
|
||||
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
||||
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
|
||||
cv2.THRESH_BINARY,11,2)
|
||||
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
|
||||
cv2.THRESH_BINARY,11,2)
|
||||
ret,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
|
||||
th2 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_MEAN_C,\
|
||||
cv.THRESH_BINARY,11,2)
|
||||
th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,\
|
||||
cv.THRESH_BINARY,11,2)
|
||||
|
||||
titles = ['Original Image', 'Global Thresholding (v = 127)',
|
||||
'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
|
||||
@ -124,7 +124,7 @@ That is what Otsu binarization does. So in simple words, it automatically calcul
|
||||
value from image histogram for a bimodal image. (For images which are not bimodal, binarization
|
||||
won’t be accurate.)
|
||||
|
||||
For this, our cv2.threshold() function is used, but pass an extra flag, cv2.THRESH_OTSU. **For
|
||||
For this, our cv.threshold() function is used, but pass an extra flag, cv.THRESH_OTSU. **For
|
||||
threshold value, simply pass zero**. Then the algorithm finds the optimal threshold value and
|
||||
returns you as the second output, retVal. If Otsu thresholding is not used, retVal is same as the
|
||||
threshold value you used.
|
||||
@ -134,21 +134,21 @@ for a value of 127. In second case, I applied Otsu’s thresholding directly. In
|
||||
filtered image with a 5x5 gaussian kernel to remove the noise, then applied Otsu thresholding. See
|
||||
how noise filtering improves the result.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('noisy2.png',0)
|
||||
img = cv.imread('noisy2.png',0)
|
||||
|
||||
# global thresholding
|
||||
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
|
||||
ret1,th1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
|
||||
|
||||
# Otsu's thresholding
|
||||
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||||
ret2,th2 = cv.threshold(img,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
|
||||
|
||||
# Otsu's thresholding after Gaussian filtering
|
||||
blur = cv2.GaussianBlur(img,(5,5),0)
|
||||
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||||
blur = cv.GaussianBlur(img,(5,5),0)
|
||||
ret3,th3 = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
|
||||
|
||||
# plot all the images and their histograms
|
||||
images = [img, 0, th1,
|
||||
@ -188,11 +188,11 @@ where
|
||||
It actually finds a value of t which lies in between two peaks such that variances to both classes
|
||||
are minimum. It can be simply implemented in Python as follows:
|
||||
@code{.py}
|
||||
img = cv2.imread('noisy2.png',0)
|
||||
blur = cv2.GaussianBlur(img,(5,5),0)
|
||||
img = cv.imread('noisy2.png',0)
|
||||
blur = cv.GaussianBlur(img,(5,5),0)
|
||||
|
||||
# find normalized_histogram, and its cumulative distribution function
|
||||
hist = cv2.calcHist([blur],[0],None,[256],[0,256])
|
||||
hist = cv.calcHist([blur],[0],None,[256],[0,256])
|
||||
hist_norm = hist.ravel()/hist.max()
|
||||
Q = hist_norm.cumsum()
|
||||
|
||||
@ -217,7 +217,7 @@ for i in xrange(1,256):
|
||||
thresh = i
|
||||
|
||||
# find otsu's threshold value with OpenCV function
|
||||
ret, otsu = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
|
||||
ret, otsu = cv.threshold(blur,0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
|
||||
print( "{} {}".format(thresh,ret) )
|
||||
@endcode
|
||||
*(Some of the functions may be new here, but we will cover them in coming chapters)*
|
||||
|
@ -8,7 +8,7 @@ In this section, we will learn
|
||||
- To find the Fourier Transform of images using OpenCV
|
||||
- To utilize the FFT functions available in Numpy
|
||||
- Some applications of Fourier Transform
|
||||
- We will see following functions : **cv2.dft()**, **cv2.idft()** etc
|
||||
- We will see following functions : **cv.dft()**, **cv.idft()** etc
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -50,11 +50,11 @@ you want to bring it to center, you need to shift the result by \f$\frac{N}{2}\f
|
||||
directions. This is simply done by the function, **np.fft.fftshift()**. (It is more easier to
|
||||
analyze). Once you found the frequency transform, you can find the magnitude spectrum.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
f = np.fft.fft2(img)
|
||||
fshift = np.fft.fftshift(f)
|
||||
magnitude_spectrum = 20*np.log(np.abs(fshift))
|
||||
@ -112,21 +112,21 @@ Better option is Gaussian Windows.
|
||||
Fourier Transform in OpenCV
|
||||
---------------------------
|
||||
|
||||
OpenCV provides the functions **cv2.dft()** and **cv2.idft()** for this. It returns the same result
|
||||
OpenCV provides the functions **cv.dft()** and **cv.idft()** for this. It returns the same result
|
||||
as previous, but with two channels. First channel will have the real part of the result and second
|
||||
channel will have the imaginary part of the result. The input image should be converted to
|
||||
np.float32 first. We will see how to do it.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('messi5.jpg',0)
|
||||
img = cv.imread('messi5.jpg',0)
|
||||
|
||||
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
|
||||
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
|
||||
dft_shift = np.fft.fftshift(dft)
|
||||
|
||||
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
|
||||
magnitude_spectrum = 20*np.log(cv.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
|
||||
|
||||
plt.subplot(121),plt.imshow(img, cmap = 'gray')
|
||||
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
|
||||
@ -135,7 +135,7 @@ plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
|
||||
plt.show()
|
||||
@endcode
|
||||
|
||||
@note You can also use **cv2.cartToPolar()** which returns both magnitude and phase in a single shot
|
||||
@note You can also use **cv.cartToPolar()** which returns both magnitude and phase in a single shot
|
||||
|
||||
So, now we have to do inverse DFT. In previous session, we created a HPF, this time we will see how
|
||||
to remove high frequency contents in the image, ie we apply LPF to image. It actually blurs the
|
||||
@ -153,8 +153,8 @@ mask[crow-30:crow+30, ccol-30:ccol+30] = 1
|
||||
# apply mask and inverse DFT
|
||||
fshift = dft_shift*mask
|
||||
f_ishift = np.fft.ifftshift(fshift)
|
||||
img_back = cv2.idft(f_ishift)
|
||||
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
|
||||
img_back = cv.idft(f_ishift)
|
||||
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])
|
||||
|
||||
plt.subplot(121),plt.imshow(img, cmap = 'gray')
|
||||
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
|
||||
@ -166,7 +166,7 @@ See the result:
|
||||
|
||||
![image](images/fft4.jpg)
|
||||
|
||||
@note As usual, OpenCV functions **cv2.dft()** and **cv2.idft()** are faster than Numpy
|
||||
@note As usual, OpenCV functions **cv.dft()** and **cv.idft()** are faster than Numpy
|
||||
counterparts. But Numpy functions are more user-friendly. For more details about performance issues,
|
||||
see below section.
|
||||
|
||||
@ -180,23 +180,23 @@ the array to any optimal size (by padding zeros) before finding DFT. For OpenCV,
|
||||
manually pad zeros. But for Numpy, you specify the new size of FFT calculation, and it will
|
||||
automatically pad zeros for you.
|
||||
|
||||
So how do we find this optimal size ? OpenCV provides a function, **cv2.getOptimalDFTSize()** for
|
||||
this. It is applicable to both **cv2.dft()** and **np.fft.fft2()**. Let's check their performance
|
||||
So how do we find this optimal size ? OpenCV provides a function, **cv.getOptimalDFTSize()** for
|
||||
this. It is applicable to both **cv.dft()** and **np.fft.fft2()**. Let's check their performance
|
||||
using IPython magic command %timeit.
|
||||
@code{.py}
|
||||
In [16]: img = cv2.imread('messi5.jpg',0)
|
||||
In [16]: img = cv.imread('messi5.jpg',0)
|
||||
In [17]: rows,cols = img.shape
|
||||
In [18]: print("{} {}".format(rows,cols))
|
||||
342 548
|
||||
|
||||
In [19]: nrows = cv2.getOptimalDFTSize(rows)
|
||||
In [20]: ncols = cv2.getOptimalDFTSize(cols)
|
||||
In [19]: nrows = cv.getOptimalDFTSize(rows)
|
||||
In [20]: ncols = cv.getOptimalDFTSize(cols)
|
||||
In [21]: print("{} {}".format(nrows,ncols))
|
||||
360 576
|
||||
@endcode
|
||||
See, the size (342,548) is modified to (360, 576). Now let's pad it with zeros (for OpenCV) and find
|
||||
their DFT calculation performance. You can do it by creating a new big zero array and copy the data
|
||||
to it, or use **cv2.copyMakeBorder()**.
|
||||
to it, or use **cv.copyMakeBorder()**.
|
||||
@code{.py}
|
||||
nimg = np.zeros((nrows,ncols))
|
||||
nimg[:rows,:cols] = img
|
||||
@ -205,8 +205,8 @@ OR:
|
||||
@code{.py}
|
||||
right = ncols - cols
|
||||
bottom = nrows - rows
|
||||
bordertype = cv2.BORDER_CONSTANT #just to avoid line breakup in PDF file
|
||||
nimg = cv2.copyMakeBorder(img,0,bottom,0,right,bordertype, value = 0)
|
||||
bordertype = cv.BORDER_CONSTANT #just to avoid line breakup in PDF file
|
||||
nimg = cv.copyMakeBorder(img,0,bottom,0,right,bordertype, value = 0)
|
||||
@endcode
|
||||
Now we calculate the DFT performance comparison of Numpy function:
|
||||
@code{.py}
|
||||
@ -217,9 +217,9 @@ In [23]: %timeit fft2 = np.fft.fft2(img,[nrows,ncols])
|
||||
@endcode
|
||||
It shows a 4x speedup. Now we will try the same with OpenCV functions.
|
||||
@code{.py}
|
||||
In [24]: %timeit dft1= cv2.dft(np.float32(img),flags=cv2.DFT_COMPLEX_OUTPUT)
|
||||
In [24]: %timeit dft1= cv.dft(np.float32(img),flags=cv.DFT_COMPLEX_OUTPUT)
|
||||
100 loops, best of 3: 13.5 ms per loop
|
||||
In [27]: %timeit dft2= cv2.dft(np.float32(nimg),flags=cv2.DFT_COMPLEX_OUTPUT)
|
||||
In [27]: %timeit dft2= cv.dft(np.float32(nimg),flags=cv.DFT_COMPLEX_OUTPUT)
|
||||
100 loops, best of 3: 3.11 ms per loop
|
||||
@endcode
|
||||
It also shows a 4x speed-up. You can also see that OpenCV functions are around 3x faster than Numpy
|
||||
@ -232,7 +232,7 @@ A similar question was asked in a forum. The question is, why Laplacian is a hig
|
||||
Sobel is a HPF? etc. And the first answer given to it was in terms of Fourier Transform. Just take
|
||||
the fourier transform of Laplacian for some higher size of FFT. Analyze it:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
@ -240,7 +240,7 @@ from matplotlib import pyplot as plt
|
||||
mean_filter = np.ones((3,3))
|
||||
|
||||
# creating a guassian filter
|
||||
x = cv2.getGaussianKernel(5,10)
|
||||
x = cv.getGaussianKernel(5,10)
|
||||
gaussian = x*x.T
|
||||
|
||||
# different edge detecting filters
|
||||
|
@ -6,7 +6,7 @@ Goal
|
||||
|
||||
In this chapter,
|
||||
- We will learn to use marker-based image segmentation using watershed algorithm
|
||||
- We will see: **cv2.watershed()**
|
||||
- We will see: **cv.watershed()**
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -45,12 +45,12 @@ We start with finding an approximate estimate of the coins. For that, we can use
|
||||
binarization.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('coins.png')
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
|
||||
img = cv.imread('coins.png')
|
||||
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
ret, thresh = cv.threshold(gray,0,255,cv.THRESH_BINARY_INV+cv.THRESH_OTSU)
|
||||
@endcode
|
||||
Result:
|
||||
|
||||
@ -78,18 +78,18 @@ obtained from subtracting sure_fg area from sure_bg area.
|
||||
@code{.py}
|
||||
# noise removal
|
||||
kernel = np.ones((3,3),np.uint8)
|
||||
opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel, iterations = 2)
|
||||
opening = cv.morphologyEx(thresh,cv.MORPH_OPEN,kernel, iterations = 2)
|
||||
|
||||
# sure background area
|
||||
sure_bg = cv2.dilate(opening,kernel,iterations=3)
|
||||
sure_bg = cv.dilate(opening,kernel,iterations=3)
|
||||
|
||||
# Finding sure foreground area
|
||||
dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5)
|
||||
ret, sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0)
|
||||
dist_transform = cv.distanceTransform(opening,cv.DIST_L2,5)
|
||||
ret, sure_fg = cv.threshold(dist_transform,0.7*dist_transform.max(),255,0)
|
||||
|
||||
# Finding unknown region
|
||||
sure_fg = np.uint8(sure_fg)
|
||||
unknown = cv2.subtract(sure_bg,sure_fg)
|
||||
unknown = cv.subtract(sure_bg,sure_fg)
|
||||
@endcode
|
||||
See the result. In the thresholded image, we get some regions of coins which we are sure of coins
|
||||
and they are detached now. (In some cases, you may be interested in only foreground segmentation,
|
||||
@ -103,7 +103,7 @@ Now we know for sure which are region of coins, which are background and all. So
|
||||
(it is an array of same size as that of original image, but with int32 datatype) and label the
|
||||
regions inside it. The regions we know for sure (whether foreground or background) are labelled with
|
||||
any positive integers, but different integers, and the area we don't know for sure are just left as
|
||||
zero. For this we use **cv2.connectedComponents()**. It labels background of the image with 0, then
|
||||
zero. For this we use **cv.connectedComponents()**. It labels background of the image with 0, then
|
||||
other objects are labelled with integers starting from 1.
|
||||
|
||||
But we know that if background is marked with 0, watershed will consider it as unknown area. So we
|
||||
@ -111,7 +111,7 @@ want to mark it with different integer. Instead, we will mark unknown region, de
|
||||
with 0.
|
||||
@code{.py}
|
||||
# Marker labelling
|
||||
ret, markers = cv2.connectedComponents(sure_fg)
|
||||
ret, markers = cv.connectedComponents(sure_fg)
|
||||
|
||||
# Add one to all labels so that sure background is not 0, but 1
|
||||
markers = markers+1
|
||||
@ -128,7 +128,7 @@ compared to unknown region.
|
||||
Now our marker is ready. It is time for final step, apply watershed. Then marker image will be
|
||||
modified. The boundary region will be marked with -1.
|
||||
@code{.py}
|
||||
markers = cv2.watershed(img,markers)
|
||||
markers = cv.watershed(img,markers)
|
||||
img[markers == -1] = [255,0,0]
|
||||
@endcode
|
||||
See the result below. For some coins, the region where they touch are segmented properly and for
|
||||
|
@ -4,7 +4,7 @@ K-Means Clustering in OpenCV {#tutorial_py_kmeans_opencv}
|
||||
Goal
|
||||
----
|
||||
|
||||
- Learn to use **cv2.kmeans()** function in OpenCV for data clustering
|
||||
- Learn to use **cv.kmeans()** function in OpenCV for data clustering
|
||||
|
||||
Understanding Parameters
|
||||
------------------------
|
||||
@ -16,9 +16,9 @@ Understanding Parameters
|
||||
-# **nclusters(K)** : Number of clusters required at end
|
||||
-# **criteria** : It is the iteration termination criteria. When this criteria is satisfied, algorithm iteration stops. Actually, it should be a tuple of 3 parameters. They are \`( type, max_iter, epsilon )\`:
|
||||
-# type of termination criteria. It has 3 flags as below:
|
||||
- **cv2.TERM_CRITERIA_EPS** - stop the algorithm iteration if specified accuracy, *epsilon*, is reached.
|
||||
- **cv2.TERM_CRITERIA_MAX_ITER** - stop the algorithm after the specified number of iterations, *max_iter*.
|
||||
- **cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER** - stop the iteration when any of the above condition is met.
|
||||
- **cv.TERM_CRITERIA_EPS** - stop the algorithm iteration if specified accuracy, *epsilon*, is reached.
|
||||
- **cv.TERM_CRITERIA_MAX_ITER** - stop the algorithm after the specified number of iterations, *max_iter*.
|
||||
- **cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER** - stop the iteration when any of the above condition is met.
|
||||
-# max_iter - An integer specifying maximum number of iterations.
|
||||
-# epsilon - Required accuracy
|
||||
|
||||
@ -26,7 +26,7 @@ Understanding Parameters
|
||||
initial labellings. The algorithm returns the labels that yield the best compactness. This
|
||||
compactness is returned as output.
|
||||
-# **flags** : This flag is used to specify how initial centers are taken. Normally two flags are
|
||||
used for this : **cv2.KMEANS_PP_CENTERS** and **cv2.KMEANS_RANDOM_CENTERS**.
