mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
removed needless divUp
This commit is contained in:
parent
f9c6123439
commit
58b84c2fc0
@ -82,12 +82,6 @@ namespace cv
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline size_t divUp(size_t total, size_t grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
static inline int calcSize(int octave, int layer)
|
||||
{
|
||||
/* Wavelet size at first layer of first octave. */
|
||||
|
@ -1887,6 +1887,11 @@ namespace cv
|
||||
oclMat temp4;
|
||||
oclMat temp5;
|
||||
};
|
||||
|
||||
static inline size_t divUp(size_t total, size_t grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
}
|
||||
}
|
||||
#if defined _MSC_VER && _MSC_VER >= 1200
|
||||
|
@ -108,13 +108,6 @@ namespace cv
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
//////////////////common/////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////// add subtract multiply divide /////////////////////////
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@ -150,10 +143,7 @@ void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst,
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -226,10 +216,7 @@ static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst,
|
||||
int cols = divUp(dst.cols + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -338,10 +325,7 @@ void arithmetic_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst,
|
||||
int cols = divUp(dst.cols + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -397,10 +381,7 @@ static void arithmetic_scalar_run(const oclMat &src, oclMat &dst, string kernelN
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -515,10 +496,8 @@ static void compare_run(const oclMat &src1, const oclMat &src2, oclMat &dst, str
|
||||
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
|
||||
int cols = divUp(dst.cols + offset_cols, vector_length);
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
|
||||
@ -945,10 +924,7 @@ static void arithmetic_flip_rows_run(const oclMat &src, oclMat &dst, string kern
|
||||
int rows = divUp(dst.rows, 2);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -993,10 +969,7 @@ static void arithmetic_flip_cols_run(const oclMat &src, oclMat &dst, string kern
|
||||
int rows = isVertical ? divUp(dst.rows, 2) : dst.rows;
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1156,10 +1129,7 @@ static void arithmetic_exp_log_run(const oclMat &src, oclMat &dst, string kernel
|
||||
int depth = dst.depth();
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(dst.cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows ));
|
||||
@ -1201,13 +1171,9 @@ static void arithmetic_magnitude_phase_run(const oclMat &src1, const oclMat &src
|
||||
size_t vector_length = 1;
|
||||
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1);
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
int rows = dst.rows;
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
|
||||
@ -1252,13 +1218,9 @@ static void arithmetic_phase_run(const oclMat &src1, const oclMat &src2, oclMat
|
||||
size_t vector_length = 1;
|
||||
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1);
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
int rows = dst.rows;
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1283,15 +1245,9 @@ void cv::ocl::phase(const oclMat &x, const oclMat &y, oclMat &Angle , bool angle
|
||||
Angle.create(x.size(), x.type());
|
||||
string kernelName = angleInDegrees ? "arithm_phase_indegrees" : "arithm_phase_inradians";
|
||||
if(angleInDegrees)
|
||||
{
|
||||
arithmetic_phase_run(x, y, Angle, kernelName, &arithm_phase);
|
||||
//cout<<"1"<<endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
arithmetic_phase_run(x, y, Angle, kernelName, &arithm_phase);
|
||||
//cout<<"2"<<endl;
