adding samples for brief and the cout << cv::Mat functions.

This commit is contained in:
Ethan Rublee 2010-11-14 06:28:41 +00:00
parent d84b970bf2
commit 5915e4c7ee
3 changed files with 366 additions and 0 deletions

View File

@ -0,0 +1,118 @@
/*
* matching_test.cpp
*
* Created on: Oct 17, 2010
* Author: ethan
*/
#include <opencv2/opencv.hpp>
#include <vector>
#include <iostream>
using namespace cv;
using std::cout;
using std::cerr;
using std::endl;
using std::vector;
void matches2points(const vector<DMatch>& matches, const vector<KeyPoint>& kpts_train,
const vector<KeyPoint>& kpts_query, vector<Point2f>& pts_train, vector<Point2f>& pts_query)
{
pts_train.clear();
pts_query.clear();
pts_train.reserve(matches.size());
pts_query.reserve(matches.size());
for (size_t i = 0; i < matches.size(); i++)
{
const DMatch& match = matches[i];
pts_query.push_back(kpts_query[match.queryIdx].pt);
pts_train.push_back(kpts_train[match.trainIdx].pt);
}
}
float match(const vector<KeyPoint>& kpts_train, const vector<KeyPoint>& kpts_query, DescriptorMatcher& matcher,
const Mat& train, const Mat& query, vector<DMatch>& matches)
{
float t = (double)getTickCount();
matcher.match(query, train, matches);
return ((double)getTickCount() - t) / getTickFrequency();
}
int main(int ac, char ** av)
{
if (ac != 3)
{
cerr << "usage: " << av[0] << " im1.jpg im2.jpg" << endl;
return 1;
}
string im1_name, im2_name;
im1_name = av[1];
im2_name = av[2];
Mat im1 = imread(im1_name, CV_LOAD_IMAGE_GRAYSCALE);
Mat im2 = imread(im2_name, CV_LOAD_IMAGE_GRAYSCALE);
if (im1.empty() || im2.empty())
{
cerr << "could not open one of the images..." << endl;
return 1;
}
double t = (double)getTickCount();
FastFeatureDetector detector(50);
BriefDescriptorExtractor extractor(32);
vector<KeyPoint> kpts_1, kpts_2;
detector.detect(im1, kpts_1);
detector.detect(im2, kpts_2);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "found " << kpts_1.size() << " keypoints in " << im1_name << endl << "fount " << kpts_2.size()
<< " keypoints in " << im2_name << endl << "took " << t << " seconds." << endl;
Mat desc_1, desc_2;
cout << "computing descriptors..." << endl;
t = (double)getTickCount();
extractor.compute(im1, kpts_1, desc_1);
extractor.compute(im2, kpts_2, desc_2);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "done computing descriptors... took " << t << " seconds" << endl;
cout << "matching with BruteForceMatcher<HammingLUT>" << endl;
BruteForceMatcher<HammingLUT> matcher;
vector<DMatch> matches_lut;
float lut_time = match(kpts_1, kpts_2, matcher, desc_1, desc_2, matches_lut);
cout << "done BruteForceMatcher<HammingLUT> matching. took " << lut_time << " seconds" << endl;
cout << "matching with BruteForceMatcher<Hamming>" << endl;
BruteForceMatcher<Hamming> matcher_popcount;
vector<DMatch> matches_popcount;
float pop_time = match(kpts_1, kpts_2, matcher_popcount, desc_1, desc_2, matches_popcount);
cout << "done BruteForceMatcher<Hamming> matching. took " << pop_time << " seconds" << endl;
vector<Point2f> mpts_1, mpts_2;
matches2points(matches_popcount, kpts_1, kpts_2, mpts_1, mpts_2);
vector<uchar> outlier_mask;
Mat H = findHomography(Mat(mpts_2), Mat(mpts_1), outlier_mask, RANSAC, 1);
Mat outimg;
drawMatches(im2, kpts_2, im1, kpts_1, matches_popcount, outimg, Scalar::all(-1), Scalar::all(-1),
reinterpret_cast<const vector<char>&> (outlier_mask));
imshow("matches - popcount - outliers removed", outimg);
Mat warped;
warpPerspective(im2, warped, H, im1.size());
imshow("warped", warped);
imshow("diff", im1 - warped);
waitKey();
return 0;
}

View File

@ -0,0 +1,34 @@
#include "opencv2/core/core.hpp"
using namespace std;
using namespace cv;
int main()
{
Mat i = Mat::eye(4, 4, CV_32F);
cout << "i = " << i << ";" << endl;
Mat r = Mat(10, 10, CV_8UC1);
randu(r, Scalar(0), Scalar(255));
cout << "r = " << r << ";" << endl;
Point2f p(5, 1);
cout << "p = " << p << ";" << endl;
Point3f p3f(2, 6, 7);
cout << "p3f = " << p3f << ";" << endl;
vector<Point2f> points(20);
for (size_t i = 0; i < points.size(); ++i)
{
points[i] = Point2f(i * 5, i % 7);
}
cout << "points = " << points << ";" << endl;
cout << "#csv" << endl;
writeCSV(cout, r);
return 1;
}

