mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
5aa7435d25
@ -407,6 +407,9 @@ if(MSVC)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# Enable [[attribute]] syntax checking to prevent silent failure: "attribute is ignored in this syntactic position"
|
||||
add_extra_compiler_option("/w15240")
|
||||
|
||||
if(NOT ENABLE_NOISY_WARNINGS)
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127) # conditional expression is constant
|
||||
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4251) # class 'std::XXX' needs to have dll-interface to be used by clients of YYY
|
||||
|
@ -122,6 +122,53 @@ String testReservedKeywordConversion(int positional_argument, int lambda = 2, in
|
||||
return format("arg=%d, lambda=%d, from=%d", positional_argument, lambda, from);
|
||||
}
|
||||
|
||||
CV_EXPORTS_W String dumpVectorOfInt(const std::vector<int>& vec);
|
||||
|
||||
CV_EXPORTS_W String dumpVectorOfDouble(const std::vector<double>& vec);
|
||||
|
||||
CV_EXPORTS_W String dumpVectorOfRect(const std::vector<Rect>& vec);
|
||||
|
||||
CV_WRAP static inline
|
||||
void generateVectorOfRect(size_t len, CV_OUT std::vector<Rect>& vec)
|
||||
{
|
||||
vec.resize(len);
|
||||
if (len > 0)
|
||||
{
|
||||
RNG rng(12345);
|
||||
Mat tmp(static_cast<int>(len), 1, CV_32SC4);
|
||||
rng.fill(tmp, RNG::UNIFORM, 10, 20);
|
||||
tmp.copyTo(vec);
|
||||
}
|
||||
}
|
||||
|
||||
CV_WRAP static inline
|
||||
void generateVectorOfInt(size_t len, CV_OUT std::vector<int>& vec)
|
||||
{
|
||||
vec.resize(len);
|
||||
if (len > 0)
|
||||
{
|
||||
RNG rng(554433);
|
||||
Mat tmp(static_cast<int>(len), 1, CV_32SC1);
|
||||
rng.fill(tmp, RNG::UNIFORM, -10, 10);
|
||||
tmp.copyTo(vec);
|
||||
}
|
||||
}
|
||||
|
||||
CV_WRAP static inline
|
||||
void generateVectorOfMat(size_t len, int rows, int cols, int dtype, CV_OUT std::vector<Mat>& vec)
|
||||
{
|
||||
vec.resize(len);
|
||||
if (len > 0)
|
||||
{
|
||||
RNG rng(65431);
|
||||
for (size_t i = 0; i < len; ++i)
|
||||
{
|
||||
vec[i].create(rows, cols, dtype);
|
||||
rng.fill(vec[i], RNG::UNIFORM, 0, 10);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CV_WRAP static inline
|
||||
void testRaiseGeneralException()
|
||||
{
|
||||
|
@ -705,14 +705,47 @@ __CV_ENUM_FLAGS_BITWISE_XOR_EQ (EnumType, EnumType)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/****************************************************************************************\
|
||||
* CV_NODISCARD_STD attribute (C++17) *
|
||||
* encourages the compiler to issue a warning if the return value is discarded *
|
||||
\****************************************************************************************/
|
||||
#ifndef CV_NODISCARD_STD
|
||||
# ifndef __has_cpp_attribute
|
||||
// workaround preprocessor non-compliance https://reviews.llvm.org/D57851
|
||||
# define __has_cpp_attribute(__x) 0
|
||||
# endif
|
||||
# if __has_cpp_attribute(nodiscard)
|
||||
# define CV_NODISCARD_STD [[nodiscard]]
|
||||
# elif __cplusplus >= 201703L
|
||||
// available when compiler is C++17 compliant
|
||||
# define CV_NODISCARD_STD [[nodiscard]]
|
||||
# elif defined(_MSC_VER) && _MSC_VER >= 1911 && _MSVC_LANG >= 201703L
|
||||
// available with VS2017 v15.3+ with /std:c++17 or higher; works on functions and classes
|
||||
# define CV_NODISCARD_STD [[nodiscard]]
|
||||
# elif defined(__GNUC__) && (((__GNUC__ * 100) + __GNUC_MINOR__) >= 700) && (__cplusplus >= 201103L)
|
||||
// available with GCC 7.0+; works on functions, works or silently fails on classes
|
||||
# define CV_NODISCARD_STD [[nodiscard]]
|
||||
# elif defined(__GNUC__) && (((__GNUC__ * 100) + __GNUC_MINOR__) >= 408) && (__cplusplus >= 201103L)
|
||||
// available with GCC 4.8+ but it usually does nothing and can fail noisily -- therefore not used
|
||||
// define CV_NODISCARD_STD [[gnu::warn_unused_result]]
|
||||
# endif
|
||||
#endif
|
||||
#ifndef CV_NODISCARD_STD
|
||||
# define CV_NODISCARD_STD /* nothing by default */
|
||||
#endif
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* CV_NODISCARD attribute *
|
||||
* encourages the compiler to issue a warning if the return value is discarded (C++17) *
|
||||
* CV_NODISCARD attribute (deprecated, GCC only) *
|
||||
* DONT USE: use instead the standard CV_NODISCARD_STD macro above *
|
||||
* this legacy method silently fails to issue warning until some version *
|
||||
* after gcc 6.3.0. Yet with gcc 7+ you can use the above standard method *
|
||||
* which makes this method useless. Don't use it. *
|
||||
* @deprecated use instead CV_NODISCARD_STD *
|
||||
\****************************************************************************************/
|
||||
#ifndef CV_NODISCARD
|
||||
# if defined(__GNUC__)
|
||||
# define CV_NODISCARD __attribute__((__warn_unused_result__)) // at least available with GCC 3.4
|
||||
# define CV_NODISCARD __attribute__((__warn_unused_result__))
|
||||
# elif defined(__clang__) && defined(__has_attribute)
|
||||
# if __has_attribute(__warn_unused_result__)
|
||||
# define CV_NODISCARD __attribute__((__warn_unused_result__))
|
||||
|
@ -1188,14 +1188,14 @@ public:
|
||||
The method creates a square diagonal matrix from specified main diagonal.