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
@ -1311,13 +1267,9 @@ static void arithmetic_cartToPolar_run(const oclMat &src1, const oclMat &src2, o
|
||||
int depth = src1.depth();
|
||||
|
||||
int cols = src1.cols * channels;
|
||||
int rows = src1.rows;
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, src1.rows, 1 };
|
||||
|
||||
int tmp = angleInDegrees ? 1 : 0;
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1333,7 +1285,7 @@ static void arithmetic_cartToPolar_run(const oclMat &src1, const oclMat &src2, o
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst_cart.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_cart.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_cart.offset ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&tmp ));
|
||||
|
||||
@ -1369,10 +1321,7 @@ static void arithmetic_ptc_run(const oclMat &src1, const oclMat &src2, oclMat &d
|
||||
int rows = src2.rows;
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, rows, 1 };
|
||||
|
||||
int tmp = angleInDegrees ? 1 : 0;
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1632,10 +1581,7 @@ static void bitwise_run(const oclMat &src1, oclMat &dst, string kernelName, cons
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1678,10 +1624,7 @@ void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string ker
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1739,10 +1682,7 @@ static void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst,
|
||||
int cols = divUp(dst.cols + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -1800,10 +1740,7 @@ void bitwise_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst,
|
||||
int cols = divUp(dst.cols + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -2096,10 +2033,7 @@ static void transpose_run(const oclMat &src, oclMat &dst, string kernelName)
|
||||
int cols = divUp(src.cols + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { TILE_DIM, BLOCK_ROWS, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, TILE_DIM) *localThreads[0],
|
||||
divUp(src.rows, TILE_DIM) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, src.rows, 1 };
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
@ -2154,10 +2088,7 @@ void cv::ocl::addWeighted(const oclMat &src1, double alpha, const oclMat &src2,
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1};
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
int src1_step = (int) src1.step;
|
||||
@ -2220,10 +2151,7 @@ void cv::ocl::magnitudeSqr(const oclMat &src1, const oclMat &src2, oclMat &dst)
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -2268,10 +2196,7 @@ void cv::ocl::magnitudeSqr(const oclMat &src1, oclMat &dst)
|
||||
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, dst.rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -2303,10 +2228,7 @@ static void arithmetic_pow_run(const oclMat &src1, double p, oclMat &dst, string
|
||||
int rows = dst.rows;
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, rows, 1 };
|
||||
|
||||
int dst_step1 = dst.cols * dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
|
@ -360,14 +360,13 @@ void canny::edgesHysteresisGlobal_gpu(oclMat &map, oclMat &st1, oclMat &st2, voi
|
||||
vector< pair<size_t, const void *> > args;
|
||||
size_t localThreads[3] = {128, 1, 1};
|
||||
|
||||
#define DIVUP(a, b) ((a)+(b)-1)/(b)
|
||||
int count_i[1] = {0};
|
||||
while(count > 0)
|
||||
{
|
||||
openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)getoclCommandQueue(), (cl_mem)counter, 1, 0, sizeof(int), &count_i, 0, NULL, NULL));
|
||||
|
||||
args.clear();
|
||||
size_t globalThreads[3] = {std::min(count, 65535u) * 128, DIVUP(count, 65535), 1};
|
||||
size_t globalThreads[3] = {std::min(count, 65535u) * 128, divUp(count, 65535), 1};
