Merge pull request #701 from jet47:clahe

This commit is contained in:
Andrey Kamaev 2013-03-25 20:26:22 +04:00 committed by OpenCV Buildbot
commit 55c9a7c87d
9 changed files with 822 additions and 9 deletions

View File

@ -43,7 +43,10 @@
#ifndef __OPENCV_GPU_SCAN_HPP__
#define __OPENCV_GPU_SCAN_HPP__
#include "common.hpp"
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/utility.hpp"
#include "opencv2/gpu/device/warp.hpp"
#include "opencv2/gpu/device/warp_shuffle.hpp"
namespace cv { namespace gpu { namespace device
{
@ -166,6 +169,82 @@ namespace cv { namespace gpu { namespace device
static const int warp_log = 5;
static const int warp_mask = 31;
};
template <typename T>
__device__ T warpScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
{
#if __CUDA_ARCH__ >= 300
const unsigned int laneId = cv::gpu::device::Warp::laneId();
// scan on shuffl functions
#pragma unroll
for (int i = 1; i <= (OPENCV_GPU_WARP_SIZE / 2); i *= 2)
{
const T n = cv::gpu::device::shfl_up(idata, i);
if (laneId >= i)
idata += n;
}
return idata;
#else
unsigned int pos = 2 * tid - (tid & (OPENCV_GPU_WARP_SIZE - 1));
s_Data[pos] = 0;
pos += OPENCV_GPU_WARP_SIZE;
s_Data[pos] = idata;
s_Data[pos] += s_Data[pos - 1];
s_Data[pos] += s_Data[pos - 2];
s_Data[pos] += s_Data[pos - 4];
s_Data[pos] += s_Data[pos - 8];
s_Data[pos] += s_Data[pos - 16];
return s_Data[pos];
#endif
}
template <typename T>
__device__ __forceinline__ T warpScanExclusive(T idata, volatile T* s_Data, unsigned int tid)
{
return warpScanInclusive(idata, s_Data, tid) - idata;
}
template <int tiNumScanThreads, typename T>
__device__ T blockScanInclusive(T idata, volatile T* s_Data, unsigned int tid)
{
if (tiNumScanThreads > OPENCV_GPU_WARP_SIZE)
{
//Bottom-level inclusive warp scan
T warpResult = warpScanInclusive(idata, s_Data, tid);
//Save top elements of each warp for exclusive warp scan
//sync to wait for warp scans to complete (because s_Data is being overwritten)
__syncthreads();
if ((tid & (OPENCV_GPU_WARP_SIZE - 1)) == (OPENCV_GPU_WARP_SIZE - 1))
{
s_Data[tid >> OPENCV_GPU_LOG_WARP_SIZE] = warpResult;
}
//wait for warp scans to complete
__syncthreads();
if (tid < (tiNumScanThreads / OPENCV_GPU_WARP_SIZE) )
{
//grab top warp elements
T val = s_Data[tid];
//calculate exclusive scan and write back to shared memory
s_Data[tid] = warpScanExclusive(val, s_Data, tid);
}
//return updated warp scans with exclusive scan results
__syncthreads();
return warpResult + s_Data[tid >> OPENCV_GPU_LOG_WARP_SIZE];
}
else
{
return warpScanInclusive(idata, s_Data, tid);
}
}
}}}
#endif // __OPENCV_GPU_SCAN_HPP__

View File

@ -1062,6 +1062,14 @@ CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = St
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());
class CV_EXPORTS CLAHE : public cv::CLAHE
{
public:
using cv::CLAHE::apply;
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
//////////////////////////////// StereoBM_GPU ////////////////////////////////
class CV_EXPORTS StereoBM_GPU