|
||||
@param d One-dimensional matrix that represents the main diagonal.
|
||||
*/
|
||||
static Mat diag(const Mat& d);
|
||||
CV_NODISCARD_STD static Mat diag(const Mat& d);
|
||||
|
||||
/** @brief Creates a full copy of the array and the underlying data.
|
||||
|
||||
The method creates a full copy of the array. The original step[] is not taken into account. So, the
|
||||
array copy is a continuous array occupying total()*elemSize() bytes.
|
||||
*/
|
||||
Mat clone() const CV_NODISCARD;
|
||||
CV_NODISCARD_STD Mat clone() const;
|
||||
|
||||
/** @brief Copies the matrix to another one.
|
||||
|
||||
@ -1359,20 +1359,20 @@ public:
|
||||
@param cols Number of columns.
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr zeros(int rows, int cols, int type);
|
||||
CV_NODISCARD_STD static MatExpr zeros(int rows, int cols, int type);
|
||||
|
||||
/** @overload
|
||||
@param size Alternative to the matrix size specification Size(cols, rows) .
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr zeros(Size size, int type);
|
||||
CV_NODISCARD_STD static MatExpr zeros(Size size, int type);
|
||||
|
||||
/** @overload
|
||||
@param ndims Array dimensionality.
|
||||
@param sz Array of integers specifying the array shape.
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr zeros(int ndims, const int* sz, int type);
|
||||
CV_NODISCARD_STD static MatExpr zeros(int ndims, const int* sz, int type);
|
||||
|
||||
/** @brief Returns an array of all 1's of the specified size and type.
|
||||
|
||||
@ -1390,20 +1390,20 @@ public:
|
||||
@param cols Number of columns.
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr ones(int rows, int cols, int type);
|
||||
CV_NODISCARD_STD static MatExpr ones(int rows, int cols, int type);
|
||||
|
||||
/** @overload
|
||||
@param size Alternative to the matrix size specification Size(cols, rows) .
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr ones(Size size, int type);
|
||||
CV_NODISCARD_STD static MatExpr ones(Size size, int type);
|
||||
|
||||
/** @overload
|
||||
@param ndims Array dimensionality.
|
||||
@param sz Array of integers specifying the array shape.
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr ones(int ndims, const int* sz, int type);
|
||||
CV_NODISCARD_STD static MatExpr ones(int ndims, const int* sz, int type);
|
||||
|
||||
/** @brief Returns an identity matrix of the specified size and type.
|
||||
|
||||
@ -1419,13 +1419,13 @@ public:
|
||||
@param cols Number of columns.
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr eye(int rows, int cols, int type);
|
||||
CV_NODISCARD_STD static MatExpr eye(int rows, int cols, int type);
|
||||
|
||||
/** @overload
|
||||
@param size Alternative matrix size specification as Size(cols, rows) .
|
||||
@param type Created matrix type.
|
||||
*/
|
||||
static MatExpr eye(Size size, int type);
|
||||
CV_NODISCARD_STD static MatExpr eye(Size size, int type);
|
||||
|
||||
/** @brief Allocates new array data if needed.
|
||||
|
||||
@ -2288,7 +2288,7 @@ public:
|
||||
Mat_ row(int y) const;
|
||||
Mat_ col(int x) const;
|
||||
Mat_ diag(int d=0) const;
|
||||
Mat_ clone() const CV_NODISCARD;
|
||||
CV_NODISCARD_STD Mat_ clone() const;
|
||||
|
||||
//! overridden forms of Mat::elemSize() etc.
