mirror of
https://github.com/opencv/opencv.git
synced 2025-06-08 01:53:19 +08:00
Merge pull request #10232 from TomBecker-BD:hough-many-circles
Hough many circles (#10232) * Add Hui's optimization. Merge with latest changes in OpenCV. * Use conditional compilation instead of a runtime flag. * Whitespace. * Create the sequence for the nonzero edge pixels only if using that approach. * Improve performance for finding very large numbers of circles * Return the circles with the larger accumulator values first, as per API documentation. Use a separate step to check distance between circles. Allows circles to be sorted by strength first. Avoids locking in EstimateRadius which was slowing it down. Return centers only if maxRadius == 0 as per API documentation. * Sort the circles so results are deterministic. Otherwise the order of circles with the same strength depends on parallel processing completion order. * Add test for HoughCircles. * Add beads test. * Wrap the non-zero points structure in a common interface so the code can use either a vector or a matrix. * Remove the special case for skipping the radius search if maxRadius==0. * Add performance tests. * Use NULL instead of nullptr. OpenCV should compile with C++98 compiler. * Put test suite name first. Use different test suite names for each test to avoid an error from the test runner. * Address build bot errors and warnings. * Skip radius search if maxRadius < 0. * Dynamically switch to NZPointList when it will be faster than NZPointSet. * Fix compile error: missing 'typename' prior to dependent type name. * Fix compile error: missing 'typename' prior to dependent type name. This time fix it the non C++ 11 way. * Fix compile error: no type named 'const_reference' in 'class cv::NZPointList' * Disable ManySmallCircles tests. Failing on Mac. * Change beads image to JPEG for smaller file size. Try enabling the ManySmallCircles tests again. * Remove ManySmallCircles tests. They are failing on the Mac build. * Fix expectations to check all circles. * Changing case on a case-insensitive file system Step 1: remove the old file names * Changing case on a case-insensitive file system Step 2: add them back with the new names * Fix cmpAccum function to be strictly weak ordered. * Add tests for many small circles. * imgproc(perf): fix HoughCircles tests * imgproc(houghCircles): refactor code - simplify NZPointList - drop broken (de-synchronization of 'current'/'mi' fields) NZPointSet iterator - NZPointSet iterator is replaced to direct area scan - use SIMD intrinsics - avoid std exceptions (build for embedded systems)
This commit is contained in:
parent
d9c0231475
commit
592f8d8c1b
@ -2094,8 +2094,8 @@ Example: :
|
||||
|
||||
@note Usually the function detects the centers of circles well. However, it may fail to find correct
|
||||
radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
|
||||
you know it. Or, you may set maxRadius to 0 to return centers only without radius search, and find the correct
|
||||
radius using an additional procedure.
|
||||
you know it. Or, you may set maxRadius to a negative number to return centers only without radius
|
||||
search, and find the correct radius using an additional procedure.
|
||||
|
||||
@param image 8-bit, single-channel, grayscale input image.
|
||||
@param circles Output vector of found circles. Each vector is encoded as a 3-element
|
||||
@ -2114,7 +2114,8 @@ accumulator threshold for the circle centers at the detection stage. The smaller
|
||||
false circles may be detected. Circles, corresponding to the larger accumulator values, will be
|
||||
returned first.
|
||||
@param minRadius Minimum circle radius.
|
||||
@param maxRadius Maximum circle radius.
|
||||
@param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, returns
|
||||
centers without finding the radius.
|
||||
|
||||
@sa fitEllipse, minEnclosingCircle
|
||||
*/
|
||||
|
57
modules/imgproc/perf/perf_houghcircles.cpp
Normal file
57
modules/imgproc/perf/perf_houghcircles.cpp
Normal file
@ -0,0 +1,57 @@
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgproc/types_c.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
|
||||
PERF_TEST(PerfHoughCircles, Basic)
|
||||
{
|
||||
string filename = getDataPath("cv/imgproc/stuff.jpg");
|
||||
const double dp = 1.0;
|
||||
double minDist = 20;
|
||||
double edgeThreshold = 20;
|
||||
double accumThreshold = 30;
|
||||
int minRadius = 20;
|
||||
int maxRadius = 200;
|
||||
|
||||
Mat img = imread(filename, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty()) << "Unable to load source image " << filename;
|
||||
|
||||
GaussianBlur(img, img, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
declare.in(img);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