View File

@ -600,6 +600,39 @@ PERF_TEST_P(Sz, ImgProc_EqualizeHist,
}
}
DEF_PARAM_TEST(Sz_ClipLimit, cv::Size, double);
PERF_TEST_P(Sz_ClipLimit, ImgProc_CLAHE,
Combine(GPU_TYPICAL_MAT_SIZES,
Values(0.0, 40.0)))
{
const cv::Size size = GET_PARAM(0);
const double clipLimit = GET_PARAM(1);
cv::Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
if (PERF_RUN_GPU())
{
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit);
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat dst;
TEST_CYCLE() clahe->apply(d_src, dst);
GPU_SANITY_CHECK(dst);
}
else
{
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit);
cv::Mat dst;
TEST_CYCLE() clahe->apply(src, dst);
CPU_SANITY_CHECK(dst);
}
}
//////////////////////////////////////////////////////////////////////
// ColumnSum

View File

@ -0,0 +1,186 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#if !defined CUDA_DISABLER
#include "opencv2/gpu/device/common.hpp"
#include "opencv2/gpu/device/functional.hpp"
#include "opencv2/gpu/device/emulation.hpp"
#include "opencv2/gpu/device/scan.hpp"
#include "opencv2/gpu/device/reduce.hpp"
#include "opencv2/gpu/device/saturate_cast.hpp"
using namespace cv::gpu;
using namespace cv::gpu::device;
namespace clahe
{
__global__ void calcLutKernel(const PtrStepb src, PtrStepb lut,
const int2 tileSize, const int tilesX,
const int clipLimit, const float lutScale)
{
__shared__ int smem[512];
const int tx = blockIdx.x;
const int ty = blockIdx.y;
const unsigned int tid = threadIdx.y * blockDim.x + threadIdx.x;
smem[tid] = 0;
__syncthreads();
for (int i = threadIdx.y; i < tileSize.y; i += blockDim.y)
{
const uchar* srcPtr = src.ptr(ty * tileSize.y + i) + tx * tileSize.x;
for (int j = threadIdx.x; j < tileSize.x; j += blockDim.x)
{
const int data = srcPtr[j];
Emulation::smem::atomicAdd(&smem[data], 1);
}
}
__syncthreads();
int tHistVal = smem[tid];
__syncthreads();
if (clipLimit > 0)
{
// clip histogram bar
int clipped = 0;
if (tHistVal > clipLimit)
{
clipped = tHistVal - clipLimit;
tHistVal = clipLimit;
}
// find number of overall clipped samples
reduce<256>(smem, clipped, tid, plus<int>());
// broadcast evaluated value
__shared__ int totalClipped;
if (tid == 0)
totalClipped = clipped;
__syncthreads();
// redistribute clipped samples evenly
int redistBatch = totalClipped / 256;
tHistVal += redistBatch;
int residual = totalClipped - redistBatch * 256;
if (tid < residual)
++tHistVal;
}
const int lutVal = blockScanInclusive<256>(tHistVal, smem, tid);
lut(ty * tilesX + tx, tid) = saturate_cast<uchar>(__float2int_rn(lutScale * lutVal));
}
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(tilesX, tilesY);
calcLutKernel<<<grid, block, 0, stream>>>(src, lut, tileSize, tilesX, clipLimit, lutScale);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
__global__ void tranformKernel(const PtrStepSzb src, PtrStepb dst, const PtrStepb lut, const int2 tileSize, const int tilesX, const int tilesY)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x >= src.cols || y >= src.rows)
return;
const float tyf = (static_cast<float>(y) / tileSize.y) - 0.5f;
int ty1 = __float2int_rd(tyf);
int ty2 = ty1 + 1;
const float ya = tyf - ty1;
ty1 = ::max(ty1, 0);
ty2 = ::min(ty2, tilesY - 1);
const float txf = (static_cast<float>(x) / tileSize.x) - 0.5f;
int tx1 = __float2int_rd(txf);
int tx2 = tx1 + 1;
const float xa = txf - tx1;
tx1 = ::max(tx1, 0);
tx2 = ::min(tx2, tilesX - 1);
const int srcVal = src(y, x);
float res = 0;
res += lut(ty1 * tilesX + tx1, srcVal) * ((1.0f - xa) * (1.0f - ya));
res += lut(ty1 * tilesX + tx2, srcVal) * ((xa) * (1.0f - ya));
res += lut(ty2 * tilesX + tx1, srcVal) * ((1.0f - xa) * (ya));
res += lut(ty2 * tilesX + tx2, srcVal) * ((xa) * (ya));
dst(y, x) = saturate_cast<uchar>(res);
}
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream)
{
const dim3 block(32, 8);
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(tranformKernel, cudaFuncCachePreferL1) );
tranformKernel<<<grid, block, 0, stream>>>(src, dst, lut, tileSize, tilesX, tilesY);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
}
#endif // CUDA_DISABLER

