diff --git a/samples/python2/find_obj.py b/samples/python2/find_obj.py new file mode 100644 index 0000000000..9881d000b3 --- /dev/null +++ b/samples/python2/find_obj.py @@ -0,0 +1,72 @@ +import numpy as np +import cv2, cv +from common import anorm + +help_message = '''SURF image match + +USAGE: findobj.py [ ] +''' + + +def match(desc1, desc2, r_threshold = 0.75): + res = [] + for i in xrange(len(desc1)): + dist = anorm( desc2 - desc1[i] ) + n1, n2 = dist.argsort()[:2] + r = dist[n1] / dist[n2] + if r < r_threshold: + res.append((i, n1)) + return np.array(res) + +def draw_match(img1, img2, p1, p2, status = None, H = None): + h1, w1 = img1.shape[:2] + h2, w2 = img2.shape[:2] + vis = np.zeros((max(h1, h2), w1+w2), np.uint8) + vis[:h1, :w1] = img1 + vis[:h2, w1:w1+w2] = img2 + vis = cv2.cvtColor(vis, cv.CV_GRAY2BGR) + + if H is not None: + corners = np.float32([[0, 0], [w1, 0], [w1, h1], [0, h1]]) + corners = np.int32( cv2.perspectiveTransform(corners.reshape(1, -1, 2), H).reshape(-1, 2) + (w1, 0) ) + cv2.polylines(vis, [corners], True, (255, 255, 255)) + + if status is None: + status = np.ones(len(p1), np.bool_) + green = (0, 255, 0) + red = (0, 0, 255) + for (x1, y1), (x2, y2), inlier in zip(np.int32(p1), np.int32(p2), status): + col = [red, green][inlier] + if not inlier: + cv2.line(vis, (x1, y1), (x2+w1, y2), col) + cv2.circle(vis, (x1, y1), 2, col, -1) + cv2.circle(vis, (x2+w1, y2), 2, col, -1) + return vis + +if __name__ == '__main__': + import sys + try: fn1, fn2 = sys.argv[1:3] + except: + fn1 = '../c/box.png' + fn2 = '../c/box_in_scene.png' + print help_message + + img1 = cv2.imread(fn1, 0) + img2 = cv2.imread(fn2, 0) + + surf = cv2.SURF(1000) + kp1, desc1 = surf.detect(img1, None, False) + kp2, desc2 = surf.detect(img2, None, False) + desc1.shape = (-1, surf.descriptorSize()) + desc2.shape = (-1, surf.descriptorSize()) + print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) + + m = match(desc1, desc2) + matched_p1 = np.array([kp1[i].pt for i, j in m]) + matched_p2 = np.array([kp2[j].pt for i, j in m]) + H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 10.0) + print '%d / %d inliers/matched' % (np.sum(status), len(status)) + + vis = draw_match(img1, img2, matched_p1, matched_p2, status, H) + cv2.imshow('find_obj SURF', vis) + cv2.waitKey() \ No newline at end of file