|
||||
used for this : **cv.KMEANS_PP_CENTERS** and **cv.KMEANS_RANDOM_CENTERS**.
|
||||
|
||||
### Output parameters
|
||||
|
||||
@ -47,7 +47,7 @@ t-shirt problem where you use only height of people to decide the size of t-shir
|
||||
So we start by creating data and plot it in Matplotlib
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
x = np.random.randint(25,100,25)
|
||||
@ -70,13 +70,13 @@ that, whenever 10 iterations of algorithm is ran, or an accuracy of epsilon = 1.
|
||||
the algorithm and return the answer.
|
||||
@code{.py}
|
||||
# Define criteria = ( type, max_iter = 10 , epsilon = 1.0 )
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
||||
|
||||
# Set flags (Just to avoid line break in the code)
|
||||
flags = cv2.KMEANS_RANDOM_CENTERS
|
||||
flags = cv.KMEANS_RANDOM_CENTERS
|
||||
|
||||
# Apply KMeans
|
||||
compactness,labels,centers = cv2.kmeans(z,2,None,criteria,10,flags)
|
||||
compactness,labels,centers = cv.kmeans(z,2,None,criteria,10,flags)
|
||||
@endcode
|
||||
This gives us the compactness, labels and centers. In this case, I got centers as 60 and 207. Labels
|
||||
will have the same size as that of test data where each data will be labelled as '0','1','2' etc.
|
||||
@ -117,7 +117,7 @@ Check image below:
|
||||
Now I am directly moving to the code:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
X = np.random.randint(25,50,(25,2))
|
||||
@ -128,8 +128,8 @@ Z = np.vstack((X,Y))
|
||||
Z = np.float32(Z)
|
||||
|
||||
# define criteria and apply kmeans()
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
||||
ret,label,center=cv2.kmeans(Z,2,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
||||
ret,label,center=cv.kmeans(Z,2,None,criteria,10,cv.KMEANS_RANDOM_CENTERS)
|
||||
|
||||
# Now separate the data, Note the flatten()
|
||||
A = Z[label.ravel()==0]
|
||||
@ -161,27 +161,27 @@ specified number of colors. And again we need to reshape it back to the shape of
|
||||
Below is the code:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('home.jpg')
|
||||
img = cv.imread('home.jpg')
|
||||
Z = img.reshape((-1,3))
|
||||
|
||||
# convert to np.float32
|
||||
Z = np.float32(Z)
|
||||
|
||||
# define criteria, number of clusters(K) and apply kmeans()
|
||||
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
||||
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 10, 1.0)
|
||||
K = 8
|
||||
ret,label,center=cv2.kmeans(Z,K,None,criteria,10,cv2.KMEANS_RANDOM_CENTERS)
|
||||
ret,label,center=cv.kmeans(Z,K,None,criteria,10,cv.KMEANS_RANDOM_CENTERS)
|
||||
|
||||
# Now convert back into uint8, and make original image
|
||||
center = np.uint8(center)
|
||||
res = center[label.flatten()]
|
||||
res2 = res.reshape((img.shape))
|
||||
|
||||
cv2.imshow('res2',res2)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('res2',res2)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
See the result below for K=8:
|
||||
|
||||
|
@ -20,11 +20,11 @@ pixels. It is the simplest feature set we can create. We use first 250 samples o
|
||||
train_data, and next 250 samples as test_data. So let's prepare them first.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('digits.png')
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread('digits.png')
|
||||
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Now we split the image to 5000 cells, each 20x20 size
|
||||
cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]
|
||||
@ -42,8 +42,8 @@ train_labels = np.repeat(k,250)[:,np.newaxis]
|
||||
test_labels = train_labels.copy()
|
||||
|
||||
# Initiate kNN, train the data, then test it with test data for k=1
|
||||
knn = cv2.ml.KNearest_create()
|
||||
knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)
|
||||
knn = cv.ml.KNearest_create()
|
||||
knn.train(train, cv.ml.ROW_SAMPLE, train_labels)
|
||||
ret,result,neighbours,dist = knn.findNearest(test,k=5)
|
||||
|
||||
# Now we check the accuracy of classification
|
||||
@ -87,7 +87,7 @@ There are 20000 samples available, so we take first 10000 data as training sampl
|
||||
10000 as test samples. We should change the alphabets to ascii characters because we can't work with
|
||||
alphabets directly.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -103,8 +103,8 @@ responses, trainData = np.hsplit(train,[1])
|
||||
labels, testData = np.hsplit(test,[1])
|
||||
|
||||
# Initiate the kNN, classify, measure accuracy.
|
||||
knn = cv2.ml.KNearest_create()
|
||||
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
|
||||
knn = cv.ml.KNearest_create()
|
||||
knn.train(trainData, cv.ml.ROW_SAMPLE, responses)
|
||||
ret, result, neighbours, dist = knn.findNearest(testData, k=5)
|
||||
|
||||
correct = np.count_nonzero(result == labels)
|
||||
|
@ -73,7 +73,7 @@ We do all these with the help of Random Number Generator in Numpy.
|
||||
Then we plot it with the help of Matplotlib. Red families are shown as Red Triangles and Blue
|
||||
families are shown as Blue Squares.
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -114,8 +114,8 @@ So let's see how it works. New comer is marked in green color.
|
||||
newcomer = np.random.randint(0,100,(1,2)).astype(np.float32)
|
||||
plt.scatter(newcomer[:,0],newcomer[:,1],80,'g','o')
|
||||
|
||||
knn = cv2.ml.KNearest_create()
|
||||
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
|
||||
knn = cv.ml.KNearest_create()
|
||||
knn.train(trainData, cv.ml.ROW_SAMPLE, responses)
|
||||
ret, results, neighbours ,dist = knn.findNearest(newcomer, 3)
|
||||
|
||||
print( "result: {}\n".format(results) )
|
||||
|
@ -94,13 +94,13 @@ First we need to load the required XML classifiers. Then load our input image (o
|
||||
grayscale mode.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
||||
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
|
||||
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
|
||||
eye_cascade = cv.CascadeClassifier('haarcascade_eye.xml')
|
||||
|
||||
img = cv2.imread('sachin.jpg')
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
img = cv.imread('sachin.jpg')
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
@endcode
|
||||
Now we find the faces in the image. If faces are found, it returns the positions of detected faces
|
||||
as Rect(x,y,w,h). Once we get these locations, we can create a ROI for the face and apply eye
|
||||
@ -108,16 +108,16 @@ detection on this ROI (since eyes are always on the face !!! ).
|
||||
@code{.py}
|
||||
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
||||
for (x,y,w,h) in faces:
|
||||
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
|
||||
cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
|
||||
roi_gray = gray[y:y+h, x:x+w]
|
||||
roi_color = img[y:y+h, x:x+w]
|
||||
eyes = eye_cascade.detectMultiScale(roi_gray)
|
||||
for (ex,ey,ew,eh) in eyes:
|
||||
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
|
||||
cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
|
||||
|
||||
cv2.imshow('img',img)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('img',img)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Result looks like below:
|
||||
|
||||
|
@ -53,12 +53,12 @@ Pay attention for the data types, as the images should be 1-channel or 3-channel
|
||||
8-bit (np.uint8) and the exposure times need to be float32 and in seconds.
|
||||
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
# Loading exposure images into a list
|
||||
img_fn = ["img0.jpg", "img1.jpg", "img2.jpg", "img3.jpg"]
|
||||
img_list = [cv2.imread(fn) for fn in img_fn]
|
||||
img_list = [cv.imread(fn) for fn in img_fn]
|
||||
exposure_times = np.array([15.0, 2.5, 0.25, 0.0333], dtype=np.float32)
|
||||
@endcode
|
||||
|
||||
@ -71,9 +71,9 @@ full dynamic range of all exposure images.
|
||||
|
||||
@code{.py}
|
||||
# Merge exposures to HDR image
|
||||
merge_debvec = cv2.createMergeDebevec()
|
||||
merge_debvec = cv.createMergeDebevec()
|
||||
hdr_debvec = merge_debvec.process(img_list, times=exposure_times.copy())
|
||||
merge_robertson = cv2.createMergeRobertson()
|
||||
merge_robertson = cv.createMergeRobertson()
|
||||
hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy())
|
||||
@endcode
|
||||
|
||||
@ -85,9 +85,9 @@ we will later have to clip the data in order to avoid overflow.
|
||||
|
||||
@code{.py}
|
||||
# Tonemap HDR image
|
||||
tonemap1 = cv2.createTonemapDurand(gamma=2.2)
|
||||
tonemap1 = cv.createTonemapDurand(gamma=2.2)
|
||||
res_debvec = tonemap1.process(hdr_debvec.copy())
|
||||
tonemap2 = cv2.createTonemapDurand(gamma=1.3)
|
||||
tonemap2 = cv.createTonemapDurand(gamma=1.3)
|
||||
res_robertson = tonemap2.process(hdr_robertson.copy())
|
||||
@endcode
|
||||
|
||||
@ -100,7 +100,7 @@ range of [0..1].
|
||||
|
||||
@code{.py}
|
||||
# Exposure fusion using Mertens
|
||||
merge_mertens = cv2.createMergeMertens()
|
||||
merge_mertens = cv.createMergeMertens()
|
||||
res_mertens = merge_mertens.process(img_list)
|
||||
@endcode
|
||||
|
||||
@ -115,9 +115,9 @@ res_debvec_8bit = np.clip(res_debvec*255, 0, 255).astype('uint8')
|
||||
res_robertson_8bit = np.clip(res_robertson*255, 0, 255).astype('uint8')
|
||||
res_mertens_8bit = np.clip(res_mertens*255, 0, 255).astype('uint8')
|
||||
|
||||
cv2.imwrite("ldr_debvec.jpg", res_debvec_8bit)
|
||||
cv2.imwrite("ldr_robertson.jpg", res_robertson_8bit)
|
||||
cv2.imwrite("fusion_mertens.jpg", res_mertens_8bit)
|
||||
cv.imwrite("ldr_debvec.jpg", res_debvec_8bit)
|
||||
cv.imwrite("ldr_robertson.jpg", res_robertson_8bit)
|
||||
cv.imwrite("fusion_mertens.jpg", res_mertens_8bit)
|
||||
@endcode
|
||||
|
||||
Results
|
||||
@ -150,10 +150,10 @@ function and use it for the HDR merge.
|
||||
|
||||
@code{.py}
|
||||
# Estimate camera response function (CRF)
|
||||
cal_debvec = cv2.createCalibrateDebevec()
|
||||
cal_debvec = cv.createCalibrateDebevec()
|
||||
crf_debvec = cal_debvec.process(img_list, times=exposure_times)
|
||||
hdr_debvec = merge_debvec.process(img_list, times=exposure_times.copy(), response=crf_debvec.copy())
|
||||
cal_robertson = cv2.createCalibrateRobertson()
|
||||
cal_robertson = cv.createCalibrateRobertson()
|
||||
crf_robertson = cal_robertson.process(img_list, times=exposure_times)
|
||||
hdr_robertson = merge_robertson.process(img_list, times=exposure_times.copy(), response=crf_robertson.copy())
|
||||
@endcode
|
||||
|
@ -22,7 +22,7 @@ shown below (taken from [Wikipedia](http://en.wikipedia.org/wiki/Inpainting)):
|
||||
![image](images/inpaint_basics.jpg)
|
||||
|
||||
Several algorithms were designed for this purpose and OpenCV provides two of them. Both can be
|
||||
accessed by the same function, **cv2.inpaint()**
|
||||
accessed by the same function, **cv.inpaint()**
|
||||
|
||||
First algorithm is based on the paper **"An Image Inpainting Technique Based on the Fast Marching
|
||||
Method"** by Alexandru Telea in 2004. It is based on Fast Marching Method. Consider a region in the
|
||||
@ -33,7 +33,7 @@ known pixels in the neigbourhood. Selection of the weights is an important matte
|
||||
given to those pixels lying near to the point, near to the normal of the boundary and those lying on
|
||||
the boundary contours. Once a pixel is inpainted, it moves to next nearest pixel using Fast Marching
|
||||
Method. FMM ensures those pixels near the known pixels are inpainted first, so that it just works
|
||||
like a manual heuristic operation. This algorithm is enabled by using the flag, cv2.INPAINT_TELEA.
|
||||
like a manual heuristic operation. This algorithm is enabled by using the flag, cv.INPAINT_TELEA.
|
||||
|
||||
Second algorithm is based on the paper **"Navier-Stokes, Fluid Dynamics, and Image and Video
|
||||
Inpainting"** by Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro in 2001. This
|
||||
@ -43,7 +43,7 @@ are meant to be continuous). It continues isophotes (lines joining points with s
|
||||
like contours joins points with same elevation) while matching gradient vectors at the boundary of
|
||||
the inpainting region. For this, some methods from fluid dynamics are used. Once they are obtained,
|
||||
color is filled to reduce minimum variance in that area. This algorithm is enabled by using the
|
||||
flag, cv2.INPAINT_NS.
|
||||
flag, cv.INPAINT_NS.
|
||||
|
||||
Code
|
||||
----
|
||||
@ -53,16 +53,16 @@ the area which is to be inpainted. Everything else is simple. My image is degrad
|
||||
strokes (I added manually). I created a corresponding strokes with Paint tool.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
img = cv2.imread('messi_2.jpg')
|
||||
mask = cv2.imread('mask2.png',0)
|
||||
img = cv.imread('messi_2.jpg')
|
||||
mask = cv.imread('mask2.png',0)
|
||||
|
||||
dst = cv2.inpaint(img,mask,3,cv2.INPAINT_TELEA)
|
||||
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)
|
||||
|
||||
cv2.imshow('dst',dst)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('dst',dst)
|
||||
cv.waitKey(0)
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
See the result below. First image shows degraded input. Second image is the mask. Third image is the
|
||||
result of first algorithm and last image is the result of second algorithm.
|
||||
|
@ -7,8 +7,8 @@ Goal
|
||||
In this chapter,
|
||||
|
||||
- You will learn about Non-local Means Denoising algorithm to remove noise in the image.
|
||||
- You will see different functions like **cv2.fastNlMeansDenoising()**,
|
||||
**cv2.fastNlMeansDenoisingColored()** etc.
|
||||
- You will see different functions like **cv.fastNlMeansDenoising()**,
|
||||
**cv.fastNlMeansDenoisingColored()** etc.
|
||||
|
||||
Theory
|
||||
------
|
||||
@ -52,11 +52,11 @@ Image Denoising in OpenCV
|
||||
|
||||
OpenCV provides four variations of this technique.
|
||||
|
||||
-# **cv2.fastNlMeansDenoising()** - works with a single grayscale images
|
||||
2. **cv2.fastNlMeansDenoisingColored()** - works with a color image.
|
||||
3. **cv2.fastNlMeansDenoisingMulti()** - works with image sequence captured in short period of time
|
||||
-# **cv.fastNlMeansDenoising()** - works with a single grayscale images
|
||||
2. **cv.fastNlMeansDenoisingColored()** - works with a color image.
|
||||
3. **cv.fastNlMeansDenoisingMulti()** - works with image sequence captured in short period of time
|
||||
(grayscale images)
|
||||
4. **cv2.fastNlMeansDenoisingColoredMulti()** - same as above, but for color images.
|
||||
4. **cv.fastNlMeansDenoisingColoredMulti()** - same as above, but for color images.
|
||||
|
||||
Common arguments are:
|
||||
- h : parameter deciding filter strength. Higher h value removes noise better, but removes
|
||||
@ -69,18 +69,18 @@ Please visit first link in additional resources for more details on these parame
|
||||
|
||||
We will demonstrate 2 and 3 here. Rest is left for you.
|
||||
|
||||
### 1. cv2.fastNlMeansDenoisingColored()
|
||||
### 1. cv.fastNlMeansDenoisingColored()
|
||||
|
||||
As mentioned above it is used to remove noise from color images. (Noise is expected to be gaussian).