View File

@ -96,6 +96,7 @@ void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool)
void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); }
void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); }
void cv::gpu::CannyBuf::release() { throw_nogpu(); }
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double, cv::Size) { throw_nogpu(); return cv::Ptr<cv::gpu::CLAHE>(); }
#else /* !defined (HAVE_CUDA) */
@ -1559,4 +1560,136 @@ void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& d
CannyCaller(dx, dy, buf, dst, static_cast<float>(low_thresh), static_cast<float>(high_thresh));
}
////////////////////////////////////////////////////////////////////////
// CLAHE
namespace clahe
{
void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream);
void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream);
}
namespace
{
class CLAHE_Impl : public cv::gpu::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void apply(InputArray src, OutputArray dst, Stream& stream);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
GpuMat srcExt_;
GpuMat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_GPU",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
apply(_src, _dst, Stream::Null());
}
void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s)
{
GpuMat src = _src.getGpuMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create( src.size(), src.type() );
GpuMat dst = _dst.getGpuMat();
const int histSize = 256;
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
cudaStream_t stream = StreamAccessor::getStream(s);
cv::Size tileSize;
GpuMat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
cv::gpu::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s);
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream);
clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::gpu::CLAHE> cv::gpu::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
}
#endif /* !defined (HAVE_CUDA) */

View File

@ -217,6 +217,50 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, EqualizeHist, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// CLAHE
namespace
{
IMPLEMENT_PARAM_CLASS(ClipLimit, double)
}
PARAM_TEST_CASE(CLAHE, cv::gpu::DeviceInfo, cv::Size, ClipLimit)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
double clipLimit;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
size = GET_PARAM(1);
clipLimit = GET_PARAM(2);
cv::gpu::setDevice(devInfo.deviceID());
}
};
GPU_TEST_P(CLAHE, Accuracy)
{
cv::Mat src = randomMat(size, CV_8UC1);
cv::Ptr<cv::gpu::CLAHE> clahe = cv::gpu::createCLAHE(clipLimit);
cv::gpu::GpuMat dst;
clahe->apply(loadMat(src), dst);
cv::Ptr<cv::CLAHE> clahe_gold = cv::createCLAHE(clipLimit);
cv::Mat dst_gold;
clahe_gold->apply(src, dst_gold);
ASSERT_MAT_NEAR(dst_gold, dst, 1.0);
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CLAHE, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(0.0, 40.0)));
////////////////////////////////////////////////////////////////////////
// ColumnSum

View File

@ -759,6 +759,21 @@ CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int met
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );
class CV_EXPORTS CLAHE : public Algorithm
{
public:
virtual void apply(InputArray src, OutputArray dst) = 0;
virtual void setClipLimit(double clipLimit) = 0;
virtual double getClipLimit() const = 0;
virtual void setTilesGridSize(Size tileGridSize) = 0;
virtual Size getTilesGridSize() const = 0;
virtual void collectGarbage() = 0;
};
CV_EXPORTS Ptr<CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));
CV_EXPORTS float EMD( InputArray signature1, InputArray signature2,
int distType, InputArray cost=noArray(),
float* lowerBound=0, OutputArray flow=noArray() );