HoughCircles(img, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST(PerfHoughCircles2, ManySmallCircles)
|
||||
{
|
||||
string filename = getDataPath("cv/imgproc/beads.jpg");
|
||||
const double dp = 1.0;
|
||||
double minDist = 10;
|
||||
double edgeThreshold = 90;
|
||||
double accumThreshold = 11;
|
||||
int minRadius = 7;
|
||||
int maxRadius = 18;
|
||||
|
||||
Mat img = imread(filename, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(img.empty()) << "Unable to load source image " << filename;
|
||||
|
||||
vector<Vec3f> circles;
|
||||
declare.in(img);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
HoughCircles(img, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
}
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
@ -44,6 +44,8 @@
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels_imgproc.hpp"
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -885,32 +887,108 @@ void HoughLinesP(InputArray _image, OutputArray _lines,
|
||||
* Circle Detection *
|
||||
\****************************************************************************************/
|
||||
|
||||
struct markedCircle
|
||||
struct EstimatedCircle
|
||||
{
|
||||
markedCircle(Vec3f _c, int _idx, int _idxC) :
|
||||
c(_c), idx(_idx), idxC(_idxC) {}
|
||||
EstimatedCircle(Vec3f _c, int _accum) :
|
||||
c(_c), accum(_accum) {}
|
||||
Vec3f c;
|
||||
int idx, idxC;
|
||||
int accum;
|
||||
};
|
||||
|
||||
inline bool cmpCircleIndex(const markedCircle &left, const markedCircle &right)
|
||||
static bool cmpAccum(const EstimatedCircle& left, const EstimatedCircle& right)
|
||||
{
|
||||
return left.idx > right.idx;
|
||||
// Compare everything so the order is completely deterministic
|
||||
// Larger accum first
|
||||
if (left.accum > right.accum)
|
||||
return true;
|
||||
else if (left.accum < right.accum)
|
||||
return false;
|
||||
// Larger radius first
|
||||
else if (left.c[2] > right.c[2])
|
||||
return true;
|
||||
else if (left.c[2] < right.c[2])
|
||||
return false;
|
||||
// Smaller X
|
||||
else if (left.c[0] < right.c[0])
|
||||
return true;
|
||||
else if (left.c[0] > right.c[0])
|
||||
return false;
|
||||
// Smaller Y
|
||||
else if (left.c[1] < right.c[1])
|
||||
return true;
|
||||
else if (left.c[1] > right.c[1])
|
||||
return false;
|
||||
// Identical - neither object is less than the other
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
inline Vec3f GetCircle(const EstimatedCircle& est)
|
||||
{
|
||||
return est.c;
|
||||
}
|
||||
|
||||
class NZPointList : public std::vector<Point>
|
||||
{
|
||||
private:
|
||||
NZPointList(const NZPointList& other); // non-copyable
|
||||
|
||||
public:
|
||||
NZPointList(int reserveSize = 256)
|
||||
{
|
||||
reserve(reserveSize);
|
||||
}
|
||||
};
|
||||
|
||||
class NZPointSet
|
||||
{
|
||||
private:
|
||||
NZPointSet(const NZPointSet& other); // non-copyable
|
||||
|
||||
public:
|
||||
Mat_<uchar> positions;
|
||||
|
||||
NZPointSet(int rows, int cols) :
|
||||
positions(rows, cols, (uchar)0)
|
||||
{
|
||||
}
|
||||
|
||||
void insert(const Point& pt)
|
||||
{
|
||||
positions(pt) = 1;
|
||||
}
|
||||
|
||||
void insert(const NZPointSet& from)
|
||||
{
|
||||
cv::bitwise_or(from.positions, positions, positions);
|
||||
}
|
||||
|
||||
void toList(NZPointList& list) const
|
||||
{
|
||||
for (int y = 0; y < positions.rows; y++)
|
||||
{
|
||||
const uchar *ptr = positions.ptr<uchar>(y, 0);
|
||||
for (int x = 0; x < positions.cols; x++)
|
||||
{
|
||||
if (ptr[x])
|
||||
{
|
||||
list.push_back(Point(x, y));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class HoughCirclesAccumInvoker : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
HoughCirclesAccumInvoker(const Mat &_edges, const Mat &_dx, const Mat &_dy, int _minRadius, int _maxRadius, float _idp,
|
||||
std::vector<Mat>& _accumVec, std::vector<Point>& _nz, Mutex& _mtx) :
|
||||
std::vector<Mat>& _accumVec, NZPointSet& _nz, Mutex& _mtx) :
|
||||
edges(_edges), dx(_dx), dy(_dy), minRadius(_minRadius), maxRadius(_maxRadius), idp(_idp),
|
||||
accumVec(_accumVec), nz(_nz), mutex(_mtx)
|
||||
{
|
||||
acols = cvCeil(edges.cols * idp), arows = cvCeil(edges.rows * idp);
|
||||
astep = acols + 2;
|
||||
#if CV_SIMD128
|
||||
haveSIMD = hasSIMD128();
|
||||
#endif
|
||||
}
|
||||
|
||||
~HoughCirclesAccumInvoker() { }
|
||||
@ -919,8 +997,7 @@ public:
|
||||
{
|
||||
Mat accumLocal = Mat(arows + 2, acols + 2, CV_32SC1, Scalar::all(0));
|
||||
int *adataLocal = accumLocal.ptr<int>();
|
||||
std::vector<Point> nzLocal;
|
||||
nzLocal.reserve(256);
|
||||
NZPointSet nzLocal(nz.positions.rows, nz.positions.cols);
|
||||
int startRow = boundaries.start;
|
||||
int endRow = boundaries.end;
|
||||