|
||||
See the example below:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
img = cv2.imread('die.png')
|
||||
img = cv.imread('die.png')
|
||||
|
||||
dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21)
|
||||
dst = cv.fastNlMeansDenoisingColored(img,None,10,10,7,21)
|
||||
|
||||
plt.subplot(121),plt.imshow(img)
|
||||
plt.subplot(122),plt.imshow(dst)
|
||||
@ -91,7 +91,7 @@ result:
|
||||
|
||||
![image](images/nlm_result1.jpg)
|
||||
|
||||
### 2. cv2.fastNlMeansDenoisingMulti()
|
||||
### 2. cv.fastNlMeansDenoisingMulti()
|
||||
|
||||
Now we will apply the same method to a video. The first argument is the list of noisy frames. Second
|
||||
argument imgToDenoiseIndex specifies which frame we need to denoise, for that we pass the index of
|
||||
@ -102,16 +102,16 @@ input. Let imgToDenoiseIndex = 2 and temporalWindowSize = 3. Then frame-1, frame
|
||||
used to denoise frame-2. Let's see an example.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
cap = cv2.VideoCapture('vtest.avi')
|
||||
cap = cv.VideoCapture('vtest.avi')
|
||||
|
||||
# create a list of first 5 frames
|
||||
img = [cap.read()[1] for i in xrange(5)]
|
||||
|
||||
# convert all to grayscale
|
||||
gray = [cv2.cvtColor(i, cv2.COLOR_BGR2GRAY) for i in img]
|
||||
gray = [cv.cvtColor(i, cv.COLOR_BGR2GRAY) for i in img]
|
||||
|
||||
# convert all to float64
|
||||
gray = [np.float64(i) for i in gray]
|
||||
@ -126,7 +126,7 @@ noisy = [i+noise for i in gray]
|
||||
noisy = [np.uint8(np.clip(i,0,255)) for i in noisy]
|
||||
|
||||
# Denoise 3rd frame considering all the 5 frames
|
||||
dst = cv2.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35)
|
||||
dst = cv.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35)
|
||||
|
||||
plt.subplot(131),plt.imshow(gray[2],'gray')
|
||||
plt.subplot(132),plt.imshow(noisy[2],'gray')
|
||||
|
@ -29,8 +29,8 @@ $ yum install numpy opencv*
|
||||
@endcode
|
||||
Open Python IDLE (or IPython) and type following codes in Python terminal.
|
||||
@code{.py}
|
||||
>>> import cv2
|
||||
>>> print( cv2.__version__ )
|
||||
>>> import cv2 as cv
|
||||
>>> print( cv.__version__ )
|
||||
@endcode
|
||||
If the results are printed out without any errors, congratulations !!! You have installed
|
||||
OpenCV-Python successfully.
|
||||
@ -230,7 +230,7 @@ But you will have to do this every time you install OpenCV.
|
||||
@code{.sh}
|
||||
export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python2.7/site-packages
|
||||
@endcode
|
||||
Thus OpenCV installation is finished. Open a terminal and try import cv2.
|
||||
Thus OpenCV installation is finished. Open a terminal and try 'import cv2 as cv'.
|
||||
|
||||
To build the documentation, just enter following commands:
|
||||
@code{.sh}
|
||||
|
@ -31,8 +31,8 @@ $ sudo apt-get install python-opencv
|
||||
Open Python IDLE (or IPython) and type following codes in Python terminal.
|
||||
|
||||
```
|
||||
import cv2
|
||||
print(cv2.__version__)
|
||||
import cv2 as cv
|
||||
print(cv.__version__)
|
||||
```
|
||||
|
||||
If the results are printed out without any errors, congratulations !!!
|
||||
@ -160,6 +160,6 @@ All files are installed in "/usr/local/" folder.
|
||||
Open a terminal and try import "cv2".
|
||||
|
||||
```
|
||||
import cv2
|
||||
print(cv2.__version__)
|
||||
import cv2 as cv
|
||||
print(cv.__version__)
|
||||
```
|
||||
|
@ -35,8 +35,8 @@ Installing OpenCV from prebuilt binaries
|
||||
|
||||
-# Open Python IDLE and type following codes in Python terminal.
|
||||
@code
|
||||
>>> import cv2
|
||||
>>> print( cv2.__version__ )
|
||||
>>> import cv2 as cv
|
||||
>>> print( cv.__version__ )
|
||||
@endcode
|
||||
|
||||
If the results are printed out without any errors, congratulations !!! You have installed
|
||||
@ -136,7 +136,7 @@ Building OpenCV from source
|
||||
|
||||
![image](images/Capture8.png)
|
||||
|
||||
-# Open Python IDLE and enter import cv2. If no error, it is installed correctly.
|
||||
-# Open Python IDLE and enter 'import cv2 as cv'. If no error, it is installed correctly.
|
||||
|
||||
@note We have installed with no other support like TBB, Eigen, Qt, Documentation etc. It would be
|
||||
difficult to explain it here. A more detailed video will be added soon or you can just hack around.
|
||||
|
@ -37,31 +37,31 @@ the time proportions that those colours stay in the scene. The probable backgrou
|
||||
ones which stay longer and more static.
|
||||
|
||||
While coding, we need to create a background object using the function,
|
||||
**cv2.createBackgroundSubtractorMOG()**. It has some optional parameters like length of history,
|
||||
**cv.createBackgroundSubtractorMOG()**. It has some optional parameters like length of history,
|
||||
number of gaussian mixtures, threshold etc. It is all set to some default values. Then inside the
|
||||
video loop, use backgroundsubtractor.apply() method to get the foreground mask.
|
||||
|
||||
See a simple example below:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('vtest.avi')
|
||||
cap = cv.VideoCapture('vtest.avi')
|
||||
|
||||
fgbg = cv2.createBackgroundSubtractorMOG()
|
||||
fgbg = cv.createBackgroundSubtractorMOG()
|
||||
|
||||
while(1):
|
||||
ret, frame = cap.read()
|
||||
|
||||
fgmask = fgbg.apply(frame)
|
||||
|
||||
cv2.imshow('frame',fgmask)
|
||||
k = cv2.waitKey(30) & 0xff
|
||||
cv.imshow('frame',fgmask)
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
( All the results are shown at the end for comparison).
|
||||
|
||||
@ -80,24 +80,24 @@ detecting shadows or not. If detectShadows = True (which is so by default), it
|
||||
detects and marks shadows, but decreases the speed. Shadows will be marked in gray color.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('vtest.avi')
|
||||
cap = cv.VideoCapture('vtest.avi')
|
||||
|
||||
fgbg = cv2.createBackgroundSubtractorMOG2()
|
||||
fgbg = cv.createBackgroundSubtractorMOG2()
|
||||
|
||||
while(1):
|
||||
ret, frame = cap.read()
|
||||
|
||||
fgmask = fgbg.apply(frame)
|
||||
|
||||
cv2.imshow('frame',fgmask)
|
||||
k = cv2.waitKey(30) & 0xff
|
||||
cv.imshow('frame',fgmask)
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
(Results given at the end)
|
||||
|
||||
@ -120,26 +120,26 @@ frames.
|
||||
It would be better to apply morphological opening to the result to remove the noises.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('vtest.avi')
|
||||
cap = cv.VideoCapture('vtest.avi')
|
||||
|
||||
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
|
||||
fgbg = cv2.createBackgroundSubtractorGMG()
|
||||
kernel = cv.getStructuringElement(cv.MORPH_ELLIPSE,(3,3))
|
||||
fgbg = cv.createBackgroundSubtractorGMG()
|
||||
|
||||
while(1):
|
||||
ret, frame = cap.read()
|
||||
|
||||
fgmask = fgbg.apply(frame)
|
||||
fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)
|
||||
fgmask = cv.morphologyEx(fgmask, cv.MORPH_OPEN, kernel)
|
||||
|
||||
cv2.imshow('frame',fgmask)
|
||||
k = cv2.waitKey(30) & 0xff
|
||||
cv.imshow('frame',fgmask)
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
Results
|
||||
-------
|
||||
|
@ -7,7 +7,7 @@ Goal
|
||||
In this chapter,
|
||||
- We will understand the concepts of optical flow and its estimation using Lucas-Kanade
|
||||
method.
|
||||
- We will use functions like **cv2.calcOpticalFlowPyrLK()** to track feature points in a
|
||||
- We will use functions like **cv.calcOpticalFlowPyrLK()** to track feature points in a
|
||||
video.
|
||||
|
||||
Optical Flow
|
||||
@ -84,19 +84,19 @@ Lucas-Kanade there, we get optical flow along with the scale.
|
||||
Lucas-Kanade Optical Flow in OpenCV
|
||||
-----------------------------------
|
||||
|
||||
OpenCV provides all these in a single function, **cv2.calcOpticalFlowPyrLK()**. Here, we create a
|
||||
OpenCV provides all these in a single function, **cv.calcOpticalFlowPyrLK()**. Here, we create a
|
||||
simple application which tracks some points in a video. To decide the points, we use
|
||||
**cv2.goodFeaturesToTrack()**. We take the first frame, detect some Shi-Tomasi corner points in it,
|
||||
**cv.goodFeaturesToTrack()**. We take the first frame, detect some Shi-Tomasi corner points in it,
|
||||
then we iteratively track those points using Lucas-Kanade optical flow. For the function
|
||||
**cv2.calcOpticalFlowPyrLK()** we pass the previous frame, previous points and next frame. It
|
||||
**cv.calcOpticalFlowPyrLK()** we pass the previous frame, previous points and next frame. It
|
||||
returns next points along with some status numbers which has a value of 1 if next point is found,
|
||||
else zero. We iteratively pass these next points as previous points in next step. See the code
|
||||
below:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('slow.flv')
|
||||
cap = cv.VideoCapture('slow.flv')
|
||||
|
||||
# params for ShiTomasi corner detection
|
||||
feature_params = dict( maxCorners = 100,
|
||||
@ -107,25 +107,25 @@ feature_params = dict( maxCorners = 100,
|
||||
# Parameters for lucas kanade optical flow
|
||||
lk_params = dict( winSize = (15,15),
|
||||
maxLevel = 2,
|
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
# Create some random colors
|
||||
color = np.random.randint(0,255,(100,3))
|
||||
|
||||
# Take first frame and find corners in it
|
||||
ret, old_frame = cap.read()
|
||||
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
|
||||
p0 = cv2.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
|
||||
old_gray = cv.cvtColor(old_frame, cv.COLOR_BGR2GRAY)
|
||||
p0 = cv.goodFeaturesToTrack(old_gray, mask = None, **feature_params)
|
||||
|
||||
# Create a mask image for drawing purposes
|
||||
mask = np.zeros_like(old_frame)
|
||||
|
||||
while(1):
|
||||
ret,frame = cap.read()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# calculate optical flow
|
||||
p1, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
|
||||
p1, st, err = cv.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params)
|
||||
|
||||
# Select good points
|
||||
good_new = p1[st==1]
|
||||
@ -135,12 +135,12 @@ while(1):
|
||||
for i,(new,old) in enumerate(zip(good_new,good_old)):
|
||||
a,b = new.ravel()
|
||||
c,d = old.ravel()
|
||||
mask = cv2.line(mask, (a,b),(c,d), color[i].tolist(), 2)
|
||||
frame = cv2.circle(frame,(a,b),5,color[i].tolist(),-1)
|
||||
img = cv2.add(frame,mask)
|
||||
mask = cv.line(mask, (a,b),(c,d), color[i].tolist(), 2)
|
||||
frame = cv.circle(frame,(a,b),5,color[i].tolist(),-1)
|
||||
img = cv.add(frame,mask)
|
||||
|
||||
cv2.imshow('frame',img)
|
||||
k = cv2.waitKey(30) & 0xff
|
||||
cv.imshow('frame',img)
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
|
||||
@ -148,7 +148,7 @@ while(1):
|
||||
old_gray = frame_gray.copy()
|
||||
p0 = good_new.reshape(-1,1,2)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
cap.release()
|
||||
@endcode
|
||||
(This code doesn't check how correct are the next keypoints. So even if any feature point disappears
|
||||
@ -176,37 +176,37 @@ array with optical flow vectors, \f$(u,v)\f$. We find their magnitude and direct
|
||||
result for better visualization. Direction corresponds to Hue value of the image. Magnitude
|
||||
corresponds to Value plane. See the code below:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
cap = cv2.VideoCapture("vtest.avi")
|
||||
cap = cv.VideoCapture("vtest.avi")
|
||||
|
||||
ret, frame1 = cap.read()
|
||||
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
|
||||
prvs = cv.cvtColor(frame1,cv.COLOR_BGR2GRAY)
|
||||
hsv = np.zeros_like(frame1)
|
||||
hsv[...,1] = 255
|
||||
|
||||
while(1):
|
||||
ret, frame2 = cap.read()
|
||||
next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)
|
||||
next = cv.cvtColor(frame2,cv.COLOR_BGR2GRAY)
|
||||
|
||||
flow = cv2.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
|
||||
flow = cv.calcOpticalFlowFarneback(prvs,next, None, 0.5, 3, 15, 3, 5, 1.2, 0)
|
||||
|
||||
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])
|
||||
mag, ang = cv.cartToPolar(flow[...,0], flow[...,1])
|
||||
hsv[...,0] = ang*180/np.pi/2
|
||||
hsv[...,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)
|
||||
bgr = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR)
|
||||
hsv[...,2] = cv.normalize(mag,None,0,255,cv.NORM_MINMAX)
|
||||
bgr = cv.cvtColor(hsv,cv.COLOR_HSV2BGR)
|
||||
|
||||
cv2.imshow('frame2',bgr)
|
||||
k = cv2.waitKey(30) & 0xff
|
||||
cv.imshow('frame2',bgr)
|
||||
k = cv.waitKey(30) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
elif k == ord('s'):
|
||||
cv2.imwrite('opticalfb.png',frame2)
|
||||
cv2.imwrite('opticalhsv.png',bgr)
|
||||
cv.imwrite('opticalfb.png',frame2)
|
||||
cv.imwrite('opticalhsv.png',bgr)
|
||||
prvs = next
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
@endcode
|
||||
See the result below:
|
||||
|
||||
|
@ -39,12 +39,12 @@ algorithm moves our window to the new location with maximum density.
|
||||
To use meanshift in OpenCV, first we need to setup the target, find its histogram so that we can
|
||||
backproject the target on each frame for calculation of meanshift. We also need to provide initial
|
||||
location of window. For histogram, only Hue is considered here. Also, to avoid false values due to
|
||||
low light, low light values are discarded using **cv2.inRange()** function.
|
||||
low light, low light values are discarded using **cv.inRange()** function.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('slow.flv')
|
||||
cap = cv.VideoCapture('slow.flv')
|
||||
|
||||
# take first frame of the video
|
||||
ret,frame = cap.read()
|
||||
@ -55,39 +55,39 @@ track_window = (c,r,w,h)
|
||||
|
||||
# set up the ROI for tracking
|
||||
roi = frame[r:r+h, c:c+w]
|
||||
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
|
||||
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
|
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
|
||||
while(1):
|
||||
ret ,frame = cap.read()
|
||||
|
||||
if ret == True:
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
|
||||
# apply meanshift to get the new location
|
||||
ret, track_window = cv2.meanShift(dst, track_window, term_crit)
|
||||
ret, track_window = cv.meanShift(dst, track_window, term_crit)
|
||||
|
||||
# Draw it on image
|
||||
x,y,w,h = track_window
|
||||
img2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)
|
||||
cv2.imshow('img2',img2)
|
||||
img2 = cv.rectangle(frame, (x,y), (x+w,y+h), 255,2)
|
||||
cv.imshow('img2',img2)
|
||||
|
||||
k = cv2.waitKey(60) & 0xff
|
||||
k = cv.waitKey(60) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
else:
|
||||
cv2.imwrite(chr(k)+".jpg",img2)
|
||||
cv.imwrite(chr(k)+".jpg",img2)
|
||||
|
||||
else:
|
||||
break
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
cap.release()
|
||||
@endcode
|
||||
Three frames in a video I used is given below:
|
||||
@ -116,9 +116,9 @@ It is almost same as meanshift, but it returns a rotated rectangle (that is our
|
||||
parameters (used to be passed as search window in next iteration). See the code below:
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
cap = cv2.VideoCapture('slow.flv')
|
||||
cap = cv.VideoCapture('slow.flv')
|
||||
|
||||
# take first frame of the video
|
||||
ret,frame = cap.read()
|
||||
@ -129,40 +129,40 @@ track_window = (c,r,w,h)
|
||||
|
||||
# set up the ROI for tracking
|
||||
roi = frame[r:r+h, c:c+w]
|
||||
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
|
||||
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)
|
||||
hsv_roi = cv.cvtColor(roi, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
|
||||
roi_hist = cv.calcHist([hsv_roi],[0],mask,[180],[0,180])
|
||||
cv.normalize(roi_hist,roi_hist,0,255,cv.NORM_MINMAX)
|
||||
|
||||
# Setup the termination criteria, either 10 iteration or move by atleast 1 pt
|
||||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
|
||||
while(1):
|
||||
ret ,frame = cap.read()
|
||||
|
||||
if ret == True:
|
||||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
||||
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
hsv = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
|
||||
dst = cv.calcBackProject([hsv],[0],roi_hist,[0,180],1)
|
||||
|
||||
# apply meanshift to get the new location
|
||||
ret, track_window = cv2.CamShift(dst, track_window, term_crit)
|
||||
ret, track_window = cv.CamShift(dst, track_window, term_crit)
|
||||
|
||||
# Draw it on image
|
||||
pts = cv2.boxPoints(ret)
|
||||
pts = cv.boxPoints(ret)
|
||||
pts = np.int0(pts)
|
||||
img2 = cv2.polylines(frame,[pts],True, 255,2)
|
||||
cv2.imshow('img2',img2)
|
||||
img2 = cv.polylines(frame,[pts],True, 255,2)
|
||||
cv.imshow('img2',img2)
|
||||
|
||||
k = cv2.waitKey(60) & 0xff
|
||||
k = cv.waitKey(60) & 0xff
|
||||
if k == 27:
|
||||
break
|
||||
else:
|
||||
cv2.imwrite(chr(k)+".jpg",img2)
|
||||
cv.imwrite(chr(k)+".jpg",img2)
|
||||
|
||||
else:
|
||||
break
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
cap.release()
|
||||
@endcode
|
||||
Three frames of the result is shown below:
|
||||
|
@ -86,7 +86,7 @@ Now we need to generate the `g(x)` image. For this, the function **addWeighted()
|
||||
|
||||
@add_toggle_python
|
||||
@snippet python/tutorial_code/core/AddingImages/adding_images.py blend_images
|
||||
Numpy version of above line (but cv2 function is around 2x faster):
|
||||
Numpy version of above line (but cv function is around 2x faster):
|
||||
\code{.py}
|
||||
dst = np.uint8(alpha*(img1)+beta*(img2))
|
||||
\endcode
|
||||
|
@ -82,7 +82,7 @@ At first we make sure that the input images data in unsigned 8 bit format.