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&map.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&st1.data));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&st2.data));
|
||||
@ -382,7 +381,6 @@ void canny::edgesHysteresisGlobal_gpu(oclMat &map, oclMat &st1, oclMat &st2, voi
|
||||
openCLSafeCall(clEnqueueReadBuffer(*(cl_command_queue*)getoclCommandQueue(), (cl_mem)counter, 1, 0, sizeof(int), &count, 0, NULL, NULL));
|
||||
std::swap(st1, st2);
|
||||
}
|
||||
#undef DIVUP
|
||||
}
|
||||
|
||||
void canny::getEdges_gpu(oclMat &map, oclMat &dst, int rows, int cols)
|
||||
|
@ -68,22 +68,12 @@ extern const char *filtering_adaptive_bilateral;
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
inline void normalizeAnchor(int &anchor, int ksize)
|
||||
{
|
||||
if (anchor < 0)
|
||||
{
|
||||
anchor = ksize >> 1;
|
||||
}
|
||||
|
||||
CV_Assert(0 <= anchor && anchor < ksize);
|
||||
}
|
||||
@ -97,9 +87,7 @@ inline void normalizeAnchor(Point &anchor, const Size &ksize)
|
||||
inline void normalizeROI(Rect &roi, const Size &ksize, const Point &anchor, const Size &src_size)
|
||||
{
|
||||
if (roi == Rect(0, 0, -1, -1))
|
||||
{
|
||||
roi = Rect(0, 0, src_size.width, src_size.height);
|
||||
}
|
||||
|
||||
CV_Assert(ksize.height > 0 && ksize.width > 0 && ((ksize.height & 1) == 1) && ((ksize.width & 1) == 1));
|
||||
CV_Assert((anchor.x == -1 && anchor.y == -1) || (anchor.x == ksize.width >> 1 && anchor.y == ksize.height >> 1));
|
||||
@ -112,10 +100,7 @@ inline void normalizeKernel(const Mat &kernel, oclMat &gpu_krnl, int type = CV_8
|
||||
int scale = nDivisor && (kernel.depth() == CV_32F || kernel.depth() == CV_64F) ? 256 : 1;
|
||||
|
||||
if (nDivisor)
|
||||
{
|
||||
*nDivisor = scale;
|
||||
}
|
||||
|
||||
Mat temp(kernel.size(), type);
|
||||
kernel.convertTo(temp, type, scale);
|
||||
Mat cont_krnl = temp.reshape(1, 1);
|
||||
@ -125,9 +110,7 @@ inline void normalizeKernel(const Mat &kernel, oclMat &gpu_krnl, int type = CV_8
|
||||
int count = cont_krnl.cols >> 1;
|
||||
|
||||
for (int i = 0; i < count; ++i)
|
||||
{
|
||||
std::swap(cont_krnl.at<int>(0, i), cont_krnl.at<int>(0, cont_krnl.cols - 1 - i));
|
||||
}
|
||||
}
|
||||
|
||||
gpu_krnl.upload(cont_krnl);
|
||||
@ -627,8 +610,6 @@ static void GPUFilter2D(const oclMat &src, oclMat &dst, const oclMat &mat_kernel
|
||||
int localWidth = localThreads[0] + paddingPixels;
|
||||
int localHeight = localThreads[1] + paddingPixels;
|
||||
|
||||
// 260 = divup((localThreads[0] + filterWidth * 2), 4) * 4
|
||||
// 6 = (ROWS_PER_GROUP_WHICH_IS_4 + filterWidth * 2)
|
||||
size_t localMemSize = ksize_3x3 ? 260 * 6 * src.elemSize() : (localWidth * localHeight) * src.elemSize();
|
||||
|
||||
int vector_lengths[4][7] = {{4, 4, 4, 4, 4, 4, 4},
|
||||
@ -1713,4 +1694,4 @@ void cv::ocl::adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &filtering_adaptive_bilateral, kernelName,
|
||||
globalThreads, localThreads, args, cn, depth, build_options);
|
||||
}
|
||||
}
|
||||
|
@ -124,11 +124,6 @@ namespace cv
|
||||
|
||||
using namespace ::cv::ocl::device;
|
||||
|
||||
static inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
cv::ocl::HOGDescriptor::HOGDescriptor(Size win_size_, Size block_size_, Size block_stride_,
|
||||
Size cell_size_, int nbins_, double win_sigma_,
|
||||
double threshold_L2hys_, bool gamma_correction_, int nlevels_)
|
||||
@ -1671,7 +1666,8 @@ void cv::ocl::device::hog::compute_hists(int nbins,
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &objdetect_hog, kernelName, globalThreads,
|
||||
localThreads, args, -1, -1, "-D CPU");
|
||||
}else
|
||||
}
|
||||
else
|
||||
{
|
||||
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &objdetect_hog, kernelName);
|
||||
int wave_size = queryDeviceInfo<WAVEFRONT_SIZE, int>(kernel);