|
||||
size_t elemSize() const;
|
||||
@ -2301,14 +2301,14 @@ public:
|
||||
size_t stepT(int i=0) const;
|
||||
|
||||
//! overridden forms of Mat::zeros() etc. Data type is omitted, of course
|
||||
static MatExpr zeros(int rows, int cols);
|
||||
static MatExpr zeros(Size size);
|
||||
static MatExpr zeros(int _ndims, const int* _sizes);
|
||||
static MatExpr ones(int rows, int cols);
|
||||
static MatExpr ones(Size size);
|
||||
static MatExpr ones(int _ndims, const int* _sizes);
|
||||
static MatExpr eye(int rows, int cols);
|
||||
static MatExpr eye(Size size);
|
||||
CV_NODISCARD_STD static MatExpr zeros(int rows, int cols);
|
||||
CV_NODISCARD_STD static MatExpr zeros(Size size);
|
||||
CV_NODISCARD_STD static MatExpr zeros(int _ndims, const int* _sizes);
|
||||
CV_NODISCARD_STD static MatExpr ones(int rows, int cols);
|
||||
CV_NODISCARD_STD static MatExpr ones(Size size);
|
||||
CV_NODISCARD_STD static MatExpr ones(int _ndims, const int* _sizes);
|
||||
CV_NODISCARD_STD static MatExpr eye(int rows, int cols);
|
||||
CV_NODISCARD_STD static MatExpr eye(Size size);
|
||||
|
||||
//! some more overridden methods
|
||||
Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright );
|
||||
@ -2451,11 +2451,11 @@ public:
|
||||
//! <0 - a diagonal from the lower half)
|
||||
UMat diag(int d=0) const;
|
||||
//! constructs a square diagonal matrix which main diagonal is vector "d"
|
||||
static UMat diag(const UMat& d, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat diag(const UMat& d) { return diag(d, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat diag(const UMat& d, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat diag(const UMat& d) { return diag(d, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
|
||||
//! returns deep copy of the matrix, i.e. the data is copied
|
||||
UMat clone() const CV_NODISCARD;
|
||||
CV_NODISCARD_STD UMat clone() const;
|
||||
//! copies the matrix content to "m".
|
||||
// It calls m.create(this->size(), this->type()).
|
||||
void copyTo( OutputArray m ) const;
|
||||
@ -2486,22 +2486,22 @@ public:
|
||||
double dot(InputArray m) const;
|
||||
|
||||
//! Matlab-style matrix initialization
|
||||
static UMat zeros(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat zeros(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat zeros(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat zeros(int rows, int cols, int type) { return zeros(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat zeros(Size size, int type) { return zeros(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat zeros(int ndims, const int* sz, int type) { return zeros(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat ones(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat ones(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat ones(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat ones(int rows, int cols, int type) { return ones(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat ones(Size size, int type) { return ones(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat ones(int ndims, const int* sz, int type) { return ones(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat eye(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat eye(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
static UMat eye(int rows, int cols, int type) { return eye(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
static UMat eye(Size size, int type) { return eye(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat zeros(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat zeros(int rows, int cols, int type) { return zeros(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat zeros(Size size, int type) { return zeros(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat zeros(int ndims, const int* sz, int type) { return zeros(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat ones(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat ones(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat ones(int rows, int cols, int type) { return ones(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat ones(Size size, int type) { return ones(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat ones(int ndims, const int* sz, int type) { return ones(ndims, sz, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat eye(int rows, int cols, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat eye(Size size, int type, UMatUsageFlags usageFlags /*= USAGE_DEFAULT*/);
|
||||
CV_NODISCARD_STD static UMat eye(int rows, int cols, int type) { return eye(rows, cols, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
CV_NODISCARD_STD static UMat eye(Size size, int type) { return eye(size, type, USAGE_DEFAULT); } // OpenCV 5.0: remove abi compatibility overload
|
||||
|
||||
//! allocates new matrix data unless the matrix already has specified size and type.
|
||||
// previous data is unreferenced if needed.
|
||||
@ -2767,7 +2767,7 @@ public:
|
||||
SparseMat& operator = (const Mat& m);
|
||||
|
||||
//! creates full copy of the matrix
|
||||
SparseMat clone() const CV_NODISCARD;
|
||||
CV_NODISCARD_STD SparseMat clone() const;
|
||||
|
||||
//! copies all the data to the destination matrix. All the previous content of m is erased
|
||||
void copyTo( SparseMat& m ) const;
|
||||
@ -3004,7 +3004,7 @@ public:
|
||||
SparseMat_& operator = (const Mat& m);
|
||||
|
||||
//! makes full copy of the matrix. All the elements are duplicated
|
||||
SparseMat_ clone() const CV_NODISCARD;
|
||||
CV_NODISCARD_STD SparseMat_ clone() const;
|
||||
//! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type)
|
||||
void create(int dims, const int* _sizes);
|
||||
//! converts sparse matrix to the old-style CvSparseMat. All the elements are copied
|
||||
|
@ -142,22 +142,22 @@ public:
|
||||
|
||||
Matx(std::initializer_list<_Tp>); //!< initialize from an initializer list
|
||||
|
||||
static Matx all(_Tp alpha);
|
||||
static Matx zeros();
|
||||
static Matx ones();
|
||||
static Matx eye();
|
||||
static Matx diag(const diag_type& d);
|
||||
CV_NODISCARD_STD static Matx all(_Tp alpha);
|
||||
CV_NODISCARD_STD static Matx zeros();
|
||||
CV_NODISCARD_STD static Matx ones();
|
||||
CV_NODISCARD_STD static Matx eye();
|
||||
CV_NODISCARD_STD static Matx diag(const diag_type& d);
|
||||
/** @brief Generates uniformly distributed random numbers
|
||||
@param a Range boundary.
|
||||
@param b The other range boundary (boundaries don't have to be ordered, the lower boundary is inclusive,
|
||||
the upper one is exclusive).
|
||||
*/
|
||||
static Matx randu(_Tp a, _Tp b);
|
||||
CV_NODISCARD_STD static Matx randu(_Tp a, _Tp b);
|
||||
/** @brief Generates normally distributed random numbers
|
||||
@param a Mean value.