int numCols = edges.cols;
|
||||
@ -942,7 +1019,6 @@ public:
|
||||
for(; x < numCols; ++x )
|
||||
{
|
||||
#if CV_SIMD128
|
||||
if(haveSIMD)
|
||||
{
|
||||
v_uint8x16 v_zero = v_setzero_u8();
|
||||
|
||||
@ -996,7 +1072,7 @@ _next_step:
|
||||
continue;
|
||||
|
||||
Point pt = Point(x % edges.cols, y + x / edges.cols);
|
||||
nzLocal.push_back(pt);
|
||||
nzLocal.insert(pt);
|
||||
|
||||
sx = cvRound((vx * idp) * 1024 / mag);
|
||||
sy = cvRound((vy * idp) * 1024 / mag);
|
||||
@ -1025,9 +1101,11 @@ _next_step:
|
||||
}
|
||||
}
|
||||
|
||||
{ // TODO Try using TLSContainers
|
||||
AutoLock lock(mutex);
|
||||
accumVec.push_back(accumLocal);
|
||||
nz.insert(nz.end(), nzLocal.begin(), nzLocal.end());
|
||||
nz.insert(nzLocal);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
@ -1035,12 +1113,9 @@ private:
|
||||
int minRadius, maxRadius;
|
||||
float idp;
|
||||
std::vector<Mat>& accumVec;
|
||||
std::vector<Point>& nz;
|
||||
NZPointSet& nz;
|
||||
|
||||
int acols, arows, astep;
|
||||
#if CV_SIMD128
|
||||
bool haveSIMD;
|
||||
#endif
|
||||
|
||||
Mutex& mutex;
|
||||
};
|
||||
@ -1105,150 +1180,117 @@ private:
|
||||
Mutex& _lock;
|
||||
};
|
||||
|
||||
static bool CheckDistance(const std::vector<Vec3f> &circles, size_t endIdx, const Vec3f& circle, float minDist2)
|
||||
{
|
||||
bool goodPoint = true;
|
||||
for (uint j = 0; j < endIdx; ++j)
|
||||
{
|
||||
Vec3f pt = circles[j];
|
||||
float distX = circle[0] - pt[0], distY = circle[1] - pt[1];
|
||||
if (distX * distX + distY * distY < minDist2)
|
||||
{
|
||||
goodPoint = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return goodPoint;
|
||||
}
|
||||
|
||||
static void GetCircleCenters(const std::vector<int> ¢ers, std::vector<Vec3f> &circles, int acols, float minDist, float dr)
|
||||
{
|
||||
size_t centerCnt = centers.size();
|
||||
float minDist2 = minDist * minDist;
|
||||
for (size_t i = 0; i < centerCnt; ++i)
|
||||
{
|
||||
int center = centers[i];
|
||||
int y = center / acols;
|
||||
int x = center - y * acols;
|
||||
Vec3f circle = Vec3f((x + 0.5f) * dr, (y + 0.5f) * dr, 0);
|
||||
|
||||
bool goodPoint = CheckDistance(circles, circles.size(), circle, minDist2);
|
||||
if (goodPoint)
|
||||
circles.push_back(circle);
|
||||
}
|
||||
}
|
||||
|
||||
static void RemoveOverlaps(std::vector<Vec3f>& circles, float minDist)
|
||||
{
|
||||
float minDist2 = minDist * minDist;
|
||||
size_t endIdx = 1;
|
||||
for (size_t i = 1; i < circles.size(); ++i)
|
||||
{
|
||||
Vec3f circle = circles[i];
|
||||
if (CheckDistance(circles, endIdx, circle, minDist2))
|
||||
{
|
||||
circles[endIdx] = circle;
|
||||
++endIdx;
|
||||
}
|
||||
}
|
||||
circles.resize(endIdx);
|
||||
}
|
||||
|
||||
template<class NZPoints>
|
||||
class HoughCircleEstimateRadiusInvoker : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
HoughCircleEstimateRadiusInvoker(const std::vector<Point> &_nz, const std::vector<int> &_centers, std::vector<Vec3f> &_circles,
|
||||
int _acols, int _circlesMax, int _accThreshold, int _minRadius, int _maxRadius,
|
||||
float _minDist, float _dp, Mutex& _mutex) :
|
||||
nz(_nz), centers(_centers), circles(_circles), acols(_acols), circlesMax(_circlesMax), accThreshold(_accThreshold),
|
||||
minRadius(_minRadius), maxRadius(_maxRadius), minDist(_minDist), dr(_dp), _lock(_mutex)
|
||||
HoughCircleEstimateRadiusInvoker(const NZPoints &_nz, int _nzSz, const std::vector<int> &_centers, std::vector<EstimatedCircle> &_circlesEst,
|
||||
int _acols, int _accThreshold, int _minRadius, int _maxRadius,
|
||||
float _dp, Mutex& _mutex) :
|
||||
nz(_nz), nzSz(_nzSz), centers(_centers), circlesEst(_circlesEst), acols(_acols), accThreshold(_accThreshold),
|
||||
minRadius(_minRadius), maxRadius(_maxRadius), dr(_dp), _lock(_mutex)
|
||||
{
|
||||
minRadius2 = (float)minRadius * minRadius;
|
||||
maxRadius2 = (float)maxRadius * maxRadius;
|
||||
minDist = std::max(dr, minDist);
|
||||
minDist *= minDist;
|
||||
nzSz = (int)nz.size();
|
||||
centerSz = (int)centers.size();
|
||||
|
||||
iMax = -1;
|
||||
isMaxCircles = false;
|
||||
isLastCenter = false;
|
||||
mc.reserve(64);
|
||||
loopIdx = std::vector<bool>(centerSz + 1, false);
|
||||
#if CV_SIMD128
|
||||
haveSIMD = hasSIMD128();
|
||||
if(haveSIMD)
|
||||
{
|
||||
v_minRadius2 = v_setall_f32(minRadius2);
|
||||
v_maxRadius2 = v_setall_f32(maxRadius2);
|
||||
}
|
||||
#endif
|
||||
CV_Assert(nzSz > 0);
|
||||
}
|
||||
|
||||
~HoughCircleEstimateRadiusInvoker() {_lock.unlock();}
|
||||
|
||||
protected:
|
||||
inline int filterCircles(const Point2f& curCenter, float* ddata) const;
|
||||
|
||||
void operator()(const Range &boundaries) const
|
||||
{
|
||||
if (isMaxCircles)
|
||||
return;
|
||||
|
||||
std::vector<EstimatedCircle> circlesLocal;