|
||||
|
||||
At first we make sure that the input images data in unsigned 8 bit format.
|
||||
@code{.py}
|
||||
my_image = cv2.cvtColor(my_image, cv2.CV_8U)
|
||||
my_image = cv.cvtColor(my_image, cv.CV_8U)
|
||||
@endcode
|
||||
|
||||
@end_toggle
|
||||
|
@ -3,18 +3,18 @@
|
||||
'''
|
||||
Algorithm serializaion test
|
||||
'''
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class algorithm_rw_test(NewOpenCVTests):
|
||||
def test_algorithm_rw(self):
|
||||
# some arbitrary non-default parameters
|
||||
gold = cv2.AKAZE_create(descriptor_size=1, descriptor_channels=2, nOctaves=3, threshold=4.0)
|
||||
gold.write(cv2.FileStorage("params.yml", 1), "AKAZE")
|
||||
gold = cv.AKAZE_create(descriptor_size=1, descriptor_channels=2, nOctaves=3, threshold=4.0)
|
||||
gold.write(cv.FileStorage("params.yml", 1), "AKAZE")
|
||||
|
||||
fs = cv2.FileStorage("params.yml", 0)
|
||||
algorithm = cv2.AKAZE_create()
|
||||
fs = cv.FileStorage("params.yml", 0)
|
||||
algorithm = cv.AKAZE_create()
|
||||
algorithm.read(fs.getNode("AKAZE"))
|
||||
|
||||
self.assertEqual(algorithm.getDescriptorSize(), 1)
|
||||
|
@ -9,7 +9,7 @@ reads distorted images, calculates the calibration and write undistorted images
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -38,10 +38,10 @@ class calibration_test(NewOpenCVTests):
|
||||
continue
|
||||
|
||||
h, w = img.shape[:2]
|
||||
found, corners = cv2.findChessboardCorners(img, pattern_size)
|
||||
found, corners = cv.findChessboardCorners(img, pattern_size)
|
||||
if found:
|
||||
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
|
||||
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
|
||||
|
||||
if not found:
|
||||
continue
|
||||
@ -50,7 +50,7 @@ class calibration_test(NewOpenCVTests):
|
||||
obj_points.append(pattern_points)
|
||||
|
||||
# calculate camera distortion
|
||||
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)
|
||||
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)
|
||||
|
||||
eps = 0.01
|
||||
normCamEps = 10.0
|
||||
@ -64,8 +64,8 @@ class calibration_test(NewOpenCVTests):
|
||||
1.21234330e-03, -1.40825372e-04, 1.54865844e-01]
|
||||
|
||||
self.assertLess(abs(rms - 0.196334638034), eps)
|
||||
self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps)
|
||||
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)
|
||||
self.assertLess(cv.norm(camera_matrix - cameraMatrixTest, cv.NORM_L1), normCamEps)
|
||||
self.assertLess(cv.norm(dist_coefs - distCoeffsTest, cv.NORM_L1), normDistEps)
|
||||
|
||||
|
||||
|
||||
|
@ -21,7 +21,7 @@ if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from tst_scene_render import TestSceneRender
|
||||
|
||||
from tests_common import NewOpenCVTests, intersectionRate
|
||||
@ -53,8 +53,8 @@ class camshift_test(NewOpenCVTests):
|
||||
while True:
|
||||
framesCounter += 1
|
||||
self.frame = self.render.getNextFrame()
|
||||
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
|
||||
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||||
hsv = cv.cvtColor(self.frame, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||||
|
||||
if self.selection:
|
||||
x0, y0, x1, y1 = self.render.getCurrentRect() + 50
|
||||
@ -63,17 +63,17 @@ class camshift_test(NewOpenCVTests):
|
||||
|
||||
hsv_roi = hsv[y0:y1, x0:x1]
|
||||
mask_roi = mask[y0:y1, x0:x1]
|
||||
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||||
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
|
||||
hist = cv.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||||
cv.normalize(hist, hist, 0, 255, cv.NORM_MINMAX)
|
||||
self.hist = hist.reshape(-1)
|
||||
self.selection = False
|
||||
|
||||
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
|
||||
self.selection = None
|
||||
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||||
prob = cv.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||||
prob &= mask
|
||||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
_track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
_track_box, self.track_window = cv.CamShift(prob, self.track_window, term_crit)
|
||||
|
||||
trackingRect = np.array(self.track_window)
|
||||
trackingRect[2] += trackingRect[0]
|
||||
|
@ -7,7 +7,7 @@ Test for disctrete fourier transform (dft)
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
@ -24,26 +24,26 @@ class dft_test(NewOpenCVTests):
|
||||
refDftShift = np.fft.fftshift(refDft)
|
||||
refMagnitide = np.log(1.0 + np.abs(refDftShift))
|
||||
|
||||
testDft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
|
||||
testDft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
|
||||
testDftShift = np.fft.fftshift(testDft)
|
||||
testMagnitude = np.log(1.0 + cv2.magnitude(testDftShift[:,:,0], testDftShift[:,:,1]))
|
||||
testMagnitude = np.log(1.0 + cv.magnitude(testDftShift[:,:,0], testDftShift[:,:,1]))
|
||||
|
||||
refMagnitide = cv2.normalize(refMagnitide, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
testMagnitude = cv2.normalize(testMagnitude, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
refMagnitide = cv.normalize(refMagnitide, 0.0, 1.0, cv.NORM_MINMAX)
|
||||
testMagnitude = cv.normalize(testMagnitude, 0.0, 1.0, cv.NORM_MINMAX)
|
||||
|
||||
self.assertLess(cv2.norm(refMagnitide - testMagnitude), eps)
|
||||
self.assertLess(cv.norm(refMagnitide - testMagnitude), eps)
|
||||
|
||||
#test inverse transform
|
||||
img_back = np.fft.ifft2(refDft)
|
||||
img_back = np.abs(img_back)
|
||||
|
||||
img_backTest = cv2.idft(testDft)
|
||||
img_backTest = cv2.magnitude(img_backTest[:,:,0], img_backTest[:,:,1])
|
||||
img_backTest = cv.idft(testDft)
|
||||
img_backTest = cv.magnitude(img_backTest[:,:,0], img_backTest[:,:,1])
|
||||
|
||||
img_backTest = cv2.normalize(img_backTest, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
img_back = cv2.normalize(img_back, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
img_backTest = cv.normalize(img_backTest, 0.0, 1.0, cv.NORM_MINMAX)
|
||||
img_back = cv.normalize(img_back, 0.0, 1.0, cv.NORM_MINMAX)
|
||||
|
||||
self.assertLess(cv2.norm(img_back - img_backTest), eps)
|
||||
self.assertLess(cv.norm(img_back - img_backTest), eps)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -28,7 +28,7 @@ from __future__ import print_function
|
||||
# built-in modules
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
@ -48,12 +48,12 @@ def split2d(img, cell_size, flatten=True):
|
||||
return cells
|
||||
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
m = cv.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
img = cv.warpAffine(img, M, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR)
|
||||
return img
|
||||
|
||||
class StatModel(object):
|
||||
@ -65,10 +65,10 @@ class StatModel(object):
|
||||
class KNearest(StatModel):
|
||||
def __init__(self, k = 3):
|
||||
self.k = k
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
self.model = cv.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k)
|
||||
@ -76,14 +76,14 @@ class KNearest(StatModel):
|
||||
|
||||
class SVM(StatModel):
|
||||
def __init__(self, C = 1, gamma = 0.5):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
self.model = cv.ml.SVM_create()
|
||||
self.model.setGamma(gamma)
|
||||
self.model.setC(C)
|
||||
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
self.model.setKernel(cv.ml.SVM_RBF)
|
||||
self.model.setType(cv.ml.SVM_C_SVC)
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict(samples)[1].ravel()
|
||||
@ -105,9 +105,9 @@ def preprocess_simple(digits):
|
||||
def preprocess_hog(digits):
|
||||
samples = []
|
||||
for img in digits:
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
|
||||
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
|
||||
mag, ang = cv.cartToPolar(gx, gy)
|
||||
bin_n = 16
|
||||
bin = np.int32(bin_n*ang/(2*np.pi))
|
||||
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
||||
@ -190,8 +190,8 @@ class digits_test(NewOpenCVTests):
|
||||
[ 0, 0, 0, 0, 0, 0, 0, 0, 47, 0],
|
||||
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 45]]
|
||||
|
||||
self.assertLess(cv2.norm(confusionMatrixes[0] - confusionKNN, cv2.NORM_L1), normEps)
|
||||
self.assertLess(cv2.norm(confusionMatrixes[1] - confusionSVM, cv2.NORM_L1), normEps)
|
||||
self.assertLess(cv.norm(confusionMatrixes[0] - confusionKNN, cv.NORM_L1), normEps)
|
||||
self.assertLess(cv.norm(confusionMatrixes[1] - confusionSVM, cv.NORM_L1), normEps)
|
||||
|
||||
self.assertLess(errors[0] - 0.034, eps)
|
||||
self.assertLess(errors[1] - 0.018, eps)
|
||||
|
@ -8,11 +8,11 @@ face detection using haar cascades
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
def detect(img, cascade):
|
||||
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30),
|
||||
flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
flags=cv.CASCADE_SCALE_IMAGE)
|
||||
if len(rects) == 0:
|
||||
return []
|
||||
rects[:,2:] += rects[:,:2]
|
||||
@ -26,8 +26,8 @@ class facedetect_test(NewOpenCVTests):
|
||||
cascade_fn = self.repoPath + '/data/haarcascades/haarcascade_frontalface_alt.xml'
|
||||
nested_fn = self.repoPath + '/data/haarcascades/haarcascade_eye.xml'
|
||||
|
||||
cascade = cv2.CascadeClassifier(cascade_fn)
|
||||
nested = cv2.CascadeClassifier(nested_fn)
|
||||
cascade = cv.CascadeClassifier(cascade_fn)
|
||||
nested = cv.CascadeClassifier(nested_fn)
|
||||
|
||||
samples = ['samples/data/lena.jpg', 'cv/cascadeandhog/images/mona-lisa.png']
|
||||
|
||||
@ -49,8 +49,8 @@ class facedetect_test(NewOpenCVTests):
|
||||
for sample in samples:
|
||||
|
||||
img = self.get_sample( sample)
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (5, 5), 5.1)
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
gray = cv.GaussianBlur(gray, (5, 5), 5.1)
|
||||
|
||||
rects = detect(gray, cascade)
|
||||
faces.append(rects)
|
||||
|
@ -13,7 +13,7 @@ PlaneTracker class in plane_tracker.py
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
@ -28,8 +28,8 @@ def intersectionRate(s1, s2):
|
||||
x1, y1, x2, y2 = s1
|
||||
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
|
||||
|
||||
area, _intersection = cv2.intersectConvexConvex(s1, np.array(s2))
|
||||
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2)))
|
||||
area, _intersection = cv.intersectConvexConvex(s1, np.array(s2))
|
||||
return 2 * area / (cv.contourArea(s1) + cv.contourArea(np.array(s2)))
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -92,8 +92,8 @@ TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
|
||||
|
||||
class PlaneTracker:
|
||||
def __init__(self):
|
||||
self.detector = cv2.AKAZE_create(threshold = 0.003)
|
||||
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
||||
self.detector = cv.AKAZE_create(threshold = 0.003)
|
||||
self.matcher = cv.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
||||
self.targets = []
|
||||
self.frame_points = []
|
||||
|
||||
@ -137,7 +137,7 @@ class PlaneTracker:
|
||||
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
|
||||
p1 = [self.frame_points[m.queryIdx].pt for m in matches]
|
||||
p0, p1 = np.float32((p0, p1))
|
||||
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
|
||||
H, status = cv.findHomography(p0, p1, cv.RANSAC, 3.0)
|
||||
status = status.ravel() != 0
|
||||
if status.sum() < MIN_MATCH_COUNT:
|
||||
continue
|
||||
@ -145,7 +145,7 @@ class PlaneTracker:
|
||||
|
||||
x0, y0, x1, y1 = target.rect
|
||||
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
||||
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
|
||||
quad = cv.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
|
||||
|
||||
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
|
||||
tracked.append(track)
|
||||
|
@ -4,7 +4,7 @@
|
||||
Robust line fitting.
|
||||
==================
|
||||
|
||||
Example of using cv2.fitLine function for fitting line
|
||||
Example of using cv.fitLine function for fitting line
|
||||
to points in presence of outliers.
|
||||
|
||||
Switch through different M-estimator functions and see,
|
||||
@ -19,7 +19,7 @@ import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -53,17 +53,17 @@ class fitline_test(NewOpenCVTests):
|
||||
lines = []
|
||||
|
||||
for name in dist_func_names:
|
||||
func = getattr(cv2, name)
|
||||
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01)
|
||||
func = getattr(cv, name)
|
||||
vx, vy, cx, cy = cv.fitLine(np.float32(points), func, 0, 0.01, 0.01)
|
||||
line = [float(vx), float(vy), float(cx), float(cy)]
|
||||
lines.append(line)
|
||||
|
||||
eps = 0.05
|
||||
|
||||
refVec = (np.float32(p1) - p0) / cv2.norm(np.float32(p1) - p0)
|
||||
refVec = (np.float32(p1) - p0) / cv.norm(np.float32(p1) - p0)
|
||||
|
||||
for i in range(len(lines)):
|
||||
self.assertLessEqual(cv2.norm(refVec - lines[i][0:2], cv2.NORM_L2), eps)
|
||||
self.assertLessEqual(cv.norm(refVec - lines[i][0:2], cv.NORM_L2), eps)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -10,7 +10,7 @@ if PY3:
|
||||
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
def make_gaussians(cluster_n, img_size):
|
||||
points = []
|
||||
@ -38,9 +38,9 @@ class gaussian_mix_test(NewOpenCVTests):
|
||||
|
||||
points, ref_distrs = make_gaussians(cluster_n, img_size)
|
||||
|
||||
em = cv2.ml.EM_create()
|
||||
em = cv.ml.EM_create()
|
||||
em.setClustersNumber(cluster_n)
|
||||
em.setCovarianceMatrixType(cv2.ml.EM_COV_MAT_GENERIC)
|
||||
em.setCovarianceMatrixType(cv.ml.EM_COV_MAT_GENERIC)
|
||||
em.trainEM(points)
|
||||
means = em.getMeans()
|
||||
covs = em.getCovs() # Known bug: https://github.com/opencv/opencv/pull/4232
|
||||
@ -53,8 +53,8 @@ class gaussian_mix_test(NewOpenCVTests):
|
||||
|
||||
for i in range(cluster_n):
|
||||
for j in range(cluster_n):
|
||||
if (cv2.norm(means[i] - ref_distrs[j][0], cv2.NORM_L2) / cv2.norm(ref_distrs[j][0], cv2.NORM_L2) < meanEps and
|
||||
cv2.norm(covs[i] - ref_distrs[j][1], cv2.NORM_L2) / cv2.norm(ref_distrs[j][1], cv2.NORM_L2) < covEps):
|
||||
if (cv.norm(means[i] - ref_distrs[j][0], cv.NORM_L2) / cv.norm(ref_distrs[j][0], cv.NORM_L2) < meanEps and
|
||||
cv.norm(covs[i] - ref_distrs[j][1], cv.NORM_L2) / cv.norm(ref_distrs[j][1], cv.NORM_L2) < covEps):
|
||||
matches_count += 1
|
||||
|
||||
self.assertEqual(matches_count, cluster_n)
|
||||
|
@ -3,7 +3,7 @@
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
@ -15,16 +15,16 @@ class TestGoodFeaturesToTrack_test(NewOpenCVTests):
|
||||
threshes = [ x / 100. for x in range(1,10) ]
|
||||
numPoints = 20000
|
||||
|
||||
results = dict([(t, cv2.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
|
||||
results = dict([(t, cv.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
|
||||
# Check that GoodFeaturesToTrack has not modified input image
|
||||
self.assertTrue(arr.tostring() == original.tostring())
|
||||
# Check for repeatability
|
||||
for i in range(1):
|
||||
results2 = dict([(t, cv2.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
|
||||
results2 = dict([(t, cv.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
|
||||
for t in threshes:
|
||||
self.assertTrue(len(results2[t]) == len(results[t]))
|
||||
for i in range(len(results[t])):
|
||||
self.assertTrue(cv2.norm(results[t][i][0] - results2[t][i][0]) == 0)
|
||||
self.assertTrue(cv.norm(results[t][i][0] - results2[t][i][0]) == 0)
|
||||
|
||||
for t0,t1 in zip(threshes, threshes[1:]):
|
||||
r0 = results[t0]
|
||||
@ -33,7 +33,7 @@ class TestGoodFeaturesToTrack_test(NewOpenCVTests):
|
||||
self.assertTrue(len(r0) > len(r1))
|
||||
# Increasing thresh should monly truncate result list
|
||||
for i in range(len(r1)):
|
||||
self.assertTrue(cv2.norm(r1[i][0] - r0[i][0])==0)
|
||||
self.assertTrue(cv.norm(r1[i][0] - r0[i][0])==0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -9,7 +9,7 @@ Interactive Image Segmentation using GrabCut algorithm.