|
||||
|
@ -1518,11 +1518,6 @@ namespace cv
|
||||
// CLAHE
|
||||
namespace clahe
|
||||
{
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain * grain;
|
||||
}
|
||||
|
||||
static void calcLut(const oclMat &src, oclMat &dst,
|
||||
const int tilesX, const int tilesY, const cv::Size tileSize,
|
||||
const int clipLimit, const float lutScale)
|
||||
@ -1546,9 +1541,7 @@ namespace cv
|
||||
size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 };
|
||||
bool is_cpu = queryDeviceInfo<IS_CPU_DEVICE, bool>();
|
||||
if (is_cpu)
|
||||
{
|
||||
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, (char*)" -D CPU");
|
||||
}
|
||||
else
|
||||
{
|
||||
cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &imgproc_clahe, kernelName);
|
||||
@ -1583,7 +1576,7 @@ namespace cv
|
||||
|
||||
String kernelName = "transform";
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]), divUp(src.rows, localThreads[1]), 1 };
|
||||
size_t globalThreads[3] = { src.cols, src.rows, 1 };
|
||||
|
||||
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1);
|
||||
}
|
||||
@ -1801,10 +1794,7 @@ namespace cv
|
||||
}
|
||||
}
|
||||
//////////////////////////////////convolve////////////////////////////////////////////////////
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, string kernelName, const char **kernelString)
|
||||
{
|
||||
CV_Assert(src.depth() == CV_32FC1);
|
||||
@ -1826,10 +1816,7 @@ static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, st
|
||||
int rows = dst.rows;
|
||||
|
||||
size_t localThreads[3] = { 16, 16, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, rows, 1 };
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
|
@ -285,11 +285,6 @@ namespace cv
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
int getDevice(std::vector<Info> &oclinfo, int devicetype)
|
||||
{
|
||||
//TODO: cache oclinfo vector
|
||||
@ -707,11 +702,10 @@ namespace cv
|
||||
|
||||
if ( localThreads != NULL)
|
||||
{
|
||||
globalThreads[0] = divUp(globalThreads[0], localThreads[0]) * localThreads[0];
|
||||
globalThreads[1] = divUp(globalThreads[1], localThreads[1]) * localThreads[1];
|
||||
globalThreads[2] = divUp(globalThreads[2], localThreads[2]) * localThreads[2];
|
||||
globalThreads[0] = alignSize(globalThreads[0], localThreads[0]);
|
||||
globalThreads[1] = alignSize(globalThreads[1], localThreads[1]);
|
||||
globalThreads[2] = alignSize(globalThreads[2], localThreads[2]);
|
||||
|
||||
//size_t blockSize = localThreads[0] * localThreads[1] * localThreads[2];
|
||||
cv::ocl::openCLVerifyKernel(clCxt, kernel, localThreads);
|
||||
}
|
||||
for(size_t i = 0; i < args.size(); i ++)
|
||||
@ -742,10 +736,6 @@ namespace cv
|
||||
execute_time = (double)(end_time - start_time) / (1000 * 1000);
|
||||
total_time = (double)(end_time - queue_time) / (1000 * 1000);
|
||||
|
||||
// cout << setiosflags(ios::left) << setw(15) << execute_time;
|
||||
// cout << setiosflags(ios::left) << setw(15) << total_time - execute_time;
|
||||
// cout << setiosflags(ios::left) << setw(15) << total_time << endl;
|
||||
|
||||
total_execute_time += execute_time;
|
||||
total_kernel_time += total_time;
|
||||
clReleaseEvent(event);
|
||||
|
@ -307,11 +307,6 @@ void cv::ocl::oclMat::download(cv::Mat &m) const
|
||||
m.adjustROI(-ofs.y, ofs.y + rows - wholerows, -ofs.x, ofs.x + cols - wholecols);
|
||||
}
|
||||
|
||||
/////////////////////common//////////////////////////////////////
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////// CopyTo /////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
@ -331,11 +326,7 @@ static void copy_to_with_mask(const oclMat &src, oclMat &dst, const oclMat &mask
|
||||
char compile_option[32];
|
||||
sprintf(compile_option, "-D GENTYPE=%s", string_types[dst.oclchannels() - 1][dst.depth()].c_str());