|
||||
@param b Standard deviation.
|
||||
*/
|
||||
static Matx randn(_Tp a, _Tp b);
|
||||
CV_NODISCARD_STD static Matx randn(_Tp a, _Tp b);
|
||||
|
||||
//! dot product computed with the default precision
|
||||
_Tp dot(const Matx<_Tp, m, n>& v) const;
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include "precomp.hpp"
|
||||
#include "opencv2/core/bindings_utils.hpp"
|
||||
#include <sstream>
|
||||
#include <iomanip>
|
||||
#include <opencv2/core/utils/filesystem.hpp>
|
||||
#include <opencv2/core/utils/filesystem.private.hpp>
|
||||
|
||||
@ -210,6 +211,53 @@ CV_EXPORTS_W String dumpInputOutputArrayOfArrays(InputOutputArrayOfArrays argume
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
static inline std::ostream& operator<<(std::ostream& os, const cv::Rect& rect)
|
||||
{
|
||||
return os << "[x=" << rect.x << ", y=" << rect.y << ", w=" << rect.width << ", h=" << rect.height << ']';
|
||||
}
|
||||
|
||||
template <class T, class Formatter>
|
||||
static inline String dumpVector(const std::vector<T>& vec, Formatter format)
|
||||
{
|
||||
std::ostringstream oss("[", std::ios::ate);
|
||||
if (!vec.empty())
|
||||
{
|
||||
oss << format << vec[0];
|
||||
for (std::size_t i = 1; i < vec.size(); ++i)
|
||||
{
|
||||
oss << ", " << format << vec[i];
|
||||
}
|
||||
}
|
||||
oss << "]";
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
static inline std::ostream& noFormat(std::ostream& os)
|
||||
{
|
||||
return os;
|
||||
}
|
||||
|
||||
static inline std::ostream& floatFormat(std::ostream& os)
|
||||
{
|
||||
return os << std::fixed << std::setprecision(2);
|
||||
}
|
||||
|
||||
String dumpVectorOfInt(const std::vector<int>& vec)
|
||||
{
|
||||
return dumpVector(vec, &noFormat);
|
||||
}
|
||||
|
||||
String dumpVectorOfDouble(const std::vector<double>& vec)
|
||||
{
|
||||
return dumpVector(vec, &floatFormat);
|
||||
}
|
||||
|
||||
String dumpVectorOfRect(const std::vector<Rect>& vec)
|
||||
{
|
||||
return dumpVector(vec, &noFormat);
|
||||
}
|
||||
|
||||
|
||||
namespace fs {
|
||||
cv::String getCacheDirectoryForDownloads()
|
||||
{
|
||||
|
@ -3677,6 +3677,8 @@ bool Kernel::empty() const
|
||||
|
||||
static cv::String dumpValue(size_t sz, const void* p)
|
||||
{
|
||||
if (!p)
|
||||
return "NULL";
|
||||
if (sz == 4)
|
||||
return cv::format("%d / %uu / 0x%08x / %g", *(int*)p, *(int*)p, *(int*)p, *(float*)p);
|
||||
if (sz == 8)
|
||||
|
@ -218,7 +218,7 @@ class dnn_test(NewOpenCVTests):
|
||||
model.setInputParams(scale, size, mean)
|
||||
out, _ = model.detect(frame)
|
||||
|
||||
self.assertTrue(type(out) == list)
|
||||
self.assertTrue(type(out) == tuple, msg='actual type {}'.format(str(type(out))))
|
||||
self.assertTrue(np.array(out).shape == (2, 4, 2))
|
||||
|
||||
|
||||
|
@ -1437,26 +1437,13 @@ bool OCL4DNNConvSpatial<float>::createGEMMLikeConvKernel(int32_t blockM,
|
||||
ocl::Program program = compileKernel();
|
||||
if (program.ptr())
|
||||
{
|
||||
size_t workgroupSize_used;
|
||||
ocl::Kernel kernel(kernel_name_.c_str(), program);
|
||||
if (kernel.empty())
|
||||
return false;
|
||||
|
||||
workgroupSize_used = kernel.preferedWorkGroupSizeMultiple();
|
||||
if (workgroupSize_used != simd_size)
|
||||
{
|
||||
std::cerr << "OpenCV(ocl4dnn): The OpenCL compiler chose a simd size (" << workgroupSize_used << ") that " << std::endl;
|
||||
std::cerr << " does not equal the size (" << simd_size << ") kernel source required." << std::endl;