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import sys
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
@ -26,7 +26,7 @@ class grabcut_test(NewOpenCVTests):
|
||||
|
||||
def scaleMask(self, mask):
|
||||
|
||||
return np.where((mask==cv2.GC_FGD) + (mask==cv2.GC_PR_FGD),255,0).astype('uint8')
|
||||
return np.where((mask==cv.GC_FGD) + (mask==cv.GC_PR_FGD),255,0).astype('uint8')
|
||||
|
||||
def test_grabcut(self):
|
||||
|
||||
@ -42,27 +42,27 @@ class grabcut_test(NewOpenCVTests):
|
||||
mask = np.zeros(img.shape[:2], dtype = np.uint8)
|
||||
bgdModel = np.zeros((1,65),np.float64)
|
||||
fgdModel = np.zeros((1,65),np.float64)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_RECT)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 2, cv2.GC_EVAL)
|
||||
cv.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv.GC_INIT_WITH_RECT)
|
||||
cv.grabCut(img, mask, rect, bgdModel, fgdModel, 2, cv.GC_EVAL)
|
||||
|
||||
if mask_prob is None:
|
||||
mask_prob = mask.copy()
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/mask_probpy.png', mask_prob)
|
||||
cv.imwrite(self.extraTestDataPath + '/cv/grabcut/mask_probpy.png', mask_prob)
|
||||
if exp_mask1 is None:
|
||||
exp_mask1 = self.scaleMask(mask)
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask1py.png', exp_mask1)
|
||||
cv.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask1py.png', exp_mask1)
|
||||
|
||||
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask1), True)
|
||||
|
||||
mask = mask_prob
|
||||
bgdModel = np.zeros((1,65),np.float64)
|
||||
fgdModel = np.zeros((1,65),np.float64)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_MASK)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 1, cv2.GC_EVAL)
|
||||
cv.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv.GC_INIT_WITH_MASK)
|
||||
cv.grabCut(img, mask, rect, bgdModel, fgdModel, 1, cv.GC_EVAL)
|
||||
|
||||
if exp_mask2 is None:
|
||||
exp_mask2 = self.scaleMask(mask)
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask2py.png', exp_mask2)
|
||||
cv.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask2py.png', exp_mask2)
|
||||
|
||||
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask2), True)
|
||||
|
||||
|
@ -1,13 +1,13 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
'''
|
||||
This example illustrates how to use cv2.HoughCircles() function.
|
||||
This example illustrates how to use cv.HoughCircles() function.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import sys
|
||||
from numpy import pi, sin, cos
|
||||
@ -27,10 +27,10 @@ def circleApproximation(circle):
|
||||
|
||||
def convContoursIntersectiponRate(c1, c2):
|
||||
|
||||
s1 = cv2.contourArea(c1)
|
||||
s2 = cv2.contourArea(c2)
|
||||
s1 = cv.contourArea(c1)
|
||||
s2 = cv.contourArea(c2)
|
||||
|
||||
s, _ = cv2.intersectConvexConvex(c1, c2)
|
||||
s, _ = cv.intersectConvexConvex(c1, c2)
|
||||
|
||||
return 2*s/(s1+s2)
|
||||
|
||||
@ -41,10 +41,10 @@ class houghcircles_test(NewOpenCVTests):
|
||||
fn = "samples/data/board.jpg"
|
||||
|
||||
src = self.get_sample(fn, 1)
|
||||
img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
img = cv2.medianBlur(img, 5)
|
||||
img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
|
||||
img = cv.medianBlur(img, 5)
|
||||
|
||||
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
|
||||
circles = cv.HoughCircles(img, cv.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
|
||||
|
||||
testCircles = [[38, 181, 17.6],
|
||||
[99.7, 166, 13.12],
|
||||
|
@ -7,7 +7,7 @@ This example illustrates how to use Hough Transform to find lines
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import sys
|
||||
import math
|
||||
@ -16,9 +16,9 @@ from tests_common import NewOpenCVTests
|
||||
|
||||
def linesDiff(line1, line2):
|
||||
|
||||
norm1 = cv2.norm(line1 - line2, cv2.NORM_L2)
|
||||
norm1 = cv.norm(line1 - line2, cv.NORM_L2)
|
||||
line3 = line1[2:4] + line1[0:2]
|
||||
norm2 = cv2.norm(line3 - line2, cv2.NORM_L2)
|
||||
norm2 = cv.norm(line3 - line2, cv.NORM_L2)
|
||||
|
||||
return min(norm1, norm2)
|
||||
|
||||
@ -29,9 +29,9 @@ class houghlines_test(NewOpenCVTests):
|
||||
fn = "/samples/data/pic1.png"
|
||||
|
||||
src = self.get_sample(fn)
|
||||
dst = cv2.Canny(src, 50, 200)
|
||||
dst = cv.Canny(src, 50, 200)
|
||||
|
||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)[:,0,:]
|
||||
lines = cv.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)[:,0,:]
|
||||
|
||||
eps = 5
|
||||
testLines = [
|
||||
|
@ -8,7 +8,7 @@ K-means clusterization test
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from numpy import random
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
@ -58,8 +58,8 @@ class kmeans_test(NewOpenCVTests):
|
||||
|
||||
points, _, clusterSizes = make_gaussians(cluster_n, img_size)
|
||||
|
||||
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
|
||||
_ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
|
||||
term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1)
|
||||
_ret, labels, centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0)
|
||||
|
||||
self.assertEqual(len(centers), cluster_n)
|
||||
|
||||
|
@ -2,7 +2,7 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -11,13 +11,13 @@ class Hackathon244Tests(NewOpenCVTests):
|
||||
def test_int_array(self):
|
||||
a = np.array([-1, 2, -3, 4, -5])
|
||||
absa0 = np.abs(a)
|
||||
self.assertTrue(cv2.norm(a, cv2.NORM_L1) == 15)
|
||||
absa1 = cv2.absdiff(a, 0)
|
||||
self.assertEqual(cv2.norm(absa1, absa0, cv2.NORM_INF), 0)
|
||||
self.assertTrue(cv.norm(a, cv.NORM_L1) == 15)
|
||||
absa1 = cv.absdiff(a, 0)
|
||||
self.assertEqual(cv.norm(absa1, absa0, cv.NORM_INF), 0)
|
||||
|
||||
def test_imencode(self):
|
||||
a = np.zeros((480, 640), dtype=np.uint8)
|
||||
flag, ajpg = cv2.imencode("img_q90.jpg", a, [cv2.IMWRITE_JPEG_QUALITY, 90])
|
||||
flag, ajpg = cv.imencode("img_q90.jpg", a, [cv.IMWRITE_JPEG_QUALITY, 90])
|
||||
self.assertEqual(flag, True)
|
||||
self.assertEqual(ajpg.dtype, np.uint8)
|
||||
self.assertGreater(ajpg.shape[0], 1)
|
||||
@ -25,8 +25,8 @@ class Hackathon244Tests(NewOpenCVTests):
|
||||
|
||||
def test_projectPoints(self):
|
||||
objpt = np.float64([[1,2,3]])
|
||||
imgpt0, jac0 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([]))
|
||||
imgpt1, jac1 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None)
|
||||
imgpt0, jac0 = cv.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([]))
|
||||
imgpt1, jac1 = cv.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None)
|
||||
self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2))
|
||||
self.assertEqual(imgpt1.shape, imgpt0.shape)
|
||||
self.assertEqual(jac0.shape, jac1.shape)
|
||||
@ -37,17 +37,17 @@ class Hackathon244Tests(NewOpenCVTests):
|
||||
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
|
||||
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
|
||||
pattern_points *= 10
|
||||
(retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points)
|
||||
(retval, out, inliers) = cv.estimateAffine3D(pattern_points, pattern_points)
|
||||
self.assertEqual(retval, 1)
|
||||
if cv2.norm(out[2,:]) < 1e-3:
|
||||
if cv.norm(out[2,:]) < 1e-3:
|
||||
out[2,2]=1
|
||||
self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
|
||||
self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1])
|
||||
self.assertLess(cv.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
|
||||
self.assertEqual(cv.countNonZero(inliers), pattern_size[0]*pattern_size[1])
|
||||
|
||||
def test_fast(self):
|
||||
fd = cv2.FastFeatureDetector_create(30, True)
|
||||
fd = cv.FastFeatureDetector_create(30, True)
|
||||
img = self.get_sample("samples/data/right02.jpg", 0)
|
||||
img = cv2.medianBlur(img, 3)
|
||||
img = cv.medianBlur(img, 3)
|
||||
keypoints = fd.detect(img)
|
||||
self.assertTrue(600 <= len(keypoints) <= 700)
|
||||
for kpt in keypoints:
|
||||
@ -71,9 +71,9 @@ class Hackathon244Tests(NewOpenCVTests):
|
||||
np.random.seed(244)
|
||||
a = np.random.randn(npt,2).astype('float32')*50 + 150
|
||||
|
||||
be = cv2.fitEllipse(a)
|
||||
br = cv2.minAreaRect(a)
|
||||
mc, mr = cv2.minEnclosingCircle(a)
|
||||
be = cv.fitEllipse(a)
|
||||
br = cv.minAreaRect(a)
|
||||
mc, mr = cv.minEnclosingCircle(a)
|
||||
|
||||
be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742)
|
||||
br0 = ((161.2974090576172, 154.41793823242188), (199.2301483154297, 207.7177734375), -9.164555549621582)
|
||||
|
@ -24,7 +24,7 @@ and the remaining 10000 - to test the classifier.
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
def load_base(fn):
|
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
||||
@ -56,12 +56,12 @@ class LetterStatModel(object):
|
||||
|
||||
class RTrees(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.RTrees_create()
|
||||
self.model = cv.ml.RTrees_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
#sample_n, var_n = samples.shape
|
||||
self.model.setMaxDepth(20)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
_ret, resp = self.model.predict(samples)
|
||||
@ -70,10 +70,10 @@ class RTrees(LetterStatModel):
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
self.model = cv.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, k = 10)
|
||||
@ -82,17 +82,17 @@ class KNearest(LetterStatModel):
|
||||
|
||||
class Boost(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.Boost_create()
|
||||
self.model = cv.ml.Boost_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
_sample_n, var_n = samples.shape
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
var_types = np.array([cv.ml.VAR_NUMERICAL] * var_n + [cv.ml.VAR_CATEGORICAL, cv.ml.VAR_CATEGORICAL], np.uint8)
|
||||
|
||||
self.model.setWeakCount(15)
|
||||
self.model.setMaxDepth(10)
|
||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
self.model.train(cv.ml.TrainData_create(new_samples, cv.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
@ -103,14 +103,14 @@ class Boost(LetterStatModel):
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
self.model = cv.ml.SVM_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
self.model.setType(cv.ml.SVM_C_SVC)
|
||||
self.model.setC(1)
|
||||
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||
self.model.setKernel(cv.ml.SVM_RBF)
|
||||
self.model.setGamma(.1)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
_ret, resp = self.model.predict(samples)
|
||||
@ -119,7 +119,7 @@ class SVM(LetterStatModel):
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.ANN_MLP_create()
|
||||
self.model = cv.ml.ANN_MLP_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
_sample_n, var_n = samples.shape
|
||||
@ -127,13 +127,13 @@ class MLP(LetterStatModel):
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
|
||||
self.model.setLayerSizes(layer_sizes)
|
||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setTrainMethod(cv.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setBackpropMomentumScale(0)
|
||||
self.model.setBackpropWeightScale(0.001)
|
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||
self.model.setTermCriteria((cv.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||
self.model.setActivationFunction(cv.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
|
||||
def predict(self, samples):
|
||||
_ret, resp = self.model.predict(samples)
|
||||
|
@ -11,7 +11,7 @@ between frames. Finds homography between reference and current views.
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
#local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
@ -19,7 +19,7 @@ from tests_common import NewOpenCVTests, isPointInRect
|
||||
|
||||
lk_params = dict( winSize = (19, 19),
|
||||
maxLevel = 2,
|
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
feature_params = dict( maxCorners = 1000,
|
||||
qualityLevel = 0.01,
|
||||
@ -27,8 +27,8 @@ feature_params = dict( maxCorners = 1000,
|
||||
blockSize = 19 )
|
||||
|
||||
def checkedTrace(img0, img1, p0, back_threshold = 1.0):
|
||||
p1, _st, _err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, _st, _err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
status = d < back_threshold
|
||||
return p1, status
|
||||
@ -48,9 +48,9 @@ class lk_homography_test(NewOpenCVTests):
|
||||
self.get_sample('samples/data/box.png'), noise = 0.1, speed = 1.0)
|
||||
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
self.frame0 = frame.copy()
|
||||
self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
|
||||
isForegroundHomographyFound = False
|
||||
|
||||
@ -66,7 +66,7 @@ class lk_homography_test(NewOpenCVTests):
|
||||
while self.framesCounter < 200:
|
||||
self.framesCounter += 1
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
if self.p0 is not None:
|
||||
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
|
||||
|
||||
@ -77,7 +77,7 @@ class lk_homography_test(NewOpenCVTests):
|
||||
if len(self.p0) < 4:
|
||||
self.p0 = None
|
||||
continue
|
||||
_H, status = cv2.findHomography(self.p0, self.p1, cv2.RANSAC, 5.0)
|
||||
_H, status = cv.findHomography(self.p0, self.p1, cv.RANSAC, 5.0)
|
||||
|
||||
goodPointsInRect = 0
|
||||
goodPointsOutsideRect = 0
|
||||
@ -91,7 +91,7 @@ class lk_homography_test(NewOpenCVTests):
|
||||
isForegroundHomographyFound = True
|
||||
self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6)
|
||||
else:
|
||||
self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
|
||||
self.assertEqual(isForegroundHomographyFound, True)
|
||||
|
||||
|
@ -13,7 +13,7 @@ between frames.
