mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Perf testing: added ERROR_RELATIVE mode to SANITY_CHECK
This commit is contained in:
parent
fb051f78de
commit
58b980ea88
@ -52,14 +52,12 @@ PERF_TEST_P__CORE_ARITHM(add, TYPICAL_MATS_CORE_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM(subtract, TYPICAL_MATS_CORE_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM(min, TYPICAL_MATS_CORE_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM(max, TYPICAL_MATS_CORE_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM(absdiff, TYPICAL_MATS_CORE_ARITHM)
|
||||
|
||||
PERF_TEST_P__CORE_ARITHM_SCALAR(bitwise_and, TYPICAL_MATS_BITW_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM_SCALAR(bitwise_or, TYPICAL_MATS_BITW_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM_SCALAR(bitwise_xor, TYPICAL_MATS_BITW_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM_SCALAR(add, TYPICAL_MATS_CORE_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM_SCALAR(subtract, TYPICAL_MATS_CORE_ARITHM)
|
||||
PERF_TEST_P__CORE_ARITHM_SCALAR(absdiff, TYPICAL_MATS_CORE_ARITHM)
|
||||
|
||||
#ifdef ANDROID
|
||||
PERF_TEST(convert, cvRound)
|
||||
@ -75,3 +73,41 @@ PERF_TEST(convert, cvRound)
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
PERF_TEST_P(Size_MatType, core_arithm__absdiff, TYPICAL_MATS_CORE_ARITHM)
|
||||
{
|
||||
Size sz = std::tr1::get<0>(GetParam());
|
||||
int type = std::tr1::get<1>(GetParam());
|
||||
cv::Mat a = Mat(sz, type);
|
||||
cv::Mat b = Mat(sz, type);
|
||||
cv::Mat c = Mat(sz, type);
|
||||
|
||||
declare.in(a, b, WARMUP_RNG)
|
||||
.out(c);
|
||||
|
||||
TEST_CYCLE(100) absdiff(a,b, c);
|
||||
|
||||
#if CV_SSE2 //see ticket 1529: absdiff can be without saturation if SSE is enabled
|
||||
if (CV_MAT_DEPTH(type) != CV_32S)
|
||||
#endif
|
||||
SANITY_CHECK(c, 1e-8);
|
||||
}
|
||||
|
||||
PERF_TEST_P(Size_MatType, core_arithm__absdiff__Scalar, TYPICAL_MATS_CORE_ARITHM)
|
||||
{
|
||||
Size sz = std::tr1::get<0>(GetParam());
|
||||
int type = std::tr1::get<1>(GetParam());
|
||||
cv::Mat a = Mat(sz, type);
|
||||
cv::Scalar b;
|
||||
cv::Mat c = Mat(sz, type);
|
||||
|
||||
declare.in(a, b, WARMUP_RNG)
|
||||
.out(c);
|
||||
|
||||
TEST_CYCLE(100) absdiff(a,b, c);
|
||||
|
||||
#if CV_SSE2 //see ticket 1529: absdiff can be without saturation if SSE is enabled
|
||||
if (CV_MAT_DEPTH(type) != CV_32S)
|
||||
#endif
|
||||
SANITY_CHECK(c, 1e-8);
|
||||
}
|
||||
|
@ -21,7 +21,7 @@ PERF_TEST_P( Size_MatType, sum, TYPICAL_MATS )
|
||||
|
||||
TEST_CYCLE(100) { s = sum(arr); }
|
||||
|
||||
SANITY_CHECK(s, 1e-6);
|
||||
SANITY_CHECK(s, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
|
||||
@ -89,7 +89,7 @@ PERF_TEST_P( Size_MatType_NormType, norm,
|
||||
|
||||
TEST_CYCLE(100) { n = norm(src1, normType); }
|
||||
|
||||
SANITY_CHECK(n, 1e-5);
|
||||
SANITY_CHECK(n, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
|
||||
@ -116,7 +116,7 @@ PERF_TEST_P( Size_MatType_NormType, norm_mask,
|
||||
|
||||
TEST_CYCLE(100) { n = norm(src1, normType, mask); }
|
||||
|
||||
SANITY_CHECK(n, 1e-5);
|
||||
SANITY_CHECK(n, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
|
||||
@ -143,7 +143,7 @@ PERF_TEST_P( Size_MatType_NormType, norm2,
|
||||
|
||||
TEST_CYCLE(100) { n = norm(src1, src2, normType); }
|
||||
|
||||
SANITY_CHECK(n, 1e-5);
|
||||
SANITY_CHECK(n, 1e-5, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
|
||||
@ -171,7 +171,7 @@ PERF_TEST_P( Size_MatType_NormType, norm2_mask,
|
||||
|
||||
TEST_CYCLE(100) { n = norm(src1, src2, normType, mask); }
|
||||
|
||||
SANITY_CHECK(n, 1e-5);