|
||||
const int nBinsPerDr = 10;
|
||||
int nBins = cvRound((maxRadius - minRadius)/dr*nBinsPerDr);
|
||||
std::vector<int> bins(nBins, 0);
|
||||
Mat distBuf(1, nzSz, CV_32FC1), distSqrBuf(1, nzSz, CV_32FC1);
|
||||
float *ddata = distBuf.ptr<float>();
|
||||
float *dSqrData = distSqrBuf.ptr<float>();
|
||||
AutoBuffer<int> bins(nBins);
|
||||
AutoBuffer<float> distBuf(nzSz), distSqrtBuf(nzSz);
|
||||
float *ddata = distBuf;
|
||||
float *dSqrtData = distSqrtBuf;
|
||||
|
||||
bool singleThread = (boundaries == Range(0, centerSz));
|
||||
int i = boundaries.start;
|
||||
|
||||
if(boundaries.end == centerSz)
|
||||
isLastCenter = true;
|
||||
|
||||
// For each found possible center
|
||||
// Estimate radius and check support
|
||||
for(; i < boundaries.end; ++i)
|
||||
{
|
||||
if (isMaxCircles)
|
||||
return;
|
||||
|
||||
int ofs = centers[i];
|
||||
int y = ofs / acols;
|
||||
int x = ofs - y * acols;
|
||||
|
||||
//Calculate circle's center in pixels
|
||||
Point2f curCenter = Point2f((x + 0.5f) * dr, (y + 0.5f) * dr);
|
||||
int nzCount = filterCircles(curCenter, ddata);
|
||||
|
||||
int maxCount = 0;
|
||||
float rBest = 0;
|
||||
int j = 0, nzCount = 0, maxCount = 0;
|
||||
|
||||
// Check distance with previously detected valid circles
|
||||
int curCircleSz = (int)circles.size();
|
||||
bool valid = checkDistance(curCenter, 0, curCircleSz);
|
||||
|
||||
if (isMaxCircles)
|
||||
return;
|
||||
|
||||
if(valid)
|
||||
{
|
||||
#if CV_SIMD128
|
||||
if(haveSIMD)
|
||||
{
|
||||
v_float32x4 v_curCenterX = v_setall_f32(curCenter.x);
|
||||
v_float32x4 v_curCenterY = v_setall_f32(curCenter.y);
|
||||
|
||||
float CV_DECL_ALIGNED(16) rbuf[4];
|
||||
int CV_DECL_ALIGNED(16) mbuf[4];
|
||||
for(; j <= nzSz - 4; j += 4)
|
||||
{
|
||||
v_float32x4 v_nzX, v_nzY;
|
||||
v_load_deinterleave((const float*)&nz[j], v_nzX, v_nzY);
|
||||
|
||||
v_float32x4 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
|
||||
v_float32x4 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
|
||||
|
||||
v_float32x4 v_dx = v_x - v_curCenterX;
|
||||
v_float32x4 v_dy = v_y - v_curCenterY;
|
||||
|
||||
v_float32x4 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
|
||||
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
|
||||
|
||||
v_store_aligned(rbuf, v_r2);
|
||||
v_store_aligned(mbuf, v_reinterpret_as_s32(vmask));
|
||||
for(int p = 0; p < 4; p++)
|
||||
{
|
||||
if(mbuf[p] < 0)
|
||||
{
|
||||
ddata[nzCount] = rbuf[p]; nzCount++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Estimate best radius
|
||||
for(; j < nzSz; ++j)
|
||||
{
|
||||
Point pt = nz[j];
|
||||
float _dx = curCenter.x - pt.x, _dy = curCenter.y - pt.y;
|
||||
float _r2 = _dx * _dx + _dy * _dy;
|
||||
|
||||
if(minRadius2 <= _r2 && _r2 <= maxRadius2)
|
||||
{
|
||||
ddata[nzCount] = _r2;
|
||||
++nzCount;
|
||||
}
|
||||
}
|
||||
|
||||
if (isMaxCircles)
|
||||
return;
|
||||
|
||||
if(nzCount)
|
||||
{
|
||||
Mat bufRange = distSqrBuf.colRange(Range(0, nzCount));
|
||||
sqrt(distBuf.colRange(Range(0, nzCount)), bufRange);
|
||||
Mat_<float> distMat(1, nzCount, ddata);
|
||||
Mat_<float> distSqrtMat(1, nzCount, dSqrtData);
|
||||
sqrt(distMat, distSqrtMat);
|
||||
|
||||
std::fill(bins.begin(), bins.end(), 0);
|
||||
memset(bins, 0, sizeof(bins[0])*bins.size());
|
||||
for(int k = 0; k < nzCount; k++)
|
||||
{
|
||||
int bin = std::max(0, std::min(nBins-1, cvRound((dSqrData[k] - minRadius)/dr*nBinsPerDr)));
|
||||
int bin = std::max(0, std::min(nBins-1, cvRound((dSqrtData[k] - minRadius)/dr*nBinsPerDr)));
|
||||
bins[bin]++;
|
||||
}
|
||||
|
||||
if (isMaxCircles)
|
||||
return;
|
||||
|
||||
for(j = nBins - 1; j > 0; j--)
|
||||
for(int j = nBins - 1; j > 0; j--)
|
||||
{
|
||||
if(bins[j])
|
||||
{
|
||||
@ -1268,131 +1310,171 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(singleThread)
|
||||
{
|
||||
// Check if the circle has enough support
|
||||
if(maxCount > accThreshold)
|
||||
{
|
||||
circles.push_back(Vec3f(curCenter.x, curCenter.y, rBest));
|
||||
|
||||
if( circles.size() >= (unsigned int)circlesMax )
|
||||
return;
|
||||
circlesLocal.push_back(EstimatedCircle(Vec3f(curCenter.x, curCenter.y, rBest), maxCount));
|
||||
}
|
||||
}
|
||||
|
||||
if(!circlesLocal.empty())
|
||||
{
|
||||
std::sort(circlesLocal.begin(), circlesLocal.end(), cmpAccum);
|
||||
if(singleThread)
|
||||
{
|
||||
std::swap(circlesEst, circlesLocal);
|
||||
}
|
||||
else
|
||||
{
|
||||
_lock.lock();
|
||||
if(isMaxCircles)
|
||||
{
|
||||
_lock.unlock();
|
||||
return;
|
||||
}
|
||||
|
||||
loopIdx[i] = true;
|
||||
|
||||
if( maxCount > accThreshold )
|
||||
{
|
||||
while(loopIdx[iMax + 1])
|
||||
++iMax;
|
||||
|
||||