|
||||
std::cerr << " Skip this kernel " << kernel_name_ << std::endl;
|
||||
unloadProgram(kernel_name_);
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
kernelQueue.push_back(makePtr<kernelConfig>(kernel_name_, &global_size[0], &local_size[0], &workItemOutput[0],
|
||||
true, KERNEL_TYPE_GEMM_LIKE));
|
||||
return true;
|
||||
}
|
||||
kernelQueue.push_back(makePtr<kernelConfig>(kernel_name_, &global_size[0], &local_size[0], &workItemOutput[0],
|
||||
true, KERNEL_TYPE_GEMM_LIKE));
|
||||
return true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
@ -1502,26 +1489,13 @@ bool OCL4DNNConvSpatial<float>::createIDLFKernel(int32_t blockWidth,
|
||||
ocl::Program program = compileKernel();
|
||||
if (program.ptr())
|
||||
{
|
||||
size_t workgroupSize_used;
|
||||
ocl::Kernel kernel(kernel_name_.c_str(), program);
|
||||
if (kernel.empty())
|
||||
return false;
|
||||
|
||||
workgroupSize_used = kernel.preferedWorkGroupSizeMultiple();
|
||||
if (workgroupSize_used != simd_size)
|
||||
{
|
||||
std::cerr << "OpenCV(ocl4dnn): The OpenCL compiler chose a simd size (" << workgroupSize_used << ") that " << std::endl;
|
||||
std::cerr << " does not equal the size (" << simd_size << ") kernel source required." << std::endl;
|
||||
std::cerr << " Skip this kernel " << kernel_name_ << std::endl;
|
||||
unloadProgram(kernel_name_);
|
||||
return false;
|
||||
}
|
||||
else
|
||||
{
|
||||
kernelQueue.push_back(makePtr<kernelConfig>(kernel_name_, &global_size[0], &local_size[0], &workItemOutput[0],
|
||||
true, KERNEL_TYPE_INTEL_IDLF));
|
||||
return true;
|
||||
}
|
||||
kernelQueue.push_back(makePtr<kernelConfig>(kernel_name_, &global_size[0], &local_size[0], &workItemOutput[0],
|
||||
true, KERNEL_TYPE_INTEL_IDLF));
|
||||
return true;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
|
@ -534,7 +534,8 @@ void ONNXImporter::populateNet()
|
||||
for (int j = 0; j < inpShape.size(); ++j)
|
||||
{
|
||||
inpShape[j] = tensorShape.dim(j).dim_value();
|
||||
if (!tensorShape.dim(j).dim_param().empty())
|
||||
// NHW, NCHW(NHWC), NCDHW(NDHWC); do not set this flag if only N is dynamic
|
||||
if (!tensorShape.dim(j).dim_param().empty() && !(j == 0 && inpShape.size() >= 3))
|
||||
hasDynamicShapes = true;
|
||||
}
|
||||
if (!inpShape.empty() && !hasDynamicShapes)
|
||||
@ -1540,6 +1541,16 @@ void ONNXImporter::parseMul(LayerParams& layerParams, const opencv_onnx::NodePro
|
||||
//Replace input to Power
|
||||
node_proto.set_input(1, powerParams.name);
|
||||
}
|
||||
|
||||
const MatShape& broadShape = outShapes[node_proto.input(1)];
|
||||
const size_t outShapeSize = outShapes[node_proto.input(0)].size();
|
||||
const size_t diff = outShapeSize - broadShape.size();
|
||||
|
||||
size_t axis;
|
||||
for (axis = diff; axis < broadShape.size() && broadShape[axis - diff] == 1; ++axis) {}
|
||||
|
||||
CV_Assert(axis != outShapeSize);
|
||||
layerParams.set("axis", static_cast<int>(axis));
|
||||
layerParams.type = "Scale";
|
||||
}
|
||||
addLayer(layerParams, node_proto);
|
||||
@ -2185,7 +2196,7 @@ void ONNXImporter::parseResize(LayerParams& layerParams, const opencv_onnx::Node
|
||||
layerParams.set("align_corners", interp_mode == "align_corners");
|
||||
if (layerParams.get<String>("mode") == "linear")
|
||||
{
|
||||
layerParams.set("mode", interp_mode == "pytorch_half_pixel" ?
|
||||
layerParams.set("mode", interp_mode == "pytorch_half_pixel" || interp_mode == "half_pixel" ?