|
||||
size_t localThreads[3] = {16, 16, 1};
|
||||
size_t globalThreads[3];
|
||||
|
||||
globalThreads[0] = divUp(dst.cols, localThreads[0]) * localThreads[0];
|
||||
globalThreads[1] = divUp(dst.rows, localThreads[1]) * localThreads[1];
|
||||
globalThreads[2] = 1;
|
||||
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
|
||||
|
||||
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
|
||||
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
|
||||
|
@ -71,12 +71,6 @@ namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
// provide additional methods for the user to interact with the command queue after a task is fired
|
||||
static void openCLExecuteKernel_2(Context *clCxt , const char **source, string kernelName, size_t globalThreads[3],
|
||||
size_t localThreads[3], vector< pair<size_t, const void *> > &args, int channels,
|
||||
|
@ -73,11 +73,6 @@ oclMat gKer;
|
||||
|
||||
float ig[4];
|
||||
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
inline void setGaussianBlurKernel(const float *c_gKer, int ksizeHalf)
|
||||
{
|
||||
cv::Mat t_gKer(1, ksizeHalf + 1, CV_32FC1, const_cast<float *>(c_gKer));
|
||||
@ -88,7 +83,7 @@ static void gaussianBlurOcl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
{
|
||||
string kernelName("gaussianBlur");
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]) * localThreads[0], src.rows, 1 };
|
||||
size_t globalThreads[3] = { src.cols, src.rows, 1 };
|
||||
int smem_size = (localThreads[0] + 2*ksizeHalf) * sizeof(float);
|
||||
|
||||
CV_Assert(dst.size() == src.size());
|
||||
@ -138,10 +133,7 @@ static void updateMatricesOcl(const oclMat &flowx, const oclMat &flowy, const oc
|
||||
{
|
||||
string kernelName("updateMatrices");
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { divUp(flowx.cols, localThreads[0]) * localThreads[0],
|
||||
divUp(flowx.rows, localThreads[1]) * localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { flowx.cols, flowx.rows, 1 };
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
|
||||
@ -166,7 +158,7 @@ static void boxFilter5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
string kernelName("boxFilter5");
|
||||
int height = src.rows / 5;
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(src.cols, localThreads[0]) * localThreads[0], height, 1 };
|
||||
size_t globalThreads[3] = { src.cols, height, 1 };
|
||||
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
@ -188,10 +180,7 @@ static void updateFlowOcl(const oclMat &M, oclMat &flowx, oclMat &flowy)
|
||||
string kernelName("updateFlow");
|
||||
int cols = divUp(flowx.cols, 4);
|
||||
size_t localThreads[3] = { 32, 8, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
|
||||
divUp(flowx.rows, localThreads[1]) * localThreads[0],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, flowx.rows, 1 };
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
|
||||
@ -211,9 +200,8 @@ static void gaussianBlur5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
{
|
||||
string kernelName("gaussianBlur5");
|
||||
int height = src.rows / 5;
|
||||
int width = src.cols;
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { divUp(width, localThreads[0]) * localThreads[0], height, 1 };
|
||||
size_t globalThreads[3] = { src.cols, height, 1 };
|
||||
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
@ -222,7 +210,7 @@ static void gaussianBlur5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&gKer.data));
|
||||
args.push_back(std::make_pair(smem_size, (void *)NULL));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&height));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&width));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&dst.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