// Temporary store circle, index and already checked index for block wise testing
|
||||
mc.push_back(markedCircle(Vec3f(curCenter.x, curCenter.y, rBest),
|
||||
i, curCircleSz));
|
||||
|
||||
if(i <= iMax)
|
||||
{
|
||||
std::sort(mc.begin(), mc.end(), cmpCircleIndex);
|
||||
for(int k = (int)mc.size() - 1; k >= 0; --k)
|
||||
{
|
||||
if(mc[k].idx <= iMax)
|
||||
{
|
||||
if(checkDistance(Point2f(mc[k].c[0], mc[k].c[1]),
|
||||
mc[k].idxC, (int)circles.size()))
|
||||
{
|
||||
circles.push_back(mc[k].c);
|
||||
if(circles.size() >= (unsigned int)circlesMax)
|
||||
{
|
||||
isMaxCircles = true;
|
||||
_lock.unlock();
|
||||
return;
|
||||
}
|
||||
}
|
||||
mc.pop_back();
|
||||
}
|
||||
AutoLock alock(_lock);
|
||||
if (circlesEst.empty())
|
||||
std::swap(circlesEst, circlesLocal);
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(isLastCenter && !mc.empty())
|
||||
{
|
||||
while(loopIdx[iMax + 1])
|
||||
++iMax;
|
||||
|
||||
if(iMax == centerSz - 1)
|
||||
{
|
||||
std::sort(mc.begin(), mc.end(), cmpCircleIndex);
|
||||
for(int k = (int)mc.size() - 1; k >= 0; --k)
|
||||
{
|
||||
if(checkDistance(Point2f(mc[k].c[0], mc[k].c[1]), mc[k].idxC, (int)circles.size()))
|
||||
{
|
||||
circles.push_back(mc[k].c);
|
||||
if(circles.size() >= (unsigned int)circlesMax)
|
||||
{
|
||||
isMaxCircles = true;
|
||||
_lock.unlock();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
_lock.unlock();
|
||||
circlesEst.insert(circlesEst.end(), circlesLocal.begin(), circlesLocal.end());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
bool checkDistance(Point2f curCenter, int startIdx, int endIdx) const
|
||||
{
|
||||
// Check distance with previously detected circles
|
||||
for(int j = startIdx; j < endIdx; ++j )
|
||||
{
|
||||
float dx = circles[j][0] - curCenter.x;
|
||||
float dy = circles[j][1] - curCenter.y;
|
||||
|
||||
if( dx * dx + dy * dy < minDist )
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
const std::vector<Point> &nz;
|
||||
const NZPoints &nz;
|
||||
int nzSz;
|
||||
const std::vector<int> ¢ers;
|
||||
std::vector<Vec3f> &circles;
|
||||
int acols, circlesMax, accThreshold, minRadius, maxRadius;
|
||||
float minDist, dr;
|
||||
|
||||
#if CV_SIMD128
|
||||
bool haveSIMD;
|
||||
v_float32x4 v_minRadius2, v_maxRadius2;
|
||||
#endif
|
||||
int nzSz, centerSz;
|
||||
std::vector<EstimatedCircle> &circlesEst;
|
||||
int acols, accThreshold, minRadius, maxRadius;
|
||||
float dr;
|
||||
int centerSz;
|
||||
float minRadius2, maxRadius2;
|
||||
|
||||
mutable std::vector<bool> loopIdx;
|
||||
mutable std::vector<markedCircle> mc;
|
||||
mutable volatile int iMax;
|
||||
mutable volatile bool isMaxCircles, isLastCenter;
|
||||
Mutex& _lock;
|
||||
};
|
||||
|
||||
template<>
|
||||
inline int HoughCircleEstimateRadiusInvoker<NZPointList>::filterCircles(const Point2f& curCenter, float* ddata) const
|
||||
{
|
||||
int nzCount = 0;
|
||||
const Point* nz_ = &nz[0];
|
||||
int j = 0;
|
||||
#if CV_SIMD128
|
||||
{
|
||||
const v_float32x4 v_minRadius2 = v_setall_f32(minRadius2);
|
||||
const v_float32x4 v_maxRadius2 = v_setall_f32(maxRadius2);
|
||||
|
||||
v_float32x4 v_curCenterX = v_setall_f32(curCenter.x);
|
||||
v_float32x4 v_curCenterY = v_setall_f32(curCenter.y);
|
||||
|
||||
float CV_DECL_ALIGNED(16) rbuf[4];
|
||||
for(; j <= nzSz - 4; j += 4)
|
||||
{
|
||||
v_float32x4 v_nzX, v_nzY;
|
||||
v_load_deinterleave((const float*)&nz_[j], v_nzX, v_nzY); // FIXIT use proper datatype
|
||||
|
||||
v_float32x4 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
|
||||
v_float32x4 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
|
||||
|
||||
v_float32x4 v_dx = v_x - v_curCenterX;
|
||||
v_float32x4 v_dy = v_y - v_curCenterY;
|
||||
|
||||
v_float32x4 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
|
||||
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
|
||||
unsigned int mask = v_signmask(vmask);
|
||||
if (mask)
|
||||
{
|
||||
v_store_aligned(rbuf, v_r2);
|
||||
if (mask & 1) ddata[nzCount++] = rbuf[0];
|
||||
if (mask & 2) ddata[nzCount++] = rbuf[1];
|
||||
if (mask & 4) ddata[nzCount++] = rbuf[2];
|
||||
if (mask & 8) ddata[nzCount++] = rbuf[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// Estimate best radius
|
||||
for(; j < nzSz; ++j)
|
||||
{
|
||||
const Point pt = nz_[j];
|
||||
float _dx = curCenter.x - pt.x, _dy = curCenter.y - pt.y;
|
||||
float _r2 = _dx * _dx + _dy * _dy;
|
||||
|
||||
if(minRadius2 <= _r2 && _r2 <= maxRadius2)
|
||||
{
|
||||
ddata[nzCount++] = _r2;
|
||||
}
|
||||
}
|
||||
return nzCount;
|
||||
}
|
||||
|
||||
template<>
|
||||
inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Point2f& curCenter, float* ddata) const
|
||||
{
|
||||
int nzCount = 0;
|
||||
const Mat_<uchar>& positions = nz.positions;