|
||||
"opencv_linear" : "bilinear");
|
||||
}
|
||||
}
|
||||
|
@ -301,6 +301,7 @@ TEST_P(Test_ONNX_layers, Scale)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
testONNXModels("scale");
|
||||
testONNXModels("scale_broadcast", npy, 0, 0, false, true, 3);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, ReduceMean3D)
|
||||
@ -586,6 +587,11 @@ TEST_P(Test_ONNX_layers, DynamicResize)
|
||||
testONNXModels("dynamic_resize_scale_11", npy, 0, 0, false, true, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Resize_HumanSeg)
|
||||
{
|
||||
testONNXModels("resize_humanseg");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Div)
|
||||
{
|
||||
const String model = _tf("models/div.onnx");
|
||||
@ -881,6 +887,7 @@ TEST_P(Test_ONNX_layers, DynamicAxes)
|
||||
testONNXModels("resize_opset11_torch1.6_dynamic_axes");
|
||||
testONNXModels("average_pooling_dynamic_axes");
|
||||
testONNXModels("maxpooling_sigmoid_dynamic_axes");
|
||||
testONNXModels("dynamic_batch");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, MaxPool1d)
|
||||
|
@ -517,8 +517,8 @@ try:
|
||||
|
||||
comp = cv.GComputation(cv.GIn(g_arr0, g_arr1), cv.GOut(g_out))
|
||||
|
||||
arr0 = [(2, 2), 2.0]
|
||||
arr1 = [3, 'str']
|
||||
arr0 = ((2, 2), 2.0)
|
||||
arr1 = (3, 'str')
|
||||
|
||||
out = comp.apply(cv.gin(arr0, arr1),
|
||||
args=cv.gapi.compile_args(cv.gapi.kernels(GConcatImpl)))
|
||||
|
@ -496,6 +496,33 @@ bool parseSequence(PyObject* obj, RefWrapper<T> (&value)[N], const ArgInfo& info
|
||||
}
|
||||
} // namespace
|
||||
|
||||
namespace traits {
|
||||
template <bool Value>
|
||||
struct BooleanConstant
|
||||
{
|
||||
static const bool value = Value;
|
||||
typedef BooleanConstant<Value> type;
|
||||
};
|
||||
|
||||
typedef BooleanConstant<true> TrueType;
|
||||
typedef BooleanConstant<false> FalseType;
|
||||
|
||||
template <class T>
|
||||
struct VoidType {
|
||||
typedef void type;
|
||||
};
|
||||
|
||||
template <class T, class DType = void>
|
||||
struct IsRepresentableAsMatDataType : FalseType
|
||||
{
|
||||
};
|
||||
|
||||
template <class T>
|
||||
struct IsRepresentableAsMatDataType<T, typename VoidType<typename DataType<T>::channel_type>::type> : TrueType
|
||||
{
|
||||
};
|
||||
} // namespace traits
|
||||
|
||||
typedef std::vector<uchar> vector_uchar;
|
||||
typedef std::vector<char> vector_char;
|
||||
typedef std::vector<int> vector_int;
|
||||
@ -1072,6 +1099,30 @@ bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info)
|
||||
return ivalue != -1 || !PyErr_Occurred();
|
||||
}
|
||||
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info)
|
||||
{
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (isBool(obj))
|
||||
{
|
||||
failmsg("Argument '%s' must be an integer, not bool", info.name);
|
||||
return false;
|
||||
}
|
||||
if (PyArray_IsIntegerScalar(obj))
|
||||
{
|
||||
value = saturate_cast<char>(PyArray_PyIntAsInt(obj));
|
||||
}
|
||||
else
|
||||
{
|
||||
failmsg("Argument '%s' is required to be an integer", info.name);
|
||||
return false;
|
||||
}
|
||||
return !CV_HAS_CONVERSION_ERROR(value);
|
||||
}
|
||||
|
||||
template<>
|
||||
PyObject* pyopencv_from(const double& value)
|
||||
{
|
||||
@ -1484,357 +1535,12 @@ PyObject* pyopencv_from(const Point3d& p)
|
||||
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
|
||||
}
|
||||
|
||||
template<typename _Tp> struct pyopencvVecConverter
|
||||
{
|
||||
typedef typename DataType<_Tp>::channel_type _Cp;
|
||||
static inline bool copyOneItem(PyObject *obj, size_t start, int channels, _Cp * data)
|
||||
{
|
||||
for(size_t j = 0; (int)j < channels; j++ )
|
||||
{
|
||||
SafeSeqItem sub_item_wrap(obj, start + j);
|
||||
PyObject* item_ij = sub_item_wrap.item;
|
||||
if( PyInt_Check(item_ij))
|
||||
{
|
||||
int v = (int)PyInt_AsLong(item_ij);
|
||||
if( v == -1 && PyErr_Occurred() )
|
||||
return false;
|
||||
data[j] = saturate_cast<_Cp>(v);
|
||||
}
|
||||
else if( PyLong_Check(item_ij))
|
||||
{
|
||||
int v = (int)PyLong_AsLong(item_ij);
|
||||
if( v == -1 && PyErr_Occurred() )
|
||||
return false;
|
||||
data[j] = saturate_cast<_Cp>(v);
|
||||
}
|
||||
else if( PyFloat_Check(item_ij))
|
||||
{
|
||||
double v = PyFloat_AsDouble(item_ij);
|
||||
if( PyErr_Occurred() )
|
||||
return false;
|
||||
data[j] = saturate_cast<_Cp>(v);
|
||||
}
|
||||
else
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
static bool to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo& info)
|
||||
{
|
||||
if(!obj || obj == Py_None)
|
||||
return true;
|
||||
if (PyArray_Check(obj))
|
||||
{
|
||||
Mat m;
|
||||
pyopencv_to(obj, m, info);
|
||||
m.copyTo(value);
|
||||
return true;
|
||||
}
|
||||
else if (PySequence_Check(obj))
|
||||
{
|
||||
const int type = traits::Type<_Tp>::value;
|
||||
const int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
|
||||
size_t i, n = PySequence_Size(obj);
|
||||
value.resize(n);
|
||||
for (i = 0; i < n; i++ )
|
||||
{
|
||||
SafeSeqItem item_wrap(obj, i);
|
||||
PyObject* item = item_wrap.item;
|
||||
_Cp* data = (_Cp*)&value[i];
|
||||
|
||||
if( channels == 2 && PyComplex_Check(item) )
|
||||
{
|
||||
data[0] = saturate_cast<_Cp>(PyComplex_RealAsDouble(item));
|
||||
data[1] = saturate_cast<_Cp>(PyComplex_ImagAsDouble(item));