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
#local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
@ -21,7 +21,7 @@ from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
|
||||
|
||||
lk_params = dict( winSize = (15, 15),
|
||||
maxLevel = 2,
|
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
feature_params = dict( maxCorners = 500,
|
||||
qualityLevel = 0.3,
|
||||
@ -32,7 +32,7 @@ def getRectFromPoints(points):
|
||||
|
||||
distances = []
|
||||
for point in points:
|
||||
distances.append(cv2.norm(point, cv2.NORM_L2))
|
||||
distances.append(cv.norm(point, cv.NORM_L2))
|
||||
|
||||
x0, y0 = points[np.argmin(distances)]
|
||||
x1, y1 = points[np.argmax(distances)]
|
||||
@ -58,13 +58,13 @@ class lk_track_test(NewOpenCVTests):
|
||||
|
||||
while True:
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
|
||||
if len(self.tracks) > 0:
|
||||
img0, img1 = self.prev_gray, frame_gray
|
||||
p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
|
||||
p1, _st, _err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, _st, _err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
good = d < 1
|
||||
new_tracks = []
|
||||
@ -98,8 +98,8 @@ class lk_track_test(NewOpenCVTests):
|
||||
mask = np.zeros_like(frame_gray)
|
||||
mask[:] = 255
|
||||
for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
|
||||
cv2.circle(mask, (x, y), 5, 0, -1)
|
||||
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
|
||||
cv.circle(mask, (x, y), 5, 0, -1)
|
||||
p = cv.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
|
||||
if p is not None:
|
||||
for x, y in np.float32(p).reshape(-1, 2):
|
||||
self.tracks.append([[(x, y), self.frame_idx]])
|
||||
|
@ -2,18 +2,18 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class Bindings(NewOpenCVTests):
|
||||
|
||||
def test_inheritance(self):
|
||||
bm = cv2.StereoBM_create()
|
||||
bm = cv.StereoBM_create()
|
||||
bm.getPreFilterCap() # from StereoBM
|
||||
bm.getBlockSize() # from SteroMatcher
|
||||
|
||||
boost = cv2.ml.Boost_create()
|
||||
boost = cv.ml.Boost_create()
|
||||
boost.getBoostType() # from ml::Boost
|
||||
boost.getMaxDepth() # from ml::DTrees
|
||||
boost.isClassifier() # from ml::StatModel
|
||||
|
@ -10,7 +10,7 @@ import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -43,8 +43,8 @@ class morphology_test(NewOpenCVTests):
|
||||
str_name = 'MORPH_' + cur_str_mode.upper()
|
||||
oper_name = 'MORPH_' + op.upper()
|
||||
|
||||
st = cv2.getStructuringElement(getattr(cv2, str_name), (sz, sz))
|
||||
return cv2.morphologyEx(img, getattr(cv2, oper_name), st, iterations=iters)
|
||||
st = cv.getStructuringElement(getattr(cv, str_name), (sz, sz))
|
||||
return cv.morphologyEx(img, getattr(cv, oper_name), st, iterations=iters)
|
||||
|
||||
for mode in modes:
|
||||
res = update(mode)
|
||||
|
@ -7,7 +7,7 @@ MSER detector test
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -33,7 +33,7 @@ class mser_test(NewOpenCVTests):
|
||||
]
|
||||
thresharr = [ 0, 70, 120, 180, 255 ]
|
||||
kDelta = 5
|
||||
mserExtractor = cv2.MSER_create()
|
||||
mserExtractor = cv.MSER_create()
|
||||
mserExtractor.setDelta(kDelta)
|
||||
np.random.seed(10)
|
||||
|
||||
@ -53,11 +53,11 @@ class mser_test(NewOpenCVTests):
|
||||
mserExtractor.setMinArea(kMinArea)
|
||||
mserExtractor.setMaxArea(kMaxArea)
|
||||
if invert:
|
||||
cv2.bitwise_not(src, src)
|
||||
cv.bitwise_not(src, src)
|
||||
if binarize:
|
||||
_, src = cv2.threshold(src, thresh, 255, cv2.THRESH_BINARY)
|
||||
_, src = cv.threshold(src, thresh, 255, cv.THRESH_BINARY)
|
||||
if blur:
|
||||
src = cv2.GaussianBlur(src, (5, 5), 1.5, 1.5)
|
||||
src = cv.GaussianBlur(src, (5, 5), 1.5, 1.5)
|
||||
minRegs = 7 if use_big_image else 2
|
||||
maxRegs = 1000 if use_big_image else 20
|
||||
if binarize and (thresh == 0 or thresh == 255):
|
||||
|
@ -8,7 +8,7 @@ example to detect upright people in images using HOG features
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
|
||||
def inside(r, q):
|
||||
@ -21,8 +21,8 @@ from tests_common import NewOpenCVTests, intersectionRate
|
||||
class peopledetect_test(NewOpenCVTests):
|
||||
def test_peopledetect(self):
|
||||
|
||||
hog = cv2.HOGDescriptor()
|
||||
hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() )
|
||||
hog = cv.HOGDescriptor()
|
||||
hog.setSVMDetector( cv.HOGDescriptor_getDefaultPeopleDetector() )
|
||||
|
||||
dirPath = 'samples/data/'
|
||||
samples = ['basketball1.png', 'basketball2.png']
|
||||
|
@ -1,5 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -7,14 +7,14 @@ class shape_test(NewOpenCVTests):
|
||||
|
||||
def test_computeDistance(self):
|
||||
|
||||
a = self.get_sample('samples/data/shape_sample/1.png', cv2.IMREAD_GRAYSCALE)
|
||||
b = self.get_sample('samples/data/shape_sample/2.png', cv2.IMREAD_GRAYSCALE)
|
||||
a = self.get_sample('samples/data/shape_sample/1.png', cv.IMREAD_GRAYSCALE)
|
||||
b = self.get_sample('samples/data/shape_sample/2.png', cv.IMREAD_GRAYSCALE)
|
||||
|
||||
_, ca, _ = cv2.findContours(a, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
|
||||
_, cb, _ = cv2.findContours(b, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_KCOS)
|
||||
_, ca, _ = cv.findContours(a, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS)
|
||||
_, cb, _ = cv.findContours(b, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS)
|
||||
|
||||
hd = cv2.createHausdorffDistanceExtractor()
|
||||
sd = cv2.createShapeContextDistanceExtractor()
|
||||
hd = cv.createHausdorffDistanceExtractor()
|
||||
sd = cv.createShapeContextDistanceExtractor()
|
||||
|
||||
d1 = hd.computeDistance(ca[0], cb[0])
|
||||
d2 = sd.computeDistance(ca[0], cb[0])
|
||||
|
@ -14,7 +14,7 @@ if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
|
||||
def angle_cos(p0, p1, p2):
|
||||
@ -22,20 +22,20 @@ def angle_cos(p0, p1, p2):
|
||||
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
|
||||
|
||||
def find_squares(img):
|
||||
img = cv2.GaussianBlur(img, (5, 5), 0)
|
||||
img = cv.GaussianBlur(img, (5, 5), 0)
|
||||
squares = []
|
||||
for gray in cv2.split(img):
|
||||
for gray in cv.split(img):
|
||||
for thrs in xrange(0, 255, 26):
|
||||
if thrs == 0:
|
||||
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
|
||||
bin = cv2.dilate(bin, None)
|
||||
bin = cv.Canny(gray, 0, 50, apertureSize=5)
|
||||
bin = cv.dilate(bin, None)
|
||||
else:
|
||||
_retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
|
||||
bin, contours, _hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
||||
_retval, bin = cv.threshold(gray, thrs, 255, cv.THRESH_BINARY)
|
||||
bin, contours, _hierarchy = cv.findContours(bin, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
|
||||
for cnt in contours:
|
||||
cnt_len = cv2.arcLength(cnt, True)
|
||||
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
|
||||
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
|
||||
cnt_len = cv.arcLength(cnt, True)
|
||||
cnt = cv.approxPolyDP(cnt, 0.02*cnt_len, True)
|
||||
if len(cnt) == 4 and cv.contourArea(cnt) > 1000 and cv.isContourConvex(cnt):
|
||||
cnt = cnt.reshape(-1, 2)
|
||||
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
|
||||
if max_cos < 0.1 and filterSquares(squares, cnt):
|
||||
@ -44,8 +44,8 @@ def find_squares(img):
|
||||
return squares
|
||||
|
||||
def intersectionRate(s1, s2):
|
||||
area, _intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2))
|
||||
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2)))
|
||||
area, _intersection = cv.intersectConvexConvex(np.array(s1), np.array(s2))
|
||||
return 2 * area / (cv.contourArea(np.array(s1)) + cv.contourArea(np.array(s2)))
|
||||
|
||||
def filterSquares(squares, square):
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -10,11 +10,11 @@ class stitching_test(NewOpenCVTests):
|
||||
img1 = self.get_sample('stitching/a1.png')
|
||||
img2 = self.get_sample('stitching/a2.png')
|
||||
|
||||
stitcher = cv2.createStitcher(False)
|
||||
stitcher = cv.createStitcher(False)
|
||||
(_result, pano) = stitcher.stitch((img1, img2))
|
||||
|
||||
#cv2.imshow("pano", pano)
|
||||
#cv2.waitKey()
|
||||
#cv.imshow("pano", pano)
|
||||
#cv.waitKey()
|
||||
|
||||
self.assertAlmostEqual(pano.shape[0], 685, delta=100, msg="rows: %r" % list(pano.shape))
|
||||
self.assertAlmostEqual(pano.shape[1], 1025, delta=100, msg="cols: %r" % list(pano.shape))
|
||||
|
@ -3,7 +3,7 @@
|
||||
'''
|
||||
Texture flow direction estimation.
|
||||
|
||||
Sample shows how cv2.cornerEigenValsAndVecs function can be used
|
||||
Sample shows how cv.cornerEigenValsAndVecs function can be used
|
||||
to estimate image texture flow direction.
|
||||
'''
|
||||
|
||||
@ -11,7 +11,7 @@ to estimate image texture flow direction.
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import sys
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
@ -23,10 +23,10 @@ class texture_flow_test(NewOpenCVTests):
|
||||
|
||||
img = self.get_sample('samples/data/chessboard.png')
|
||||
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
h, w = img.shape[:2]
|
||||
|
||||
eigen = cv2.cornerEigenValsAndVecs(gray, 5, 3)
|
||||
eigen = cv.cornerEigenValsAndVecs(gray, 5, 3)
|
||||
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
|
||||
flow = eigen[:,:,2]
|
||||
|
||||
@ -40,8 +40,8 @@ class texture_flow_test(NewOpenCVTests):
|
||||
textureVectors.append(np.int32(flow[y, x]*d))
|
||||
|
||||
for i in range(len(textureVectors)):
|
||||
self.assertTrue(cv2.norm(textureVectors[i], cv2.NORM_L2) < eps
|
||||
or abs(cv2.norm(textureVectors[i], cv2.NORM_L2) - d) < eps)
|
||||
self.assertTrue(cv.norm(textureVectors[i], cv.NORM_L2) < eps
|
||||
or abs(cv.norm(textureVectors[i], cv.NORM_L2) - d) < eps)
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
|
@ -2,7 +2,7 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -11,39 +11,39 @@ class UMat(NewOpenCVTests):
|
||||
def test_umat_construct(self):
|
||||
data = np.random.random([512, 512])
|
||||
# UMat constructors
|
||||
data_um = cv2.UMat(data) # from ndarray
|
||||
data_sub_um = cv2.UMat(data_um, [128, 256], [128, 256]) # from UMat
|
||||
data_dst_um = cv2.UMat(128, 128, cv2.CV_64F) # from size/type
|
||||
data_um = cv.UMat(data) # from ndarray
|
||||
data_sub_um = cv.UMat(data_um, [128, 256], [128, 256]) # from UMat
|
||||
data_dst_um = cv.UMat(128, 128, cv.CV_64F) # from size/type
|
||||
# test continuous and submatrix flags
|
||||
assert data_um.isContinuous() and not data_um.isSubmatrix()
|
||||
assert not data_sub_um.isContinuous() and data_sub_um.isSubmatrix()
|
||||
# test operation on submatrix
|
||||
cv2.multiply(data_sub_um, 2., dst=data_dst_um)
|
||||
cv.multiply(data_sub_um, 2., dst=data_dst_um)
|
||||
assert np.allclose(2. * data[128:256, 128:256], data_dst_um.get())
|
||||
|
||||
def test_umat_handle(self):
|
||||
a_um = cv2.UMat(256, 256, cv2.CV_32F)
|
||||
_ctx_handle = cv2.UMat.context() # obtain context handle
|
||||
_queue_handle = cv2.UMat.queue() # obtain queue handle
|
||||
_a_handle = a_um.handle(cv2.ACCESS_READ) # obtain buffer handle
|
||||
a_um = cv.UMat(256, 256, cv.CV_32F)
|
||||
_ctx_handle = cv.UMat.context() # obtain context handle
|
||||
_queue_handle = cv.UMat.queue() # obtain queue handle
|
||||
_a_handle = a_um.handle(cv.ACCESS_READ) # obtain buffer handle
|
||||
_offset = a_um.offset # obtain buffer offset
|
||||
|
||||
def test_umat_matching(self):
|
||||
img1 = self.get_sample("samples/data/right01.jpg")
|
||||
img2 = self.get_sample("samples/data/right02.jpg")
|
||||
|
||||
orb = cv2.ORB_create()
|
||||
orb = cv.ORB_create()
|
||||
|
||||
img1, img2 = cv2.UMat(img1), cv2.UMat(img2)
|
||||
img1, img2 = cv.UMat(img1), cv.UMat(img2)
|
||||
ps1, descs_umat1 = orb.detectAndCompute(img1, None)
|
||||
ps2, descs_umat2 = orb.detectAndCompute(img2, None)
|
||||
|
||||
self.assertIsInstance(descs_umat1, cv2.UMat)
|
||||
self.assertIsInstance(descs_umat2, cv2.UMat)
|
||||
self.assertIsInstance(descs_umat1, cv.UMat)
|
||||
self.assertIsInstance(descs_umat2, cv.UMat)
|
||||
self.assertGreater(len(ps1), 0)
|
||||
self.assertGreater(len(ps2), 0)
|
||||
|
||||
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
||||
bf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)
|
||||
|
||||
res_umats = bf.match(descs_umat1, descs_umat2)
|
||||
res = bf.match(descs_umat1.get(), descs_umat2.get())
|
||||
@ -52,8 +52,8 @@ class UMat(NewOpenCVTests):
|
||||
self.assertEqual(len(res_umats), len(res))
|
||||
|
||||
def test_umat_optical_flow(self):
|
||||
img1 = self.get_sample("samples/data/right01.jpg", cv2.IMREAD_GRAYSCALE)
|
||||
img2 = self.get_sample("samples/data/right02.jpg", cv2.IMREAD_GRAYSCALE)
|
||||
img1 = self.get_sample("samples/data/right01.jpg", cv.IMREAD_GRAYSCALE)
|
||||
img2 = self.get_sample("samples/data/right02.jpg", cv.IMREAD_GRAYSCALE)
|
||||
# Note, that if you want to see performance boost by OCL implementation - you need enough data
|
||||
# For example you can increase maxCorners param to 10000 and increase img1 and img2 in such way:
|
||||
# img = np.hstack([np.vstack([img] * 6)] * 6)
|
||||
@ -63,19 +63,19 @@ class UMat(NewOpenCVTests):
|
||||
minDistance=7,
|
||||
blockSize=7)
|
||||
|
||||
p0 = cv2.goodFeaturesToTrack(img1, mask=None, **feature_params)
|
||||
p0_umat = cv2.goodFeaturesToTrack(cv2.UMat(img1), mask=None, **feature_params)
|
||||
p0 = cv.goodFeaturesToTrack(img1, mask=None, **feature_params)
|
||||
p0_umat = cv.goodFeaturesToTrack(cv.UMat(img1), mask=None, **feature_params)
|
||||
self.assertEqual(p0_umat.get().shape, p0.shape)
|
||||
|
||||
p0 = np.array(sorted(p0, key=lambda p: tuple(p[0])))
|
||||
p0_umat = cv2.UMat(np.array(sorted(p0_umat.get(), key=lambda p: tuple(p[0]))))
|
||||
p0_umat = cv.UMat(np.array(sorted(p0_umat.get(), key=lambda p: tuple(p[0]))))
|
||||
self.assertTrue(np.allclose(p0_umat.get(), p0))
|
||||
|
||||
_p1_mask_err = cv2.calcOpticalFlowPyrLK(img1, img2, p0, None)
|
||||
_p1_mask_err = cv.calcOpticalFlowPyrLK(img1, img2, p0, None)
|
||||
|
||||
_p1_mask_err_umat0 = map(cv2.UMat.get, cv2.calcOpticalFlowPyrLK(img1, img2, p0_umat, None))
|
||||
_p1_mask_err_umat1 = map(cv2.UMat.get, cv2.calcOpticalFlowPyrLK(cv2.UMat(img1), img2, p0_umat, None))
|
||||
_p1_mask_err_umat2 = map(cv2.UMat.get, cv2.calcOpticalFlowPyrLK(img1, cv2.UMat(img2), p0_umat, None))
|
||||
_p1_mask_err_umat0 = map(cv.UMat.get, cv.calcOpticalFlowPyrLK(img1, img2, p0_umat, None))