|
||||
args.push_back(std::make_pair(sizeof(cl_int), (void *)&ksizeHalf));
|
||||
|
@ -73,61 +73,6 @@ namespace cv
|
||||
{
|
||||
namespace split_merge
|
||||
{
|
||||
///////////////////////////////////////////////////////////
|
||||
///////////////common/////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////merge//////////////////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
// static void merge_vector_run_no_roi(const oclMat *mat_src, size_t n, oclMat &mat_dst)
|
||||
// {
|
||||
// Context *clCxt = mat_dst.clCxt;
|
||||
// int channels = mat_dst.oclchannels();
|
||||
// int depth = mat_dst.depth();
|
||||
|
||||
// string kernelName = "merge_vector";
|
||||
|
||||
// int indexes[4][7] = {{0, 0, 0, 0, 0, 0, 0},
|
||||
// {4, 4, 2, 2, 1, 1, 1},
|
||||
// {4, 4, 2, 2 , 1, 1, 1},
|
||||
// {4, 4, 2, 2, 1, 1, 1}
|
||||
// };
|
||||
|
||||
// size_t index = indexes[channels - 1][mat_dst.depth()];
|
||||
// int cols = divUp(mat_dst.cols, index);
|
||||
// size_t localThreads[3] = { 64, 4, 1 };
|
||||
// size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
// divUp(mat_dst.rows, localThreads[1]) *localThreads[1],
|
||||
// 1
|
||||
// };
|
||||
|
||||
// vector<pair<size_t , const void *> > args;
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.rows));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst.data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.step));
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[0].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].step));
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[1].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].step));
|
||||
// if(n >= 3)
|
||||
// {
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
|
||||
// }
|
||||
// if(n >= 4)
|
||||
// {
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[3].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].step));
|
||||
// }
|
||||
|
||||
// openCLExecuteKernel(clCxt, &merge_mat, kernelName, globalThreads, localThreads, args, channels, depth);
|
||||
// }
|
||||
|
||||
static void merge_vector_run(const oclMat *mat_src, size_t n, oclMat &mat_dst)
|
||||
{
|
||||
if(!mat_dst.clCxt->supportsFeature(Context::CL_DOUBLE) && mat_dst.type() == CV_64F)
|
||||
@ -153,10 +98,7 @@ namespace cv
|
||||
int cols = divUp(mat_dst.cols + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(mat_dst.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, mat_dst.rows, 1 };
|
||||
|
||||
int dst_step1 = mat_dst.cols * mat_dst.elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
@ -176,10 +118,6 @@ namespace cv
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].offset));
|
||||
|
||||
// if channel == 3, then the matrix will convert to channel =4
|
||||
//if(n == 3)
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&offset_cols));
|
||||
|
||||
if(n == 3)
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
|
||||
@ -229,53 +167,6 @@ namespace cv
|
||||
mat_dst.create(size, CV_MAKETYPE(depth, total_channels));
|
||||
merge_vector_run(mat_src, n, mat_dst);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////////////split/////////////////////////////////////////////////////////////
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// static void split_vector_run_no_roi(const oclMat &mat_src, oclMat *mat_dst)
|
||||
// {
|
||||
// Context *clCxt = mat_src.clCxt;
|
||||
// int channels = mat_src.oclchannels();
|
||||
// int depth = mat_src.depth();
|
||||
|
||||
// string kernelName = "split_vector";
|
||||
|
||||
// int indexes[4][7] = {{0, 0, 0, 0, 0, 0, 0},
|
||||
// {8, 8, 8, 8, 4, 4, 2},
|
||||
// {8, 8, 8, 8 , 4, 4, 4},
|
||||
// {4, 4, 2, 2, 1, 1, 1}
|
||||
// };
|
||||
|
||||
// size_t index = indexes[channels - 1][mat_dst[0].depth()];