|
||||
}
|
||||
else if( channels > 1 )
|
||||
{
|
||||
if( PyArray_Check(item))
|
||||
{
|
||||
Mat src;
|
||||
pyopencv_to(item, src, info);
|
||||
if( src.dims != 2 || src.channels() != 1 ||
|
||||
((src.cols != 1 || src.rows != channels) &&
|
||||
(src.cols != channels || src.rows != 1)))
|
||||
break;
|
||||
Mat dst(src.rows, src.cols, depth, data);
|
||||
src.convertTo(dst, type);
|
||||
if( dst.data != (uchar*)data )
|
||||
break;
|
||||
}
|
||||
else if (PySequence_Check(item))
|
||||
{
|
||||
if (!copyOneItem(item, 0, channels, data))
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
else if (channels == 1)
|
||||
{
|
||||
if (!copyOneItem(obj, i, channels, data))
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i != n)
|
||||
{
|
||||
failmsg("Can't convert vector element for '%s', index=%d", info.name, i);
|
||||
}
|
||||
return i == n;
|
||||
}
|
||||
failmsg("Can't convert object to vector for '%s', unsupported type", info.name);
|
||||
return false;
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<_Tp>& value)
|
||||
{
|
||||
if(value.empty())
|
||||
return PyTuple_New(0);
|
||||
int type = traits::Type<_Tp>::value;
|
||||
int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
|
||||
Mat src((int)value.size(), channels, depth, (uchar*)&value[0]);
|
||||
return pyopencv_from(src);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _Tp>
|
||||
bool pyopencv_to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencvVecConverter<_Tp>::to(obj, value, info);
|
||||
}
|
||||
|
||||
template<typename _Tp>
|
||||
PyObject* pyopencv_from(const std::vector<_Tp>& value)
|
||||
{
|
||||
return pyopencvVecConverter<_Tp>::from(value);
|
||||
}
|
||||
|
||||
template<typename _Tp> static inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<_Tp>& value, const ArgInfo& info)
|
||||
{
|
||||
if(!obj || obj == Py_None)
|
||||
return true;
|
||||
if (!PySequence_Check(obj))
|
||||
return false;
|
||||
size_t n = PySequence_Size(obj);
|
||||
value.resize(n);
|
||||
for(size_t i = 0; i < n; i++ )
|
||||
{
|
||||
SafeSeqItem item_wrap(obj, i);
|
||||
if(!pyopencv_to(item_wrap.item, value[i], info))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<bool>& value, const ArgInfo& info)
|
||||
{
|
||||
if(!obj || obj == Py_None)
|
||||
return true;
|
||||
if (!PySequence_Check(obj))
|
||||
return false;
|
||||
size_t n = PySequence_Size(obj);
|
||||
value.resize(n);
|
||||
for(size_t i = 0; i < n; i++ )
|
||||
{
|
||||
SafeSeqItem item_wrap(obj, i);
|
||||
bool elem{};
|
||||
if(!pyopencv_to(item_wrap.item, elem, info))
|
||||
return false;
|
||||
value[i] = elem;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<typename _Tp> static inline PyObject* pyopencv_from_generic_vec(const std::vector<_Tp>& value)
|
||||
{
|
||||
int i, n = (int)value.size();
|
||||
PyObject* seq = PyList_New(n);
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
_Tp elem = value[i];
|
||||
PyObject* item = pyopencv_from(elem);
|
||||
if(!item)
|
||||
break;
|
||||
PyList_SetItem(seq, i, item);
|
||||
}
|
||||
if( i < n )
|
||||
{
|
||||
Py_DECREF(seq);
|
||||
return 0;
|
||||
}
|
||||
return seq;
|
||||
}
|
||||
|
||||
template<> inline PyObject* pyopencv_from_generic_vec(const std::vector<bool>& value)
|
||||
{
|
||||
int i, n = (int)value.size();
|
||||
PyObject* seq = PyList_New(n);
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
bool elem = value[i];
|
||||
PyObject* item = pyopencv_from(elem);
|
||||
if(!item)
|
||||
break;
|
||||
PyList_SetItem(seq, i, item);
|
||||
}
|
||||
if( i < n )
|
||||
{
|
||||
Py_DECREF(seq);
|
||||
return 0;
|
||||
}
|
||||
return seq;
|
||||
}
|
||||
|
||||
template<std::size_t I = 0, typename... Tp>
|
||||
inline typename std::enable_if<I == sizeof...(Tp), void>::type
|
||||
convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { }
|
||||
|
||||
template<std::size_t I = 0, typename... Tp>
|
||||
inline typename std::enable_if<I < sizeof...(Tp), void>::type
|
||||
convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple)
|
||||
{
|
||||
PyObject* item = pyopencv_from(std::get<I>(cpp_tuple));
|
||||
|
||||
if (!item)
|
||||
return;
|
||||
|
||||
PyTuple_SetItem(py_tuple, I, item);
|
||||
convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple);
|
||||
}
|
||||
|
||||
|
||||
template<typename... Ts>
|
||||
PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple)
|
||||
{
|
||||
size_t size = sizeof...(Ts);
|
||||
PyObject* py_tuple = PyTuple_New(size);
|
||||
convert_to_python_tuple(cpp_tuple, py_tuple);
|
||||
size_t actual_size = PyTuple_Size(py_tuple);
|
||||
|
||||
if (actual_size < size)
|
||||
{
|
||||
Py_DECREF(py_tuple);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return py_tuple;
|
||||
}
|
||||
|
||||
template<>
|
||||
PyObject* pyopencv_from(const std::pair<int, double>& src)
|
||||
{
|
||||
return Py_BuildValue("(id)", src.first, src.second);
|
||||
}
|
||||
|
||||
template<typename _Tp, typename _Tr> struct pyopencvVecConverter<std::pair<_Tp, _Tr> >
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<std::pair<_Tp, _Tr> >& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<std::pair<_Tp, _Tr> >& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename _Tp> struct pyopencvVecConverter<std::vector<_Tp> >