View File

@ -115,3 +115,25 @@ PERF_TEST_P(MatSize, equalizeHist,
SANITY_CHECK(destination);
}
typedef tr1::tuple<Size, double> Sz_ClipLimit_t;
typedef TestBaseWithParam<Sz_ClipLimit_t> Sz_ClipLimit;
PERF_TEST_P(Sz_ClipLimit, CLAHE,
testing::Combine(testing::Values(::perf::szVGA, ::perf::sz720p, ::perf::sz1080p),
testing::Values(0.0, 40.0))
)
{
const Size size = get<0>(GetParam());
const double clipLimit = get<1>(GetParam());
Mat src(size, CV_8UC1);
declare.in(src, WARMUP_RNG);
Ptr<CLAHE> clahe = createCLAHE(clipLimit);
Mat dst;
TEST_CYCLE() clahe->apply(src, dst);
SANITY_CHECK(dst);
}

View File

@ -2604,7 +2604,7 @@ cvCopyHist( const CvHistogram* src, CvHistogram** _dst )
int size1[CV_MAX_DIM];
bool is_sparse = CV_IS_SPARSE_MAT(src->bins);
int dims1 = cvGetDims( src->bins, size1 );
if( dst && (is_sparse == CV_IS_SPARSE_MAT(dst->bins)))
{
int size2[CV_MAX_DIM];
@ -2613,14 +2613,14 @@ cvCopyHist( const CvHistogram* src, CvHistogram** _dst )
if( dims1 == dims2 )
{
int i;
for( i = 0; i < dims1; i++ )
{
if( size1[i] != size2[i] )
break;
}
eq = (i == dims1);
eq = (i == dims1);
}
}
@ -2635,19 +2635,19 @@ cvCopyHist( const CvHistogram* src, CvHistogram** _dst )
{
float* ranges[CV_MAX_DIM];
float** thresh = 0;
if( CV_IS_UNIFORM_HIST( src ))
{
for( int i = 0; i < dims1; i++ )
ranges[i] = (float*)src->thresh[i];
thresh = ranges;
}
else
{
thresh = src->thresh2;
}
cvSetHistBinRanges( dst, thresh, CV_IS_UNIFORM_HIST(src));
}
@ -3188,6 +3188,300 @@ void cv::equalizeHist( InputArray _src, OutputArray _dst )
lutBody(heightRange);
}
// ----------------------------------------------------------------------
// CLAHE
namespace
{
class CLAHE_CalcLut_Body : public cv::ParallelLoopBody
{
public:
CLAHE_CalcLut_Body(const cv::Mat& src, cv::Mat& lut, cv::Size tileSize, int tilesX, int tilesY, int clipLimit, float lutScale) :
src_(src), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY), clipLimit_(clipLimit), lutScale_(lutScale)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
int clipLimit_;
float lutScale_;
};
void CLAHE_CalcLut_Body::operator ()(const cv::Range& range) const
{
const int histSize = 256;
uchar* tileLut = lut_.ptr(range.start);
const size_t lut_step = lut_.step;
for (int k = range.start; k < range.end; ++k, tileLut += lut_step)
{
const int ty = k / tilesX_;
const int tx = k % tilesX_;
// retrieve tile submatrix
cv::Rect tileROI;
tileROI.x = tx * tileSize_.width;
tileROI.y = ty * tileSize_.height;
tileROI.width = tileSize_.width;
tileROI.height = tileSize_.height;
const cv::Mat tile = src_(tileROI);
// calc histogram
int tileHist[histSize] = {0, };
int height = tileROI.height;
const size_t sstep = tile.step;
for (const uchar* ptr = tile.ptr<uchar>(0); height--; ptr += sstep)
{
int x = 0;
for (; x <= tileROI.width - 4; x += 4)
{
int t0 = ptr[x], t1 = ptr[x+1];
tileHist[t0]++; tileHist[t1]++;
t0 = ptr[x+2]; t1 = ptr[x+3];
tileHist[t0]++; tileHist[t1]++;
}
for (; x < tileROI.width; ++x)
tileHist[ptr[x]]++;
}
// clip histogram
if (clipLimit_ > 0)
{
// how many pixels were clipped
int clipped = 0;
for (int i = 0; i < histSize; ++i)
{
if (tileHist[i] > clipLimit_)
{
clipped += tileHist[i] - clipLimit_;
tileHist[i] = clipLimit_;
}
}
// redistribute clipped pixels
int redistBatch = clipped / histSize;