|
||||
|
||||
const int rOuter = maxRadius + 1;
|
||||
const Range xOuter = Range(std::max(int(curCenter.x - rOuter), 0), std::min(int(curCenter.x + rOuter), positions.cols));
|
||||
const Range yOuter = Range(std::max(int(curCenter.y - rOuter), 0), std::min(int(curCenter.y + rOuter), positions.rows));
|
||||
|
||||
#if CV_SIMD128
|
||||
const int numSIMDPoints = 4;
|
||||
|
||||
const v_float32x4 v_minRadius2 = v_setall_f32(minRadius2);
|
||||
const v_float32x4 v_maxRadius2 = v_setall_f32(maxRadius2);
|
||||
const v_float32x4 v_curCenterX_0123 = v_setall_f32(curCenter.x) - v_float32x4(0.0f, 1.0f, 2.0f, 3.0f);
|
||||
#endif
|
||||
|
||||
for (int y = yOuter.start; y < yOuter.end; y++)
|
||||
{
|
||||
const uchar* ptr = positions.ptr(y, 0);
|
||||
float dy = curCenter.y - y;
|
||||
float dy2 = dy * dy;
|
||||
|
||||
int x = xOuter.start;
|
||||
#if CV_SIMD128
|
||||
{
|
||||
const v_float32x4 v_dy2 = v_setall_f32(dy2);
|
||||
const v_uint32x4 v_zero_u32 = v_setall_u32(0);
|
||||
float CV_DECL_ALIGNED(16) rbuf[4];
|
||||
for (; x <= xOuter.end - 4; x += numSIMDPoints)
|
||||
{
|
||||
v_uint32x4 v_mask = v_load_expand_q(ptr + x);
|
||||
v_mask = v_mask != v_zero_u32;
|
||||
|
||||
v_float32x4 v_x = v_cvt_f32(v_setall_s32(x));
|
||||
v_float32x4 v_dx = v_x - v_curCenterX_0123;
|
||||
|
||||
v_float32x4 v_r2 = (v_dx * v_dx) + v_dy2;
|
||||
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask);
|
||||
unsigned int mask = v_signmask(vmask);
|
||||
if (mask)
|
||||
{
|
||||
v_store_aligned(rbuf, v_r2);
|
||||
if (mask & 1) ddata[nzCount++] = rbuf[0];
|
||||
if (mask & 2) ddata[nzCount++] = rbuf[1];
|
||||
if (mask & 4) ddata[nzCount++] = rbuf[2];
|
||||
if (mask & 8) ddata[nzCount++] = rbuf[3];
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for (; x < xOuter.end; x++)
|
||||
{
|
||||
if (ptr[x])
|
||||
{
|
||||
float _dx = curCenter.x - x;
|
||||
float _r2 = _dx * _dx + dy2;
|
||||
if(minRadius2 <= _r2 && _r2 <= maxRadius2)
|
||||
{
|
||||
ddata[nzCount++] = _r2;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return nzCount;
|
||||
}
|
||||
|
||||
static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float dp, float minDist,
|
||||
int minRadius, int maxRadius, int cannyThreshold,
|
||||
int accThreshold, int maxCircles, int kernelSize )
|
||||
int accThreshold, int maxCircles, int kernelSize, bool centersOnly)
|
||||
{
|
||||
CV_Assert(kernelSize == -1 || kernelSize == 3 || kernelSize == 5 || kernelSize == 7);
|
||||
dp = max(dp, 1.f);
|
||||
@ -1407,19 +1489,20 @@ static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float
|
||||
Mutex mtx;
|
||||
int numThreads = std::max(1, getNumThreads());
|
||||
std::vector<Mat> accumVec;
|
||||
std::vector<Point> nz;
|
||||
NZPointSet nz(_image.rows(), _image.cols());
|
||||
parallel_for_(Range(0, edges.rows),
|
||||
HoughCirclesAccumInvoker(edges, dx, dy, minRadius, maxRadius, idp, accumVec, nz, mtx),
|
||||
numThreads);
|
||||
|
||||
if(nz.empty())
|
||||
int nzSz = cv::countNonZero(nz.positions);
|
||||
if(nzSz <= 0)
|
||||
return;
|
||||
|
||||
Mat accum = accumVec[0].clone();
|
||||
Mat accum = accumVec[0];
|
||||
for(size_t i = 1; i < accumVec.size(); i++)
|
||||
{
|
||||
accum += accumVec[i];
|
||||
}
|
||||
accumVec.clear();
|
||||
|
||||
std::vector<int> centers;
|
||||
|
||||
@ -1437,49 +1520,47 @@ static void HoughCirclesGradient(InputArray _image, OutputArray _circles, float
|
||||
|
||||
std::vector<Vec3f> circles;
|
||||
circles.reserve(256);
|
||||
|
||||
if(maxCircles == 0)
|
||||
if (centersOnly)
|
||||
{
|
||||
minDist *= minDist;
|
||||
for(int i = 0; i < centerCnt; ++i)
|
||||
// Just get the circle centers
|
||||
GetCircleCenters(centers, circles, accum.cols, minDist, dp);
|
||||
}
|
||||
else
|
||||
{
|
||||
int _centers = centers[i];
|
||||
int y = _centers / accum.cols;
|
||||
int x = _centers - y * accum.cols;
|
||||
|
||||
bool goodPoint = true;
|
||||
for(uint j = 0; j < circles.size(); ++j)
|
||||
std::vector<EstimatedCircle> circlesEst;
|
||||
if (nzSz < maxRadius * maxRadius)
|
||||
{
|
||||
Vec3f pt = circles[j];
|
||||
float distX = x - pt[0], distY = y - pt[1];
|
||||
if (distX * distX + distY * distY < minDist)
|
||||
{
|
||||
goodPoint = false; break;
|
||||
}
|
||||
}
|
||||
|
||||
if(goodPoint)
|
||||
circles.push_back(Vec3f((x + 0.5f) * dp, (y + 0.5f) * dp, 0));
|
||||
}
|
||||
|
||||
if(circles.size() > 0)
|
||||
{
|
||||
_circles.create(1, (int)circles.size(), CV_32FC3);
|
||||
Mat(1, (int)circles.size(), CV_32FC3, &circles[0]).copyTo(_circles.getMat());
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Faster to use a list
|
||||
NZPointList nzList(nzSz);
|
||||
nz.toList(nzList);
|
||||
// One loop iteration per thread if multithreaded.