|
||||
_p1_mask_err_umat1 = map(cv.UMat.get, cv.calcOpticalFlowPyrLK(cv.UMat(img1), img2, p0_umat, None))
|
||||
_p1_mask_err_umat2 = map(cv.UMat.get, cv.calcOpticalFlowPyrLK(img1, cv.UMat(img2), p0_umat, None))
|
||||
|
||||
# # results of OCL optical flow differs from CPU implementation, so result can not be easily compared
|
||||
# for p1_mask_err_umat in [p1_mask_err_umat0, p1_mask_err_umat1, p1_mask_err_umat2]:
|
||||
|
@ -8,7 +8,7 @@ Watershed segmentation test
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
@ -23,14 +23,14 @@ class watershed_test(NewOpenCVTests):
|
||||
self.assertEqual(0, 1, 'Missing test data')
|
||||
|
||||
colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122
|
||||
cv2.watershed(img, np.int32(markers))
|
||||
cv.watershed(img, np.int32(markers))
|
||||
segments = colors[np.maximum(markers, 0)]
|
||||
|
||||
if refSegments is None:
|
||||
refSegments = segments.copy()
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)
|
||||
cv.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)
|
||||
|
||||
self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)
|
||||
self.assertLess(cv.norm(segments - refSegments, cv.NORM_L1) / 255.0, 50)
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
||||
|
@ -10,7 +10,7 @@ import random
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# Python 3 moved urlopen to urllib.requests
|
||||
try:
|
||||
@ -26,7 +26,7 @@ class NewOpenCVTests(unittest.TestCase):
|
||||
# github repository url
|
||||
repoUrl = 'https://raw.github.com/opencv/opencv/master'
|
||||
|
||||
def get_sample(self, filename, iscolor = cv2.IMREAD_COLOR):
|
||||
def get_sample(self, filename, iscolor = cv.IMREAD_COLOR):
|
||||
if not filename in self.image_cache:
|
||||
filedata = None
|
||||
if NewOpenCVTests.repoPath is not None:
|
||||
@ -41,11 +41,11 @@ class NewOpenCVTests(unittest.TestCase):
|
||||
filedata = f.read()
|
||||
if filedata is None:
|
||||
return None#filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
|
||||
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
|
||||
self.image_cache[filename] = cv.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
|
||||
return self.image_cache[filename]
|
||||
|
||||
def setUp(self):
|
||||
cv2.setRNGSeed(10)
|
||||
cv.setRNGSeed(10)
|
||||
self.image_cache = {}
|
||||
|
||||
def hashimg(self, im):
|
||||
@ -73,7 +73,7 @@ class NewOpenCVTests(unittest.TestCase):
|
||||
parser.add_argument('--data', help='<not used> use data files from local folder (path to folder), '
|
||||
'if not set, data files will be downloaded from docs.opencv.org')
|
||||
args, other = parser.parse_known_args()
|
||||
print("Testing OpenCV", cv2.__version__)
|
||||
print("Testing OpenCV", cv.__version__)
|
||||
print("Local repo path:", args.repo)
|
||||
NewOpenCVTests.repoPath = args.repo
|
||||
try:
|
||||
@ -93,8 +93,8 @@ def intersectionRate(s1, s2):
|
||||
x1, y1, x2, y2 = s2
|
||||
s2 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
|
||||
|
||||
area, _intersection = cv2.intersectConvexConvex(s1, s2)
|
||||
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(s2))
|
||||
area, _intersection = cv.intersectConvexConvex(s1, s2)
|
||||
return 2 * area / (cv.contourArea(s1) + cv.contourArea(s2))
|
||||
|
||||
def isPointInRect(p, rect):
|
||||
if rect[0] <= p[0] and rect[1] <=p[1] and p[0] <= rect[2] and p[1] <= rect[3]:
|
||||
|
@ -7,7 +7,7 @@ from __future__ import print_function
|
||||
import numpy as np
|
||||
from numpy import pi, sin, cos
|
||||
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
defaultSize = 512
|
||||
|
||||
@ -88,14 +88,14 @@ class TestSceneRender():
|
||||
self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3))
|
||||
if self.deformation:
|
||||
self.currentRect[1:3] += int(self.h/20*cos(self.time))
|
||||
cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255))
|
||||
cv.fillConvexPoly(img, self.currentRect, (0, 0, 255))
|
||||
|
||||
self.time += self.timeStep
|
||||
|
||||
if self.noise:
|
||||
noise = np.zeros(self.sceneBg.shape, np.int8)
|
||||
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
|
||||
img = cv2.add(img, noise, dtype=cv2.CV_8UC3)
|
||||
cv.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
|
||||
img = cv.add(img, noise, dtype=cv.CV_8UC3)
|
||||
return img
|
||||
|
||||
def resetTime(self):
|
||||
@ -104,16 +104,16 @@ class TestSceneRender():
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
backGr = cv2.imread('../../../samples/data/lena.jpg')
|
||||
backGr = cv.imread('../../../samples/data/lena.jpg')
|
||||
|
||||
render = TestSceneRender(backGr, noise = 0.5)
|
||||
|
||||
while True:
|
||||
|
||||
img = render.getNextFrame()
|
||||
cv2.imshow('img', img)
|
||||
cv.imshow('img', img)
|
||||
|
||||
ch = cv2.waitKey(3)
|
||||
ch = cv.waitKey(3)
|
||||
if ch == 27:
|
||||
break
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -1,6 +1,6 @@
|
||||
from __future__ import print_function
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
from cv2 import dnn
|
||||
import timeit
|
||||
|
||||
@ -11,7 +11,7 @@ def get_class_list():
|
||||
with open('synset_words.txt', 'rt') as f:
|
||||
return [x[x.find(" ") + 1:] for x in f]
|
||||
|
||||
blob = dnn.blobFromImage(cv2.imread('space_shuttle.jpg'), 1, (224, 224), (104, 117, 123), False)
|
||||
blob = dnn.blobFromImage(cv.imread('space_shuttle.jpg'), 1, (224, 224), (104, 117, 123), False)
|
||||
print("Input:", blob.shape, blob.dtype)
|
||||
|
||||
net = dnn.readNetFromCaffe('bvlc_googlenet.prototxt', 'bvlc_googlenet.caffemodel')
|
||||
|
@ -8,11 +8,11 @@ Utility for measuring python opencv API coverage by samples.
|
||||
from __future__ import print_function
|
||||
|
||||
from glob import glob
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
import re
|
||||
|
||||
if __name__ == '__main__':
|
||||
cv2_callable = set(['cv2.'+name for name in dir(cv2) if callable( getattr(cv2, name) )])
|
||||
cv2_callable = set(['cv.'+name for name in dir(cv) if callable( getattr(cv, name) )])
|
||||
|
||||
found = set()
|
||||
for fn in glob('*.py'):
|
||||
@ -26,4 +26,4 @@ if __name__ == '__main__':
|
||||
f.write('\n'.join(sorted(cv2_unused)))
|
||||
|
||||
r = 1.0 * len(cv2_used) / len(cv2_callable)
|
||||
print('\ncv2 api coverage: %d / %d (%.1f%%)' % ( len(cv2_used), len(cv2_callable), r*100 ))
|
||||
print('\ncv api coverage: %d / %d (%.1f%%)' % ( len(cv2_used), len(cv2_callable), r*100 ))
|
||||
|
@ -23,7 +23,7 @@ USAGE
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# built-in modules
|
||||
import itertools as it
|
||||
@ -51,18 +51,18 @@ def affine_skew(tilt, phi, img, mask=None):
|
||||
A = np.float32([[c,-s], [ s, c]])
|
||||
corners = [[0, 0], [w, 0], [w, h], [0, h]]
|
||||
tcorners = np.int32( np.dot(corners, A.T) )
|
||||
x, y, w, h = cv2.boundingRect(tcorners.reshape(1,-1,2))
|
||||
x, y, w, h = cv.boundingRect(tcorners.reshape(1,-1,2))
|
||||
A = np.hstack([A, [[-x], [-y]]])
|
||||
img = cv2.warpAffine(img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE)
|
||||
img = cv.warpAffine(img, A, (w, h), flags=cv.INTER_LINEAR, borderMode=cv.BORDER_REPLICATE)
|
||||
if tilt != 1.0:
|
||||
s = 0.8*np.sqrt(tilt*tilt-1)
|
||||
img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
|
||||
img = cv2.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv2.INTER_NEAREST)
|
||||
img = cv.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
|
||||
img = cv.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv.INTER_NEAREST)
|
||||
A[0] /= tilt
|
||||
if phi != 0.0 or tilt != 1.0:
|
||||
h, w = img.shape[:2]
|
||||
mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST)
|
||||
Ai = cv2.invertAffineTransform(A)
|
||||
mask = cv.warpAffine(mask, A, (w, h), flags=cv.INTER_NEAREST)
|
||||
Ai = cv.invertAffineTransform(A)
|
||||
return img, mask, Ai
|
||||
|
||||
|
||||
@ -119,8 +119,8 @@ if __name__ == '__main__':
|
||||
fn1 = '../data/aero1.jpg'
|
||||
fn2 = '../data/aero3.jpg'
|
||||
|
||||
img1 = cv2.imread(fn1, 0)
|
||||
img2 = cv2.imread(fn2, 0)
|
||||
img1 = cv.imread(fn1, 0)
|
||||
img2 = cv.imread(fn2, 0)
|
||||
detector, matcher = init_feature(feature_name)
|
||||
|
||||
if img1 is None:
|
||||
@ -137,7 +137,7 @@ if __name__ == '__main__':
|
||||
|
||||
print('using', feature_name)
|
||||
|
||||
pool=ThreadPool(processes = cv2.getNumberOfCPUs())
|
||||
pool=ThreadPool(processes = cv.getNumberOfCPUs())
|
||||
kp1, desc1 = affine_detect(detector, img1, pool=pool)
|
||||
kp2, desc2 = affine_detect(detector, img2, pool=pool)
|
||||
print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))
|
||||
@ -147,7 +147,7 @@ if __name__ == '__main__':
|
||||
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
|
||||
p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
|
||||
if len(p1) >= 4:
|
||||
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 5.0)
|
||||
H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0)
|
||||
print('%d / %d inliers/matched' % (np.sum(status), len(status)))
|
||||
# do not draw outliers (there will be a lot of them)
|
||||
kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
|
||||
@ -159,5 +159,5 @@ if __name__ == '__main__':
|
||||
|
||||
|
||||
match_and_draw('affine find_obj')
|
||||
cv2.waitKey()
|
||||
cv2.destroyAllWindows()
|
||||
cv.waitKey()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -21,7 +21,7 @@ if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# built-in modules
|
||||
import sys
|
||||
@ -34,7 +34,7 @@ if __name__ == '__main__':
|
||||
if len(sys.argv) > 1:
|
||||
fn = sys.argv[1]
|
||||
print('loading %s ...' % fn)
|
||||
img = cv2.imread(fn)
|
||||
img = cv.imread(fn)
|
||||
if img is None:
|
||||
print('Failed to load fn:', fn)
|
||||
sys.exit(1)
|
||||
@ -45,21 +45,21 @@ if __name__ == '__main__':
|
||||
img = np.zeros((sz, sz), np.uint8)
|
||||
track = np.cumsum(np.random.rand(500000, 2)-0.5, axis=0)
|
||||
track = np.int32(track*10 + (sz/2, sz/2))
|
||||
cv2.polylines(img, [track], 0, 255, 1, cv2.LINE_AA)
|
||||
cv.polylines(img, [track], 0, 255, 1, cv.LINE_AA)
|
||||
|
||||
|
||||
small = img
|
||||
for i in xrange(3):
|
||||
small = cv2.pyrDown(small)
|
||||
small = cv.pyrDown(small)
|
||||
|
||||
def onmouse(event, x, y, flags, param):
|
||||
h, _w = img.shape[:2]
|
||||
h1, _w1 = small.shape[:2]
|
||||
x, y = 1.0*x*h/h1, 1.0*y*h/h1
|
||||
zoom = cv2.getRectSubPix(img, (800, 600), (x+0.5, y+0.5))
|
||||
cv2.imshow('zoom', zoom)
|
||||
zoom = cv.getRectSubPix(img, (800, 600), (x+0.5, y+0.5))
|
||||
cv.imshow('zoom', zoom)
|
||||
|
||||
cv2.imshow('preview', small)
|
||||
cv2.setMouseCallback('preview', onmouse)
|
||||
cv2.waitKey()
|
||||
cv2.destroyAllWindows()
|
||||
cv.imshow('preview', small)
|
||||
cv.setMouseCallback('preview', onmouse)
|
||||
cv.waitKey()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -17,7 +17,7 @@ default values:
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# local modules
|
||||
from common import splitfn
|
||||
@ -53,27 +53,27 @@ if __name__ == '__main__':
|
||||
|
||||
obj_points = []
|
||||
img_points = []
|
||||
h, w = cv2.imread(img_names[0], 0).shape[:2] # TODO: use imquery call to retrieve results
|
||||
h, w = cv.imread(img_names[0], 0).shape[:2] # TODO: use imquery call to retrieve results
|
||||
|
||||
def processImage(fn):
|
||||
print('processing %s... ' % fn)
|
||||
img = cv2.imread(fn, 0)
|
||||
img = cv.imread(fn, 0)
|
||||
if img is None:
|
||||
print("Failed to load", fn)
|
||||
return None
|
||||
|
||||
assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0]))
|
||||
found, corners = cv2.findChessboardCorners(img, pattern_size)
|
||||
found, corners = cv.findChessboardCorners(img, pattern_size)
|
||||
if found:
|
||||
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
|
||||
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
|
||||
|
||||
if debug_dir:
|
||||
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
||||
cv2.drawChessboardCorners(vis, pattern_size, corners, found)
|
||||
vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR)
|
||||
cv.drawChessboardCorners(vis, pattern_size, corners, found)
|
||||
path, name, ext = splitfn(fn)
|
||||
outfile = os.path.join(debug_dir, name + '_chess.png')
|
||||
cv2.imwrite(outfile, vis)
|
||||
cv.imwrite(outfile, vis)
|
||||
|
||||
if not found:
|
||||
print('chessboard not found')
|
||||
@ -97,7 +97,7 @@ if __name__ == '__main__':
|
||||
obj_points.append(pattern_points)
|
||||
|
||||
# calculate camera distortion
|
||||
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None)
|
||||
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None)
|
||||
|
||||
print("\nRMS:", rms)
|
||||
print("camera matrix:\n", camera_matrix)
|
||||
@ -110,20 +110,20 @@ if __name__ == '__main__':
|
||||
img_found = os.path.join(debug_dir, name + '_chess.png')
|
||||
outfile = os.path.join(debug_dir, name + '_undistorted.png')
|
||||
|
||||
img = cv2.imread(img_found)
|
||||
img = cv.imread(img_found)
|
||||
if img is None:
|
||||
continue
|
||||
|
||||
h, w = img.shape[:2]
|
||||
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))
|
||||
newcameramtx, roi = cv.getOptimalNewCameraMatrix(camera_matrix, dist_coefs, (w, h), 1, (w, h))
|
||||
|
||||
dst = cv2.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)
|
||||
dst = cv.undistort(img, camera_matrix, dist_coefs, None, newcameramtx)
|
||||
|
||||
# crop and save the image
|
||||
x, y, w, h = roi
|
||||
dst = dst[y:y+h, x:x+w]
|
||||
|
||||
print('Undistorted image written to: %s' % outfile)
|
||||
cv2.imwrite(outfile, dst)
|
||||
cv.imwrite(outfile, dst)
|
||||
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -31,7 +31,7 @@ if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# local module
|
||||
import video
|
||||
@ -42,8 +42,8 @@ class App(object):
|
||||
def __init__(self, video_src):
|
||||
self.cam = video.create_capture(video_src, presets['cube'])
|
||||
_ret, self.frame = self.cam.read()
|
||||
cv2.namedWindow('camshift')
|
||||
cv2.setMouseCallback('camshift', self.onmouse)
|
||||
cv.namedWindow('camshift')
|
||||
cv.setMouseCallback('camshift', self.onmouse)
|
||||
|
||||
self.selection = None
|
||||
self.drag_start = None
|
||||
@ -51,7 +51,7 @@ class App(object):
|
||||
self.track_window = None
|
||||
|
||||
def onmouse(self, event, x, y, flags, param):