int residual = clipped - redistBatch * histSize;
for (int i = 0; i < histSize; ++i)
tileHist[i] += redistBatch;
for (int i = 0; i < residual; ++i)
tileHist[i]++;
}
// calc Lut
int sum = 0;
for (int i = 0; i < histSize; ++i)
{
sum += tileHist[i];
tileLut[i] = cv::saturate_cast<uchar>(sum * lutScale_);
}
}
}
class CLAHE_Interpolation_Body : public cv::ParallelLoopBody
{
public:
CLAHE_Interpolation_Body(const cv::Mat& src, cv::Mat& dst, const cv::Mat& lut, cv::Size tileSize, int tilesX, int tilesY) :
src_(src), dst_(dst), lut_(lut), tileSize_(tileSize), tilesX_(tilesX), tilesY_(tilesY)
{
}
void operator ()(const cv::Range& range) const;
private:
cv::Mat src_;
mutable cv::Mat dst_;
cv::Mat lut_;
cv::Size tileSize_;
int tilesX_;
int tilesY_;
};
void CLAHE_Interpolation_Body::operator ()(const cv::Range& range) const
{
const size_t lut_step = lut_.step;
for (int y = range.start; y < range.end; ++y)
{
const uchar* srcRow = src_.ptr<uchar>(y);
uchar* dstRow = dst_.ptr<uchar>(y);
const float tyf = (static_cast<float>(y) / tileSize_.height) - 0.5f;
int ty1 = cvFloor(tyf);
int ty2 = ty1 + 1;
const float ya = tyf - ty1;
ty1 = std::max(ty1, 0);
ty2 = std::min(ty2, tilesY_ - 1);
const uchar* lutPlane1 = lut_.ptr(ty1 * tilesX_);
const uchar* lutPlane2 = lut_.ptr(ty2 * tilesX_);
for (int x = 0; x < src_.cols; ++x)
{
const float txf = (static_cast<float>(x) / tileSize_.width) - 0.5f;
int tx1 = cvFloor(txf);
int tx2 = tx1 + 1;
const float xa = txf - tx1;
tx1 = std::max(tx1, 0);
tx2 = std::min(tx2, tilesX_ - 1);
const int srcVal = srcRow[x];
const size_t ind1 = tx1 * lut_step + srcVal;
const size_t ind2 = tx2 * lut_step + srcVal;
float res = 0;
res += lutPlane1[ind1] * ((1.0f - xa) * (1.0f - ya));
res += lutPlane1[ind2] * ((xa) * (1.0f - ya));
res += lutPlane2[ind1] * ((1.0f - xa) * (ya));
res += lutPlane2[ind2] * ((xa) * (ya));
dstRow[x] = cv::saturate_cast<uchar>(res);
}
}
}
class CLAHE_Impl : public cv::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
cv::Mat srcExt_;
cv::Mat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{
cv::Mat src = _src.getMat();
CV_Assert( src.type() == CV_8UC1 );
_dst.create( src.size(), src.type() );
cv::Mat dst = _dst.getMat();
const int histSize = 256;
lut_.create(tilesX_ * tilesY_, histSize, CV_8UC1);
cv::Size tileSize;
cv::Mat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
cv::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101);
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
CLAHE_CalcLut_Body calcLutBody(srcForLut, lut_, tileSize, tilesX_, tilesY_, clipLimit, lutScale);
cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), calcLutBody);
CLAHE_Interpolation_Body interpolationBody(src, dst, lut_, tileSize, tilesX_, tilesY_);
cv::parallel_for_(cv::Range(0, src.rows), interpolationBody);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::CLAHE> cv::createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
}
// ----------------------------------------------------------------------
/* Implementation of RTTI and Generic Functions for CvHistogram */
#define CV_TYPE_NAME_HIST "opencv-hist"
@ -3339,4 +3633,3 @@ CvType hist_type( CV_TYPE_NAME_HIST, icvIsHist, (CvReleaseFunc)cvReleaseHist,
icvReadHist, icvWriteHist, (CvCloneFunc)icvCloneHist );
/* End of file. */