|
||||
parallel_for_(Range(0, centerCnt),
|
||||
HoughCircleEstimateRadiusInvoker(nz, centers, circles, accum.cols, maxCircles,
|
||||
accThreshold, minRadius, maxRadius, minDist, dp, mtx),
|
||||
(numThreads > 1) ? centerCnt : 1);
|
||||
HoughCircleEstimateRadiusInvoker<NZPointList>(nzList, nzSz, centers, circlesEst, accum.cols,
|
||||
accThreshold, minRadius, maxRadius, dp, mtx),
|
||||
numThreads);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Faster to use a matrix
|
||||
// One loop iteration per thread if multithreaded.
|
||||
parallel_for_(Range(0, centerCnt),
|
||||
HoughCircleEstimateRadiusInvoker<NZPointSet>(nz, nzSz, centers, circlesEst, accum.cols,
|
||||
accThreshold, minRadius, maxRadius, dp, mtx),
|
||||
numThreads);
|
||||
}
|
||||
|
||||
// Sort by accumulator value
|
||||
std::sort(circlesEst.begin(), circlesEst.end(), cmpAccum);
|
||||
std::transform(circlesEst.begin(), circlesEst.end(), std::back_inserter(circles), GetCircle);
|
||||
RemoveOverlaps(circles, minDist);
|
||||
}
|
||||
|
||||
if(circles.size() > 0)
|
||||
{
|
||||
_circles.create(1, (int)circles.size(), CV_32FC3);
|
||||
Mat(1, (int)circles.size(), CV_32FC3, &circles[0]).copyTo(_circles.getMat());
|
||||
int numCircles = std::min(maxCircles, int(circles.size()));
|
||||
_circles.create(1, numCircles, CV_32FC3);
|
||||
Mat(1, numCircles, CV_32FC3, &circles[0]).copyTo(_circles.getMat());
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1504,6 +1585,8 @@ static void HoughCircles( InputArray _image, OutputArray _circles,
|
||||
if(maxCircles < 0)
|
||||
maxCircles = INT_MAX;
|
||||
|
||||
bool centersOnly = (maxRadius < 0);
|
||||
|
||||
if( maxRadius <= 0 )
|
||||
maxRadius = std::max( _image.rows(), _image.cols() );
|
||||
else if( maxRadius <= minRadius )
|
||||
@ -1514,7 +1597,7 @@ static void HoughCircles( InputArray _image, OutputArray _circles,
|
||||
case CV_HOUGH_GRADIENT:
|
||||
HoughCirclesGradient(_image, _circles, (float)dp, (float)minDist,
|
||||
minRadius, maxRadius, cannyThresh,
|
||||
accThresh, maxCircles, kernelSize);
|
||||
accThresh, maxCircles, kernelSize, centersOnly);
|
||||
break;
|
||||
default:
|
||||
CV_Error( Error::StsBadArg, "Unrecognized method id. Actually only CV_HOUGH_GRADIENT is supported." );
|
||||
|
259
modules/imgproc/test/test_houghcircles.cpp
Normal file
259
modules/imgproc/test/test_houghcircles.cpp
Normal file
@ -0,0 +1,259 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#ifndef DEBUG_IMAGES
|
||||
#define DEBUG_IMAGES 0
|
||||
#endif
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
static string getTestCaseName(const string& picture_name, double minDist, double edgeThreshold, double accumThreshold, int minRadius, int maxRadius)
|
||||
{
|
||||
string results_name = format("circles_%s_%.0f_%.0f_%.0f_%d_%d",
|
||||
picture_name.c_str(), minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
string temp(results_name);
|
||||
size_t pos = temp.find_first_of("\\/.");
|
||||
while (pos != string::npos) {
|
||||
temp.replace(pos, 1, "_");
|
||||
pos = temp.find_first_of("\\/.");
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
static void highlightCircles(const string& imagePath, const vector<Vec3f>& circles, const string& outputImagePath)
|
||||
{
|
||||
Mat imgDebug = imread(imagePath, IMREAD_COLOR);
|
||||
const Scalar yellow(0, 255, 255);
|
||||
|
||||
for (vector<Vec3f>::const_iterator iter = circles.begin(); iter != circles.end(); ++iter)
|
||||
{
|
||||
const Vec3f& circle = *iter;
|
||||
float x = circle[0];
|
||||
float y = circle[1];
|
||||
float r = max(circle[2], 2.0f);
|
||||
cv::circle(imgDebug, Point(int(x), int(y)), int(r), yellow);
|
||||
}
|
||||
imwrite(outputImagePath, imgDebug);
|
||||
}
|
||||
#endif
|
||||
|
||||
typedef std::tr1::tuple<string, double, double, double, int, int> Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t;
|
||||
class HoughCirclesTestFixture : public testing::TestWithParam<Image_MinDist_EdgeThreshold_AccumThreshold_MinRadius_MaxRadius_t>
|
||||
{
|
||||
string picture_name;
|
||||
double minDist;
|
||||
double edgeThreshold;
|
||||
double accumThreshold;
|
||||
int minRadius;
|
||||
int maxRadius;
|
||||
|
||||
public:
|
||||
HoughCirclesTestFixture()
|
||||
{
|
||||
picture_name = std::tr1::get<0>(GetParam());
|
||||
minDist = std::tr1::get<1>(GetParam());
|
||||
edgeThreshold = std::tr1::get<2>(GetParam());
|
||||