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
if event == cv.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
self.track_window = None
|
||||
if self.drag_start:
|
||||
@ -60,7 +60,7 @@ class App(object):
|
||||
xmax = max(x, self.drag_start[0])
|
||||
ymax = max(y, self.drag_start[1])
|
||||
self.selection = (xmin, ymin, xmax, ymax)
|
||||
if event == cv2.EVENT_LBUTTONUP:
|
||||
if event == cv.EVENT_LBUTTONUP:
|
||||
self.drag_start = None
|
||||
self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
|
||||
|
||||
@ -70,52 +70,52 @@ class App(object):
|
||||
img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
|
||||
for i in xrange(bin_count):
|
||||
h = int(self.hist[i])
|
||||
cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
|
||||
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
|
||||
cv2.imshow('hist', img)
|
||||
cv.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
|
||||
img = cv.cvtColor(img, cv.COLOR_HSV2BGR)
|
||||
cv.imshow('hist', img)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
_ret, self.frame = self.cam.read()
|
||||
vis = self.frame.copy()
|
||||
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
|
||||
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||||
hsv = cv.cvtColor(self.frame, cv.COLOR_BGR2HSV)
|
||||
mask = cv.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||||
|
||||
if self.selection:
|
||||
x0, y0, x1, y1 = self.selection
|
||||
hsv_roi = hsv[y0:y1, x0:x1]
|
||||
mask_roi = mask[y0:y1, x0:x1]
|
||||
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||||
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
|
||||
hist = cv.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||||
cv.normalize(hist, hist, 0, 255, cv.NORM_MINMAX)
|
||||
self.hist = hist.reshape(-1)
|
||||
self.show_hist()
|
||||
|
||||
vis_roi = vis[y0:y1, x0:x1]
|
||||
cv2.bitwise_not(vis_roi, vis_roi)
|
||||
cv.bitwise_not(vis_roi, vis_roi)
|
||||
vis[mask == 0] = 0
|
||||
|
||||
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
|
||||
self.selection = None
|
||||
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||||
prob = cv.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||||
prob &= mask
|
||||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
|
||||
term_crit = ( cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
track_box, self.track_window = cv.CamShift(prob, self.track_window, term_crit)
|
||||
|
||||
if self.show_backproj:
|
||||
vis[:] = prob[...,np.newaxis]
|
||||
try:
|
||||
cv2.ellipse(vis, track_box, (0, 0, 255), 2)
|
||||
cv.ellipse(vis, track_box, (0, 0, 255), 2)
|
||||
except:
|
||||
print(track_box)
|
||||
|
||||
cv2.imshow('camshift', vis)
|
||||
cv.imshow('camshift', vis)
|
||||
|
||||
ch = cv2.waitKey(5)
|
||||
ch = cv.waitKey(5)
|
||||
if ch == 27:
|
||||
break
|
||||
if ch == ord('b'):
|
||||
self.show_backproj = not self.show_backproj
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -18,7 +18,7 @@ if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
|
||||
h, w = img.shape[:2]
|
||||
@ -26,19 +26,19 @@ def coherence_filter(img, sigma = 11, str_sigma = 11, blend = 0.5, iter_n = 4):
|
||||
for i in xrange(iter_n):
|
||||
print(i)
|
||||
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
eigen = cv2.cornerEigenValsAndVecs(gray, str_sigma, 3)
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
eigen = cv.cornerEigenValsAndVecs(gray, str_sigma, 3)
|
||||
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
|
||||
x, y = eigen[:,:,1,0], eigen[:,:,1,1]
|
||||
|
||||
gxx = cv2.Sobel(gray, cv2.CV_32F, 2, 0, ksize=sigma)
|
||||
gxy = cv2.Sobel(gray, cv2.CV_32F, 1, 1, ksize=sigma)
|
||||
gyy = cv2.Sobel(gray, cv2.CV_32F, 0, 2, ksize=sigma)
|
||||
gxx = cv.Sobel(gray, cv.CV_32F, 2, 0, ksize=sigma)
|
||||
gxy = cv.Sobel(gray, cv.CV_32F, 1, 1, ksize=sigma)
|
||||
gyy = cv.Sobel(gray, cv.CV_32F, 0, 2, ksize=sigma)
|
||||
gvv = x*x*gxx + 2*x*y*gxy + y*y*gyy
|
||||
m = gvv < 0
|
||||
|
||||
ero = cv2.erode(img, None)
|
||||
dil = cv2.dilate(img, None)
|
||||
ero = cv.erode(img, None)
|
||||
dil = cv.dilate(img, None)
|
||||
img1 = ero
|
||||
img1[m] = dil[m]
|
||||
img = np.uint8(img*(1.0 - blend) + img1*blend)
|
||||
@ -53,33 +53,33 @@ if __name__ == '__main__':
|
||||
except:
|
||||
fn = '../data/baboon.jpg'
|
||||
|
||||
src = cv2.imread(fn)
|
||||
src = cv.imread(fn)
|
||||
|
||||
def nothing(*argv):
|
||||
pass
|
||||
|
||||
def update():
|
||||
sigma = cv2.getTrackbarPos('sigma', 'control')*2+1
|
||||
str_sigma = cv2.getTrackbarPos('str_sigma', 'control')*2+1
|
||||
blend = cv2.getTrackbarPos('blend', 'control') / 10.0
|
||||
sigma = cv.getTrackbarPos('sigma', 'control')*2+1
|
||||
str_sigma = cv.getTrackbarPos('str_sigma', 'control')*2+1
|
||||
blend = cv.getTrackbarPos('blend', 'control') / 10.0
|
||||
print('sigma: %d str_sigma: %d blend_coef: %f' % (sigma, str_sigma, blend))
|
||||
dst = coherence_filter(src, sigma=sigma, str_sigma = str_sigma, blend = blend)
|
||||
cv2.imshow('dst', dst)
|
||||
cv.imshow('dst', dst)
|
||||
|
||||
cv2.namedWindow('control', 0)
|
||||
cv2.createTrackbar('sigma', 'control', 9, 15, nothing)
|
||||
cv2.createTrackbar('blend', 'control', 7, 10, nothing)
|
||||
cv2.createTrackbar('str_sigma', 'control', 9, 15, nothing)
|
||||
cv.namedWindow('control', 0)
|
||||
cv.createTrackbar('sigma', 'control', 9, 15, nothing)
|
||||
cv.createTrackbar('blend', 'control', 7, 10, nothing)
|
||||
cv.createTrackbar('str_sigma', 'control', 9, 15, nothing)
|
||||
|
||||
|
||||
print('Press SPACE to update the image\n')
|
||||
|
||||
cv2.imshow('src', src)
|
||||
cv.imshow('src', src)
|
||||
update()
|
||||
while True:
|
||||
ch = cv2.waitKey()
|
||||
ch = cv.waitKey()
|
||||
if ch == ord(' '):
|
||||
update()
|
||||
if ch == 27:
|
||||
break
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -9,7 +9,7 @@ Keys:
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# built-in modules
|
||||
import sys
|
||||
@ -24,16 +24,16 @@ if __name__ == '__main__':
|
||||
hsv_map[:,:,0] = h
|
||||
hsv_map[:,:,1] = s
|
||||
hsv_map[:,:,2] = 255
|
||||
hsv_map = cv2.cvtColor(hsv_map, cv2.COLOR_HSV2BGR)
|
||||
cv2.imshow('hsv_map', hsv_map)
|
||||
hsv_map = cv.cvtColor(hsv_map, cv.COLOR_HSV2BGR)
|
||||
cv.imshow('hsv_map', hsv_map)
|
||||
|
||||
cv2.namedWindow('hist', 0)
|
||||
cv.namedWindow('hist', 0)
|
||||
hist_scale = 10
|
||||
|
||||
def set_scale(val):
|
||||
global hist_scale
|
||||
hist_scale = val
|
||||
cv2.createTrackbar('scale', 'hist', hist_scale, 32, set_scale)
|
||||
cv.createTrackbar('scale', 'hist', hist_scale, 32, set_scale)
|
||||
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
@ -43,20 +43,20 @@ if __name__ == '__main__':
|
||||
|
||||
while True:
|
||||
flag, frame = cam.read()
|
||||
cv2.imshow('camera', frame)
|
||||
cv.imshow('camera', frame)
|
||||
|
||||
small = cv2.pyrDown(frame)
|
||||
small = cv.pyrDown(frame)
|
||||
|
||||
hsv = cv2.cvtColor(small, cv2.COLOR_BGR2HSV)
|
||||
hsv = cv.cvtColor(small, cv.COLOR_BGR2HSV)
|
||||
dark = hsv[...,2] < 32
|
||||
hsv[dark] = 0
|
||||
h = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
|
||||
h = cv.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])
|
||||
|
||||
h = np.clip(h*0.005*hist_scale, 0, 1)
|
||||
vis = hsv_map*h[:,:,np.newaxis] / 255.0
|
||||
cv2.imshow('hist', vis)
|
||||
cv.imshow('hist', vis)
|
||||
|
||||
ch = cv2.waitKey(1)
|
||||
ch = cv.waitKey(1)
|
||||
if ch == 27:
|
||||
break
|
||||
cv2.destroyAllWindows()
|
||||
cv.destroyAllWindows()
|
||||
|
@ -13,7 +13,7 @@ if PY3:
|
||||
from functools import reduce
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
@ -71,7 +71,7 @@ def lookat(eye, target, up = (0, 0, 1)):
|
||||
return R, tvec
|
||||
|
||||
def mtx2rvec(R):
|
||||
w, u, vt = cv2.SVDecomp(R - np.eye(3))
|
||||
w, u, vt = cv.SVDecomp(R - np.eye(3))
|
||||
p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0])
|
||||
c = np.dot(vt[0], p)
|
||||
s = np.dot(vt[1], p)
|
||||
@ -80,8 +80,8 @@ def mtx2rvec(R):
|
||||
|
||||
def draw_str(dst, target, s):
|
||||
x, y = target
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
|
||||
cv.putText(dst, s, (x+1, y+1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv.LINE_AA)
|
||||
cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)
|
||||
|
||||
class Sketcher:
|
||||
def __init__(self, windowname, dests, colors_func):
|
||||
@ -91,21 +91,21 @@ class Sketcher:
|
||||
self.colors_func = colors_func
|
||||
self.dirty = False
|
||||
self.show()
|
||||
cv2.setMouseCallback(self.windowname, self.on_mouse)
|
||||
cv.setMouseCallback(self.windowname, self.on_mouse)
|
||||
|
||||
def show(self):
|
||||
cv2.imshow(self.windowname, self.dests[0])
|
||||
cv.imshow(self.windowname, self.dests[0])
|
||||
|
||||
def on_mouse(self, event, x, y, flags, param):
|
||||
pt = (x, y)
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
if event == cv.EVENT_LBUTTONDOWN:
|
||||
self.prev_pt = pt
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
elif event == cv.EVENT_LBUTTONUP:
|
||||
self.prev_pt = None
|
||||
|
||||
if self.prev_pt and flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON:
|
||||
for dst, color in zip(self.dests, self.colors_func()):
|
||||
cv2.line(dst, self.prev_pt, pt, color, 5)
|
||||
cv.line(dst, self.prev_pt, pt, color, 5)
|
||||
self.dirty = True
|
||||
self.prev_pt = pt
|
||||
self.show()
|
||||
@ -140,7 +140,7 @@ def nothing(*arg, **kw):
|
||||
pass
|
||||
|
||||
def clock():
|
||||
return cv2.getTickCount() / cv2.getTickFrequency()
|
||||
return cv.getTickCount() / cv.getTickFrequency()
|
||||
|
||||
@contextmanager
|
||||
def Timer(msg):
|
||||
@ -166,16 +166,16 @@ class RectSelector:
|
||||
def __init__(self, win, callback):
|
||||
self.win = win
|
||||
self.callback = callback
|
||||
cv2.setMouseCallback(win, self.onmouse)
|
||||
cv.setMouseCallback(win, self.onmouse)
|
||||
self.drag_start = None
|
||||
self.drag_rect = None
|
||||
def onmouse(self, event, x, y, flags, param):
|
||||
x, y = np.int16([x, y]) # BUG
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
if event == cv.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
return
|
||||
if self.drag_start:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
if flags & cv.EVENT_FLAG_LBUTTON:
|
||||
xo, yo = self.drag_start
|
||||
x0, y0 = np.minimum([xo, yo], [x, y])
|
||||
x1, y1 = np.maximum([xo, yo], [x, y])
|
||||
@ -192,7 +192,7 @@ class RectSelector:
|
||||
if not self.drag_rect:
|
||||
return False
|
||||
x0, y0, x1, y1 = self.drag_rect
|
||||
cv2.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||
cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2)
|
||||
return True
|
||||
@property
|
||||
def dragging(self):
|
||||
@ -234,4 +234,4 @@ def mdot(*args):
|
||||
def draw_keypoints(vis, keypoints, color = (0, 255, 255)):
|
||||
for kp in keypoints:
|
||||
x, y = kp.pt
|
||||
cv2.circle(vis, (int(x), int(y)), 2, color)
|
||||
cv.circle(vis, (int(x), int(y)), 2, color)
|
||||
|
@ -18,7 +18,7 @@ if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2 as cv
|
||||
|
||||
def make_image():
|
||||
img = np.zeros((500, 500), np.uint8)
|
||||
@ -33,19 +33,19 @@ def make_image():
|
||||
c, s = np.cos(angle), np.sin(angle)
|
||||
x1, y1 = np.int32([dx+100+j*10-80*c, dy+100-90*s])
|
||||
x2, y2 = np.int32([dx+100+j*10-30*c, dy+100-30*s])
|
||||
cv2.line(img, (x1, y1), (x2, y2), white)
|
||||
cv.line(img, (x1, y1), (x2, y2), white)
|
||||
|
||||
cv2.ellipse( img, (dx+150, dy+100), (100,70), 0, 0, 360, white, -1 )
|
||||
cv2.ellipse( img, (dx+115, dy+70), (30,20), 0, 0, 360, black, -1 )
|
||||
cv2.ellipse( img, (dx+185, dy+70), (30,20), 0, 0, 360, black, -1 )
|
||||
cv2.ellipse( img, (dx+115, dy+70), (15,15), 0, 0, 360, white, -1 )
|
||||
cv2.ellipse( img, (dx+185, dy+70), (15,15), 0, 0, 360, white, -1 )
|
||||
cv2.ellipse( img, (dx+115, dy+70), (5,5), 0, 0, 360, black, -1 )
|
||||
cv2.ellipse( img, (dx+185, dy+70), (5,5), 0, 0, 360, black, -1 )
|
||||
cv2.ellipse( img, (dx+150, dy+100), (10,5), 0, 0, 360, black, -1 )
|
||||
cv2.ellipse( img, (dx+150, dy+150), (40,10), 0, 0, 360, black, -1 )
|
||||
cv2.ellipse( img, (dx+27, dy+100), (20,35), 0, 0, 360, white, -1 )
|
||||
cv2.ellipse( img, (dx+273, dy+100), (20,35), 0, 0, 360, white, -1 )
|
||||
cv.ellipse( img, (dx+150, dy+100), (100,70), 0, 0, 360, white, -1 )
|
||||
cv.ellipse( img, (dx+115, dy+70), (30,20), 0, 0, 360, black, -1 )
|
||||
cv.ellipse( img, (dx+185, dy+70), (30,20), 0, 0, 360, black, -1 )
|
||||
cv.ellipse( img, (dx+115, dy+70), (15,15), 0, 0, 360, white, -1 )
|
||||
cv.ellipse( img, (dx+185, dy+70), (15,15), 0, 0, 360, white, -1 )
|
||||
cv.ellipse( img, (dx+115, dy+70), (5,5), 0, 0, 360, black, -1 )
|
||||
cv.ellipse( img, (dx+185, dy+70), (5,5), 0, 0, 360, black, -1 )
|
||||
cv.ellipse( img, (dx+150, dy+100), (10,5), 0, 0, 360, black, -1 )
|
||||
cv.ellipse( img, (dx+150, dy+150), (40,10), 0, 0, 360, black, -1 )
|
||||
cv.ellipse( img, (dx+27, dy+100), (20,35), 0, 0, 360, white, -1 )
|
||||
cv.ellipse( img, (dx+273, dy+100), (20,35), 0, 0, 360, white, -1 )
|
||||
return img
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -54,17 +54,17 @@ if __name__ == '__main__':
|
||||
img = make_image()
|
||||
h, w = img.shape[:2]
|
||||
|
||||
_, contours0, hierarchy = cv2.findContours( img.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
contours = [cv2.approxPolyDP(cnt, 3, True) for cnt in contours0]
|
||||
_, contours0, hierarchy = cv.findContours( img.copy(), cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
|
||||
contours = [cv.approxPolyDP(cnt, 3, True) for cnt in contours0]
|
||||
|
||||
def update(levels):
|
||||
vis = np.zeros((h, w, 3), np.uint8)
|
||||
levels = levels - 3
|
||||
cv2.drawContours( vis, contours, (-1, 2)[levels <= 0], (128,255,255),
|
||||
3, cv2.LINE_AA, hierarchy, abs(levels) )
|
||||
cv2.imshow('contours', vis)
|
||||
cv.drawContours( vis, contours, (-1, 2)[levels <= 0], (128,255,255),
|
||||
3, cv.LINE_AA, hierarchy, abs(levels) )
|
||||
cv.imshow('contours', vis)
|
||||
update(3)
|
||||
cv2.createTrackbar( "levels+3", "contours", 3, 7, update )
|
||||
cv2.imshow('image', img)
|
||||
cv2.waitKey()
|
||||
cv2.destroyAllWindows()
|
||||
cv.createTrackbar( "levels+3", "contours", 3, 7, update )
|
||||
cv.imshow('image', img)
|
||||
cv.waitKey()
|
||||
cv.destroyAllWindows()
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user