|
||||
SANITY_CHECK(n, 1e-5, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
|
||||
@ -258,8 +258,8 @@ PERF_TEST_P( Size_MatType_NormType, normalize_32f,
|
||||
declare.in(src, WARMUP_RNG).out(dst);
|
||||
|
||||
TEST_CYCLE(100) { normalize(src, dst, alpha, 0., normType, CV_32F); }
|
||||
|
||||
SANITY_CHECK(dst, 1e-6);
|
||||
|
||||
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
|
||||
}
|
||||
|
||||
|
||||
@ -404,7 +404,7 @@ PERF_TEST_P( Size_MatType_ROp, reduceR,
|
||||
|
||||
TEST_CYCLE(100) { reduce(src, vec, 0, reduceOp, ddepth); }
|
||||
|
||||
SANITY_CHECK(vec);
|
||||
SANITY_CHECK(vec, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -431,6 +431,6 @@ PERF_TEST_P( Size_MatType_ROp, reduceC,
|
||||
declare.in(src, WARMUP_RNG);
|
||||
|
||||
TEST_CYCLE(100) { reduce(src, vec, 1, reduceOp, ddepth); }
|
||||
|
||||
SANITY_CHECK(vec);
|
||||
|
||||
SANITY_CHECK(vec, 1);
|
||||
}
|
||||
|
@ -149,13 +149,19 @@ CV_ENUM(MatDepth, CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F, CV_USRTY
|
||||
/*****************************************************************************************\
|
||||
* Regression control utility for performance testing *
|
||||
\*****************************************************************************************/
|
||||
enum ERROR_TYPE
|
||||
{
|
||||
ERROR_ABSOLUTE = 0,
|
||||
ERROR_RELATIVE = 1
|
||||
};
|
||||
|
||||
class CV_EXPORTS Regression
|
||||
{
|
||||
public:
|
||||
static Regression& add(const std::string& name, cv::InputArray array, double eps = DBL_EPSILON);
|
||||
static Regression& add(const std::string& name, cv::InputArray array, double eps = DBL_EPSILON, ERROR_TYPE err = ERROR_ABSOLUTE);
|
||||
static void Init(const std::string& testSuitName, const std::string& ext = ".xml");
|
||||
|
||||
Regression& operator() (const std::string& name, cv::InputArray array, double eps = DBL_EPSILON);
|
||||
Regression& operator() (const std::string& name, cv::InputArray array, double eps = DBL_EPSILON, ERROR_TYPE err = ERROR_ABSOLUTE);
|
||||
|
||||
private:
|
||||
static Regression& instance();
|
||||
@ -181,8 +187,8 @@ private:
|
||||
void init(const std::string& testSuitName, const std::string& ext);
|
||||
void write(cv::InputArray array);
|
||||
void write(cv::Mat m);
|
||||
void verify(cv::FileNode node, cv::InputArray array, double eps);
|
||||
void verify(cv::FileNode node, cv::Mat actual, double eps, std::string argname);
|
||||
void verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err);
|
||||
void verify(cv::FileNode node, cv::Mat actual, double eps, std::string argname, ERROR_TYPE err);
|
||||
};
|
||||
|
||||
#define SANITY_CHECK(array, ...) ::perf::Regression::add(#array, array , ## __VA_ARGS__)
|
||||
|
@ -43,9 +43,9 @@ Regression& Regression::instance()
|
||||
return single;
|
||||
}
|
||||
|
||||
Regression& Regression::add(const std::string& name, cv::InputArray array, double eps)
|
||||
Regression& Regression::add(const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err)
|
||||
{
|
||||
return instance()(name, array, eps);
|
||||
return instance()(name, array, eps, err);
|
||||
}
|
||||
|
||||
void Regression::Init(const std::string& testSuitName, const std::string& ext)
|
||||
@ -202,13 +202,25 @@ void Regression::write(cv::Mat m)
|
||||
write() << "val" << getElem(m, y, x, cn) << "}";
|
||||
}
|
||||
|
||||
void Regression::verify(cv::FileNode node, cv::Mat actual, double eps, std::string argname)
|
||||
static double evalEps(double expected, double actual, double _eps, ERROR_TYPE err)
|
||||
{
|
||||
if (err == ERROR_ABSOLUTE)