|
||||
// int cols = divUp(mat_src.cols, index);
|
||||
// size_t localThreads[3] = { 64, 4, 1 };
|
||||
// size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
// divUp(mat_src.rows, localThreads[1]) *localThreads[1],
|
||||
// 1
|
||||
// };
|
||||
|
||||
// vector<pair<size_t , const void *> > args;
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step));
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step));
|
||||
// if(channels >= 3)
|
||||
// {
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step));
|
||||
// }
|
||||
// if(channels >= 4)
|
||||
// {
|
||||
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data));
|
||||
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step));
|
||||
// }
|
||||
|
||||
// openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth);
|
||||
// }
|
||||
static void split_vector_run(const oclMat &mat_src, oclMat *mat_dst)
|
||||
{
|
||||
|
||||
@ -311,9 +202,7 @@ namespace cv
|
||||
: divUp(mat_src.cols + max_offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 64, 4, 1 };
|
||||
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
||||
divUp(mat_src.rows, localThreads[1]) *localThreads[1], 1
|
||||
};
|
||||
size_t globalThreads[3] = { cols, mat_src.rows, 1 };
|
||||
|
||||
int dst_step1 = mat_dst[0].cols * mat_dst[0].elemSize();
|
||||
vector<pair<size_t , const void *> > args;
|
||||
|
@ -96,13 +96,6 @@ namespace cv
|
||||
{
|
||||
namespace stereoCSBP
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////common////////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
static inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
static string get_kernel_name(string kernel_name, int data_type)
|
||||
{
|
||||
stringstream idxStr;
|
||||
@ -132,10 +125,7 @@ namespace cv
|
||||
|
||||
//size_t blockSize = 256;
|
||||
size_t localThreads[] = {32, 8 ,1};
|
||||
size_t globalThreads[] = {divUp(w, localThreads[0]) *localThreads[0],
|
||||
divUp(h, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[] = { w, h, 1 };
|
||||
|
||||
int cdisp_step1 = msg_step * h;
|
||||
openCLVerifyKernel(clCxt, kernel, localThreads);
|
||||
@ -177,7 +167,7 @@ namespace cv
|
||||
const int threadsNum = 256;
|
||||
//size_t blockSize = threadsNum;
|
||||
size_t localThreads[3] = {win_size, 1, threadsNum / win_size};
|
||||
size_t globalThreads[3] = {w *localThreads[0],
|
||||
size_t globalThreads[3] = { w *localThreads[0],
|
||||
h * divUp(rthis.ndisp, localThreads[2]) *localThreads[1], 1 * localThreads[2]
|
||||
};
|
||||
|
||||
@ -222,10 +212,7 @@ namespace cv
|
||||
|
||||
//size_t blockSize = 256;
|
||||
size_t localThreads[] = {32, 8 ,1};
|
||||
size_t globalThreads[] = {divUp(w, localThreads[0]) *localThreads[0],
|
||||
divUp(h, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[] = { w, h, 1 };
|
||||
|
||||
int disp_step = msg_step * h;
|
||||
openCLVerifyKernel(clCxt, kernel, localThreads);
|
||||
@ -257,10 +244,7 @@ namespace cv
|
||||
|
||||
//size_t blockSize = 256;
|
||||
size_t localThreads[] = {32, 8, 1};
|
||||
size_t globalThreads[] = {divUp(w, localThreads[0]) *localThreads[0],
|
||||
divUp(h, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[] = { w, h, 1 };
|
||||
|
||||
int disp_step = msg_step * h;
|
||||
openCLVerifyKernel(clCxt, kernel, localThreads);
|
||||
@ -291,14 +275,10 @@ namespace cv
|
||||
init_data_cost_reduce_caller(left, right, temp, rthis, msg_step, h, w, level);
|
||||
|
||||
if(rthis.use_local_init_data_cost == true)
|
||||
{
|
||||
get_first_initial_local_caller(data_cost_selected, disp_selected_pyr, temp, rthis, h, w, nr_plane, msg_step);
|
||||
}
|
||||
else
|
||||
{
|
||||
get_first_initial_global_caller(data_cost_selected, disp_selected_pyr, temp, rthis, h, w,
|
||||