View File

@ -0,0 +1,214 @@
/*
* video_homography.cpp
*
* Created on: Oct 18, 2010
* Author: erublee
*/
#include <opencv2/opencv.hpp>
#include <iostream>
#include <list>
#include <vector>
using namespace std;
using namespace cv;
namespace
{
void drawMatchesRelative(const vector<KeyPoint>& train, const vector<KeyPoint>& query,
std::vector<cv::DMatch>& matches, Mat& img, const vector<unsigned char>& mask = vector<
unsigned char> ())
{
for (int i = 0; i < (int)matches.size(); i++)
{
if (mask.empty() || mask[i])
{
Point2f pt_new = query[matches[i].queryIdx].pt;
Point2f pt_old = train[matches[i].trainIdx].pt;
Point2f dist = pt_new - pt_old;
cv::line(img, pt_new, pt_old, Scalar(125, 255, 125), 1);
cv::circle(img, pt_new, 2, Scalar(255, 0, 125), 1);
}
}
}
void keypoints2points(const vector<KeyPoint>& in, vector<Point2f>& out)
{
out.clear();
out.reserve(in.size());
for (size_t i = 0; i < in.size(); ++i)
{
out.push_back(in[i].pt);
}
}
void points2keypoints(const vector<Point2f>& in, vector<KeyPoint>& out)
{
out.clear();
out.reserve(in.size());
for (size_t i = 0; i < in.size(); ++i)
{
out.push_back(KeyPoint(in[i], 1));
}
}
void warpKeypoints(const Mat& H, const vector<KeyPoint>& in, vector<KeyPoint>& out)
{
vector<Point2f> pts;
keypoints2points(in, pts);
vector<Point2f> pts_w(pts.size());
Mat m_pts_w(pts_w);
perspectiveTransform(Mat(pts), m_pts_w, H);
points2keypoints(pts_w, out);
}
void matches2points(const vector<KeyPoint>& train, const vector<KeyPoint>& query,
const std::vector<cv::DMatch>& matches, std::vector<cv::Point2f>& pts_train,
std::vector<Point2f>& pts_query)
{
pts_train.clear();
pts_query.clear();
pts_train.reserve(matches.size());
pts_query.reserve(matches.size());
size_t i = 0;
for (; i < matches.size(); i++)
{
const DMatch & dmatch = matches[i];
pts_query.push_back(query[dmatch.queryIdx].pt);
pts_train.push_back(train[dmatch.trainIdx].pt);
}
}
void resetH(Mat&H)
{
H = Mat::eye(3, 3, CV_32FC1);
}
}
int main(int ac, char ** av)
{
if (ac != 2)
{
cout << "usage: " << av[0] << " <video device number>" << endl;
return 1;
}
BriefDescriptorExtractor brief(32);
VideoCapture capture;
capture.open(atoi(av[1]));
if (!capture.isOpened())
{
cout << "capture device " << atoi(av[1]) << " failed to open!" << endl;
return 1;
}
cout << "following keys do stuff:" << endl;
cout << "t : grabs a reference frame to match against" << endl;
cout << "l : makes the reference frame new every frame" << endl;
cout << "q or escape: quit" << endl;
Mat frame;
vector<DMatch> matches;
BruteForceMatcher<Hamming> desc_matcher;
vector<Point2f> train_pts, query_pts;
vector<KeyPoint> train_kpts, query_kpts;
vector<unsigned char> match_mask;
Mat gray;
bool ref_live = true;
Mat train_desc, query_desc;
const int DESIRED_FTRS = 500;
GridAdaptedFeatureDetector detector(new FastFeatureDetector(10, true), DESIRED_FTRS, 4, 4);
Mat H_prev = Mat::eye(3, 3, CV_32FC1);
for (;;)
{
capture >> frame;
if (frame.empty())
continue;
cvtColor(frame, gray, CV_RGB2GRAY);
detector.detect(gray, query_kpts);
brief.compute(gray, query_kpts, query_desc);
if (!train_kpts.empty())
{
vector<KeyPoint> test_kpts;
warpKeypoints(H_prev.inv(), query_kpts, test_kpts);
Mat mask = windowedMatchingMask(test_kpts, train_kpts, 25, 25);
desc_matcher.match(query_desc, train_desc, matches, mask);
drawKeypoints(frame, test_kpts, frame, Scalar(255, 0, 0), DrawMatchesFlags::DRAW_OVER_OUTIMG);
matches2points(train_kpts, query_kpts, matches, train_pts, query_pts);
if (matches.size() > 5)
{
Mat H = findHomography(Mat(train_pts), Mat(query_pts), match_mask, RANSAC, 4);
if (countNonZero(Mat(match_mask)) > 15)
{
H_prev = H;
}
else
resetH(H_prev);
drawMatchesRelative(train_kpts, query_kpts, matches, frame, match_mask);
}
else
resetH(H_prev);
}
else
{
H_prev = Mat::eye(3, 3, CV_32FC1);
Mat out;
drawKeypoints(gray, query_kpts, out);
frame = out;
}
imshow("frame", frame);
if (ref_live)
{
train_kpts = query_kpts;
query_desc.copyTo(train_desc);
}
char key = waitKey(2);
switch (key)
{
case 'l':
ref_live = true;
resetH(H_prev);
break;
case 't':
ref_live = false;
train_kpts = query_kpts;
query_desc.copyTo(train_desc);
resetH(H_prev);
break;
case 27:
case 'q':
return 0;
break;
}
}
return 0;
}