|
||||
return _eps;
|
||||
else if (err == ERROR_RELATIVE)
|
||||
return std::max(std::abs(expected), std::abs(actual)) * err;
|
||||
return 0;
|
||||
}
|
||||
|
||||
void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::string argname, ERROR_TYPE err)
|
||||
{
|
||||
double actual_min, actual_max;
|
||||
cv::minMaxLoc(actual, &actual_min, &actual_max);
|
||||
|
||||
double eps = evalEps((double)node["min"], actual_min, _eps, err);
|
||||
ASSERT_NEAR((double)node["min"], actual_min, eps)
|
||||
<< " " << argname << " has unexpected minimal value";
|
||||
|
||||
eps = evalEps((double)node["max"], actual_max, _eps, err);
|
||||
ASSERT_NEAR((double)node["max"], actual_max, eps)
|
||||
<< " " << argname << " has unexpected maximal value";
|
||||
|
||||
@ -218,6 +230,8 @@ void Regression::verify(cv::FileNode node, cv::Mat actual, double eps, std::stri
|
||||
<< " " << argname << " has unexpected number of columns";
|
||||
ASSERT_EQ((int)last["y"], actual.rows - 1)
|
||||
<< " " << argname << " has unexpected number of rows";
|
||||
|
||||
eps = evalEps((double)last["val"], actualLast, _eps, err);
|
||||
ASSERT_NEAR((double)last["val"], actualLast, eps)
|
||||
<< " " << argname << " has unexpected value of last element";
|
||||
|
||||
@ -225,6 +239,8 @@ void Regression::verify(cv::FileNode node, cv::Mat actual, double eps, std::stri
|
||||
int x1 = rng1["x"];
|
||||
int y1 = rng1["y"];
|
||||
int cn1 = rng1["cn"];
|
||||
|
||||
eps = evalEps((double)rng1["val"], getElem(actual, y1, x1, cn1), _eps, err);
|
||||
ASSERT_NEAR((double)rng1["val"], getElem(actual, y1, x1, cn1), eps)
|
||||
<< " " << argname << " has unexpected value of ["<< x1 << ":" << y1 << ":" << cn1 <<"] element";
|
||||
|
||||
@ -232,6 +248,8 @@ void Regression::verify(cv::FileNode node, cv::Mat actual, double eps, std::stri
|
||||
int x2 = rng2["x"];
|
||||
int y2 = rng2["y"];
|
||||
int cn2 = rng2["cn"];
|
||||
|
||||
eps = evalEps((double)rng2["val"], getElem(actual, y2, x2, cn2), _eps, err);
|
||||
ASSERT_NEAR((double)rng2["val"], getElem(actual, y2, x2, cn2), eps)
|
||||
<< " " << argname << " has unexpected value of ["<< x2 << ":" << y2 << ":" << cn2 <<"] element";
|
||||
}
|
||||
@ -263,7 +281,31 @@ void Regression::write(cv::InputArray array)
|
||||
}
|
||||
}
|
||||
|
||||
void Regression::verify(cv::FileNode node, cv::InputArray array, double eps)
|
||||
static int countViolations(const cv::Mat& expected, const cv::Mat& actual, const cv::Mat& diff, double eps, double* max_violation = 0, double* max_allowed = 0)
|
||||
{
|
||||
cv::Mat diff64f;
|
||||
diff.reshape(1).convertTo(diff64f, CV_64F);
|
||||
|
||||
cv::Mat expected_abs = cv::abs(expected.reshape(1));
|
||||
cv::Mat actual_abs = cv::abs(actual.reshape(1));
|
||||
cv::Mat maximum, mask;
|
||||
cv::max(expected_abs, actual_abs, maximum);
|
||||
cv::multiply(maximum, cv::Vec<double, 1>(eps), maximum, CV_64F);
|
||||
cv::compare(diff64f, maximum, mask, cv::CMP_GT);
|
||||
|
||||
int v = cv::countNonZero(mask);
|
||||
|
||||
if (v > 0 && max_violation != 0 && max_allowed != 0)
|
||||
{
|
||||
int loc[10];
|
||||
cv::minMaxIdx(maximum, 0, max_allowed, 0, loc, mask);
|
||||
*max_violation = diff64f.at<double>(loc[1], loc[0]);
|
||||
}
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err)
|
||||
{
|
||||
ASSERT_EQ((int)node["kind"], array.kind()) << " Argument \"" << node.name() << "\" has unexpected kind";
|
||||
ASSERT_EQ((int)node["type"], array.type()) << " Argument \"" << node.name() << "\" has unexpected type";
|
||||
@ -280,7 +322,7 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps)