nr_plane, msg_step);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
@ -317,12 +297,8 @@ namespace cv
|
||||
|
||||
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &stereocsbp, kernelName);
|
||||
|
||||
//size_t blockSize = 256;
|
||||
size_t localThreads[] = {32, 8, 1};
|
||||
size_t globalThreads[] = {divUp(w, localThreads[0]) *localThreads[0],
|
||||
divUp(h, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t localThreads[] = { 32, 8, 1 };
|
||||
size_t globalThreads[] = { w, h, 1 };
|
||||
|
||||
int disp_step1 = msg_step1 * h;
|
||||
int disp_step2 = msg_step2 * h2;
|
||||
@ -366,8 +342,8 @@ namespace cv
|
||||
|
||||
const size_t threadsNum = 256;
|
||||
//size_t blockSize = threadsNum;
|
||||
size_t localThreads[3] = {win_size, 1, threadsNum / win_size};
|
||||
size_t globalThreads[3] = {w *localThreads[0],
|
||||
size_t localThreads[3] = { win_size, 1, threadsNum / win_size };
|
||||
size_t globalThreads[3] = { w *localThreads[0],
|
||||
h * divUp(nr_plane, localThreads[2]) *localThreads[1], 1 * localThreads[2]
|
||||
};
|
||||
|
||||
@ -431,10 +407,7 @@ namespace cv
|
||||
|
||||
//size_t blockSize = 256;
|
||||
size_t localThreads[] = {32, 8, 1};
|
||||
size_t globalThreads[] = {divUp(w, localThreads[0]) *localThreads[0],
|
||||
divUp(h, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[] = { w, h, 1 };
|
||||
|
||||
int disp_step1 = msg_step1 * h;
|
||||
int disp_step2 = msg_step2 * h2;
|
||||
@ -535,10 +508,7 @@ namespace cv
|
||||
|
||||
//size_t blockSize = 256;
|
||||
size_t localThreads[] = {32, 8, 1};
|
||||
size_t globalThreads[] = {divUp(disp.cols, localThreads[0]) *localThreads[0],
|
||||
divUp(disp.rows, localThreads[1]) *localThreads[1],
|
||||
1
|
||||
};
|
||||
size_t globalThreads[] = { disp.cols, disp.rows, 1 };
|
||||
|
||||
int step_size = disp.step / disp.elemSize();
|
||||
int disp_step = disp.rows * msg_step;
|
||||
|
@ -96,10 +96,7 @@ static void prefilter_xsobel(const oclMat &input, oclMat &output, int prefilterC
|
||||
#define N_DISPARITIES 8
|
||||
#define ROWSperTHREAD 21
|
||||
#define BLOCK_W 128
|
||||
static inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////stereoBM_GPU////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
@ -117,11 +114,10 @@ static void stereo_bm(const oclMat &left, const oclMat &right, oclMat &disp,
|
||||
size_t local_mem_size = (N_DISPARITIES * (BLOCK_W + 2 * winsz2)) *
|
||||
sizeof(cl_uint);
|
||||
//size_t blockSize = 1;
|
||||
size_t localThreads[] = { BLOCK_W, 1,1};
|
||||
size_t globalThreads[] = { divUp(left.cols - maxdisp - 2 * winsz2, BLOCK_W) *BLOCK_W,
|
||||
size_t localThreads[] = { BLOCK_W, 1, 1 };
|
||||
size_t globalThreads[] = { left.cols - maxdisp - 2 * winsz2,
|
||||
divUp(left.rows - 2 * winsz2, ROWSperTHREAD),
|
||||
1
|
||||
};
|
||||
1 };
|
||||
|
||||
std::vector< std::pair<size_t, const void *> > args;
|
||||
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&left.data));
|
||||
@ -151,10 +147,9 @@ static void postfilter_textureness(oclMat &left, int winSize,
|
||||
|
||||
size_t blockSize = 1;
|
||||
size_t localThreads[] = { BLOCK_W, blockSize ,1};
|
||||
size_t globalThreads[] = { divUp(left.cols, BLOCK_W) *BLOCK_W,
|
||||
size_t globalThreads[] = { left.cols,
|
||||
divUp(left.rows, 2 * ROWSperTHREAD),
|
||||
1
|
||||
};
|
||||
1 };
|
||||
|
||||
size_t local_mem_size = (localThreads[0] + localThreads[0] + (winSize / 2) * 2) * sizeof(float);
|
||||
|
||||
|
@ -104,10 +104,7 @@ namespace cv
|
||||
{
|
||||
openCLFree(cl_con_struct);
|
||||
}
|
||||
static inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////comp data////////////////////////////////////////
|
||||
/////////////////////////////////////////////////////////////////////////
|
||||
|
Loading…
Reference in New Issue
Block a user