mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
dnn(test): add two_inputs test with FP32/U8 data types
- remove similar test from IE scope under HAVE_INF_ENGINE
This commit is contained in:
parent
b55d8f46f4
commit
58dc397930
@ -1380,57 +1380,6 @@ INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs_3dim, Combine(
|
||||
testing::ValuesIn(list_sizes)
|
||||
));
|
||||
|
||||
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_DLDT_two_inputs;
|
||||
TEST_P(Test_DLDT_two_inputs, as_backend)
|
||||
{
|
||||
static const float kScale = 0.5f;
|
||||
static const float kScaleInv = 1.0f / kScale;
|
||||
|
||||
Backend backendId = get<0>(get<2>(GetParam()));
|
||||
Target targetId = get<1>(get<2>(GetParam()));
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.type = "Eltwise";
|
||||
lp.name = "testLayer";
|
||||
lp.set("operation", "sum");
|
||||
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input
|
||||
net.connect(0, 1, eltwiseId, 1); // connect to a second input
|
||||
|
||||
int inpSize[] = {1, 2, 3, 4};
|
||||
Mat firstInp(4, &inpSize[0], get<0>(GetParam()));
|
||||
Mat secondInp(4, &inpSize[0], get<1>(GetParam()));
|
||||
randu(firstInp, 0, 255);
|
||||
randu(secondInp, 0, 255);
|
||||
|
||||
net.setInputsNames({"data", "second_input"});
|
||||
net.setInput(firstInp, "data", kScale);
|
||||
net.setInput(secondInp, "second_input", kScaleInv);
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
Mat out = net.forward();
|
||||
|
||||
Mat ref;
|
||||
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F);
|
||||
// Output values are in range [0, 637.5].
|
||||
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.06 : 1e-6;
|
||||
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.3 : 1e-5;
|
||||
normAssert(out, ref, "", l1, lInf);
|
||||
if (cvtest::debugLevel > 0 || HasFailure())
|
||||
{
|
||||
std::cout << "input1 scale=" << kScale << " input2 scale=" << kScaleInv << std::endl;
|
||||
std::cout << "input1: " << firstInp.size << " " << firstInp.reshape(1, 1) << std::endl;
|
||||
std::cout << "input2: " << secondInp.size << " " << secondInp.reshape(1, 1) << std::endl;
|
||||
std::cout << "ref: " << ref.reshape(1, 1) << std::endl;
|
||||
std::cout << "out: " << out.reshape(1, 1) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs, Combine(
|
||||
Values(CV_8U, CV_32F), Values(CV_8U, CV_32F),
|
||||
dnnBackendsAndTargets()
|
||||
));
|
||||
|
||||
class UnsupportedLayer : public Layer
|
||||
{
|
||||
public:
|
||||
|
@ -828,4 +828,64 @@ INSTANTIATE_TEST_CASE_P(/**/, Test_Model_Optimizer,
|
||||
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
||||
typedef testing::TestWithParam<tuple<MatDepth, MatDepth, tuple<Backend, Target> > > Test_two_inputs;
|
||||
TEST_P(Test_two_inputs, basic)
|
||||
{
|
||||
static const float kScale = 0.5f;
|
||||
static const float kScaleInv = 1.0f / kScale;
|
||||
|
||||
Backend backendId = get<0>(get<2>(GetParam()));
|
||||
Target targetId = get<1>(get<2>(GetParam()));
|
||||
|
||||
Net net;
|
||||
LayerParams lp;
|
||||
lp.type = "Eltwise";
|
||||
lp.name = "testLayer";
|
||||
lp.set("operation", "sum");
|
||||
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input
|
||||
net.connect(0, 1, eltwiseId, 1); // connect to a second input
|
||||
|
||||
int inpSize[] = {1, 2, 3, 4};
|
||||
Mat firstInp(4, &inpSize[0], get<0>(GetParam()));
|
||||
Mat secondInp(4, &inpSize[0], get<1>(GetParam()));
|
||||
randu(firstInp, 0, 100);
|
||||
randu(secondInp, 0, 100);
|
||||
|
||||
#ifndef CV_CXX11
|
||||
std::vector<String> input_names;
|
||||
input_names.push_back("data");
|
||||
input_names.push_back("second_input");
|
||||
net.setInputsNames(input_names);
|
||||
#else
|
||||
net.setInputsNames({"data", "second_input"});
|
||||
#endif
|
||||
net.setInput(firstInp, "data", kScale);
|
||||
net.setInput(secondInp, "second_input", kScaleInv);
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
Mat out = net.forward();
|
||||
|
||||
Mat ref;
|
||||
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F);
|
||||
|
||||
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.06 : 1e-6;
|
||||
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.3 : 1e-5;
|
||||
normAssert(out, ref, "", l1, lInf);
|
||||
|
||||
if (cvtest::debugLevel > 0 || HasFailure())
|
||||
{
|
||||
std::cout << "input1 scale=" << kScale << " input2 scale=" << kScaleInv << std::endl;
|
||||
std::cout << "input1: " << firstInp.size << " " << firstInp.reshape(1, 1) << std::endl;
|
||||
std::cout << "input2: " << secondInp.size << " " << secondInp.reshape(1, 1) << std::endl;
|
||||
std::cout << "ref: " << ref.reshape(1, 1) << std::endl;
|
||||
std::cout << "out: " << out.reshape(1, 1) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_two_inputs, Combine(
|
||||
Values(CV_32F, CV_8U),
|
||||
Values(CV_32F, CV_8U),
|
||||
dnnBackendsAndTargets()
|
||||
));
|
||||
|
||||
}} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user