|
||||
{
|
||||
ASSERT_LE((size_t)26, actual.total() * (size_t)actual.channels())
|
||||
<< " \"" << node.name() << "[" << idx << "]\" has unexpected number of elements";
|
||||
verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx));
|
||||
verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx), err);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -292,12 +334,26 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps)
|
||||
|
||||
cv::Mat diff;
|
||||
cv::absdiff(expected, actual, diff);
|
||||
if (!cv::checkRange(diff, true, 0, 0, eps))
|
||||
|
||||
if (err == ERROR_ABSOLUTE)
|
||||
{
|
||||
double max;
|
||||
cv::minMaxLoc(diff, 0, &max);
|
||||
FAIL() << " Difference (=" << max << ") between argument \""
|
||||
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps;
|
||||
if (!cv::checkRange(diff, true, 0, 0, eps))
|
||||
{
|
||||
double max;
|
||||
cv::minMaxLoc(diff.reshape(1), 0, &max);
|
||||
FAIL() << " Absolute difference (=" << max << ") between argument \""
|
||||
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps;
|
||||
}
|
||||
}
|
||||
else if (err == ERROR_RELATIVE)
|
||||
{
|
||||
double maxv, maxa;
|
||||
int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
|
||||
if (violations > 0)
|
||||
{
|
||||
FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \""
|
||||
<< node.name() << "[" << idx << "]\" and expected value is bugger than " << eps << " in " << violations << " points";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -307,7 +363,7 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps)
|
||||
{
|
||||
ASSERT_LE((size_t)26, array.total() * (size_t)array.channels())
|
||||
<< " Argument \"" << node.name() << "\" has unexpected number of elements";
|
||||
verify(node, array.getMat(), eps, "Argument " + node.name());
|
||||
verify(node, array.getMat(), eps, "Argument " + node.name(), err);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -320,18 +376,32 @@ void Regression::verify(cv::FileNode node, cv::InputArray array, double eps)
|
||||
|
||||
cv::Mat diff;
|
||||
cv::absdiff(expected, actual, diff);
|
||||
if (!cv::checkRange(diff, true, 0, 0, eps))
|
||||
|
||||
if (err == ERROR_ABSOLUTE)
|
||||
{
|
||||
double max;
|
||||
cv::minMaxLoc(diff, 0, &max);
|
||||
FAIL() << " Difference (=" << max << ") between argument \"" << node.name()
|
||||
<< "\" and expected value is bugger than " << eps;
|
||||
if (!cv::checkRange(diff, true, 0, 0, eps))
|
||||
{
|
||||
double max;
|
||||
cv::minMaxLoc(diff.reshape(1), 0, &max);
|
||||
FAIL() << " Difference (=" << max << ") between argument \"" << node.name()
|
||||
<< "\" and expected value is bugger than " << eps;
|
||||
}
|
||||
}
|
||||
else if (err == ERROR_RELATIVE)
|
||||
{
|
||||
double maxv, maxa;
|
||||
int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa);
|
||||
if (violations > 0)
|
||||
{
|
||||
FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name()
|
||||
<< "\" and expected value is bugger than " << eps << " in " << violations << " points";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps)
|
||||
Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err)
|
||||
{
|
||||
std::string nodename = getCurrentTestNodeName();
|
||||
|
||||
@ -356,7 +426,7 @@ Regression& Regression::operator() (const std::string& name, cv::InputArray arra
|
||||
if (!this_arg.isMap())
|
||||
ADD_FAILURE() << " No regression data for " << name << " argument";
|
||||
else
|
||||
verify(this_arg, array, eps);
|
||||
verify(this_arg, array, eps, err);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user