accumThreshold = std::tr1::get<3>(GetParam());
|
||||
minRadius = std::tr1::get<4>(GetParam());
|
||||
maxRadius = std::tr1::get<5>(GetParam());
|
||||
}
|
||||
|
||||
HoughCirclesTestFixture(const string& picture, double minD, double edge, double accum, int minR, int maxR) :
|
||||
picture_name(picture), minDist(minD), edgeThreshold(edge), accumThreshold(accum), minRadius(minR), maxRadius(maxR)
|
||||
{
|
||||
}
|
||||
|
||||
void run_test()
|
||||
{
|
||||
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
const double dp = 1.0;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
#if DEBUG_IMAGES
|
||||
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
|
||||
#endif
|
||||
|
||||
string xml = imgProc + "HoughCircles.xml";
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
FileNode node = fs[test_case_name];
|
||||
if (node.empty())
|
||||
{
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::APPEND);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
fs << test_case_name << circles;
|
||||
fs.release();
|
||||
fs.open(xml, FileStorage::READ);
|
||||
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||
}
|
||||
|
||||
vector<Vec3f> exp_circles;
|
||||
read(fs[test_case_name], exp_circles, vector<Vec3f>());
|
||||
fs.release();
|
||||
|
||||
EXPECT_EQ(exp_circles.size(), circles.size());
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(HoughCirclesTestFixture, regression)
|
||||
{
|
||||
run_test();
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(ImgProc, HoughCirclesTestFixture, testing::Combine(
|
||||
// picture_name:
|
||||
testing::Values("imgproc/stuff.jpg"),
|
||||
// minDist:
|
||||
testing::Values(20),
|
||||
// edgeThreshold:
|
||||
testing::Values(20),
|
||||
// accumThreshold:
|
||||
testing::Values(30),
|
||||
// minRadius:
|
||||
testing::Values(20),
|
||||
// maxRadius:
|
||||
testing::Values(200)
|
||||
));
|
||||
|
||||
TEST(HoughCirclesTest, DefaultMaxRadius)
|
||||
{
|
||||
string picture_name = "imgproc/stuff.jpg";
|
||||
const double dp = 1.0;
|
||||
double minDist = 20;
|
||||
double edgeThreshold = 20;
|
||||
double accumThreshold = 30;
|
||||
int minRadius = 20;
|
||||
int maxRadius = 0;
|
||||
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
highlightCircles(filename, circles, imgProc + "HoughCirclesTest_DefaultMaxRadius.png");
|
||||
#endif
|
||||
|
||||
int maxDimension = std::max(src.rows, src.cols);
|
||||
|
||||
EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
{
|
||||
EXPECT_GE(circles[i][2], minRadius) << "Radius should be >= minRadius";
|
||||
EXPECT_LE(circles[i][2], maxDimension) << "Radius should be <= max image dimension";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(HoughCirclesTest, CentersOnly)
|
||||
{
|
||||
string picture_name = "imgproc/stuff.jpg";
|
||||
const double dp = 1.0;
|
||||
double minDist = 20;
|
||||
double edgeThreshold = 20;
|
||||
double accumThreshold = 30;
|
||||
int minRadius = 20;
|
||||
int maxRadius = -1;
|
||||
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
GaussianBlur(src, src, Size(9, 9), 2, 2);
|
||||
|
||||
vector<Vec3f> circles;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
highlightCircles(filename, circles, imgProc + "HoughCirclesTest_CentersOnly.png");
|
||||
#endif
|
||||
|
||||
EXPECT_GT(circles.size(), size_t(0)) << "Should find at least some circles";
|
||||
for (size_t i = 0; i < circles.size(); ++i)
|
||||
{
|
||||
EXPECT_EQ(circles[i][2], 0.0f) << "Did not ask for radius";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(HoughCirclesTest, ManySmallCircles)
|
||||
{
|
||||
string picture_name = "imgproc/beads.jpg";
|
||||
const double dp = 1.0;
|
||||
double minDist = 10;
|
||||
double edgeThreshold = 90;
|
||||
double accumThreshold = 11;
|
||||
int minRadius = 7;
|
||||
int maxRadius = 18;
|
||||
|
||||
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||
|
||||
vector<Vec3f> circles;
|
||||
HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
|
||||
#if DEBUG_IMAGES
|
||||
string imgProc = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/";
|
||||
string test_case_name = getTestCaseName(picture_name, minDist, edgeThreshold, accumThreshold, minRadius, maxRadius);
|
||||
highlightCircles(filename, circles, imgProc + test_case_name + ".png");
|
||||
#endif
|
||||
|
||||
EXPECT_GT(circles.size(), size_t(3000)) << "Should find a lot of circles";
|
||||
}
|
Loading…
Reference in New Issue
Block a user