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<std::vector<_Tp> >& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<std::vector<_Tp> >& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct pyopencvVecConverter<Mat>
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<Mat>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<Mat>& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct pyopencvVecConverter<UMat>
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<UMat>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<UMat>& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct pyopencvVecConverter<KeyPoint>
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<KeyPoint>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<KeyPoint>& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct pyopencvVecConverter<DMatch>
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<DMatch>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<DMatch>& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct pyopencvVecConverter<String>
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<String>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<String>& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<> struct pyopencvVecConverter<RotatedRect>
|
||||
{
|
||||
static bool to(PyObject* obj, std::vector<RotatedRect>& value, const ArgInfo& info)
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
static PyObject* from(const std::vector<RotatedRect>& value)
|
||||
{
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, TermCriteria& dst, const ArgInfo& info)
|
||||
{
|
||||
@ -1962,6 +1668,266 @@ PyObject* pyopencv_from(const Moments& m)
|
||||
"nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03);
|
||||
}
|
||||
|
||||
template <typename Tp>
|
||||
struct pyopencvVecConverter;
|
||||
|
||||
template <typename Tp>
|
||||
bool pyopencv_to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
||||
{
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
return pyopencvVecConverter<Tp>::to(obj, value, info);
|
||||
}
|
||||
|
||||
template <typename Tp>
|
||||
PyObject* pyopencv_from(const std::vector<Tp>& value)
|
||||
{
|
||||
return pyopencvVecConverter<Tp>::from(value);
|
||||
}
|
||||
|
||||
template <typename Tp>
|
||||
static bool pyopencv_to_generic_vec(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
||||
{
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (!PySequence_Check(obj))
|
||||
{
|
||||
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
|
||||
return false;
|
||||
}
|
||||
const size_t n = static_cast<size_t>(PySequence_Size(obj));
|
||||
value.resize(n);
|
||||
for (size_t i = 0; i < n; i++)
|
||||
{
|
||||
SafeSeqItem item_wrap(obj, i);
|
||||
if (!pyopencv_to(item_wrap.item, value[i], info))
|
||||
{
|
||||
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<> inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<bool>& value, const ArgInfo& info)
|
||||
{
|
||||
if (!obj || obj == Py_None)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (!PySequence_Check(obj))
|
||||
{
|
||||
failmsg("Can't parse '%s'. Input argument doesn't provide sequence protocol", info.name);
|
||||
return false;
|
||||
}
|
||||
const size_t n = static_cast<size_t>(PySequence_Size(obj));
|
||||
value.resize(n);
|
||||
for (size_t i = 0; i < n; i++)
|
||||
{
|
||||
SafeSeqItem item_wrap(obj, i);
|
||||
bool elem{};
|
||||
if (!pyopencv_to(item_wrap.item, elem, info))
|
||||
{
|
||||
failmsg("Can't parse '%s'. Sequence item with index %lu has a wrong type", info.name, i);
|
||||
return false;
|
||||
}
|
||||
value[i] = elem;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
template <typename Tp>
|
||||
static PyObject* pyopencv_from_generic_vec(const std::vector<Tp>& value)
|
||||
{
|
||||
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
|
||||
PySafeObject seq(PyTuple_New(n));
|
||||
for (Py_ssize_t i = 0; i < n; i++)
|
||||
{
|
||||
PyObject* item = pyopencv_from(value[i]);
|
||||
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
|
||||
if (!item || PyTuple_SetItem(seq, i, item) == -1)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
return seq.release();
|
||||
}
|
||||
|
||||
template<> inline PyObject* pyopencv_from_generic_vec(const std::vector<bool>& value)
|
||||
{
|
||||
Py_ssize_t n = static_cast<Py_ssize_t>(value.size());
|
||||
PySafeObject seq(PyTuple_New(n));
|
||||
for (Py_ssize_t i = 0; i < n; i++)
|
||||
{
|
||||
bool elem = value[i];
|
||||
PyObject* item = pyopencv_from(elem);
|
||||
// If item can't be assigned - PyTuple_SetItem raises exception and returns -1.
|
||||
if (!item || PyTuple_SetItem(seq, i, item) == -1)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
return seq.release();
|
||||
}
|
||||
|
||||
|
||||
template<std::size_t I = 0, typename... Tp>
|
||||
inline typename std::enable_if<I == sizeof...(Tp), void>::type
|
||||
convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { }
|
||||
|
||||
template<std::size_t I = 0, typename... Tp>
|
||||
inline typename std::enable_if<I < sizeof...(Tp), void>::type
|
||||
convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple)
|
||||
{
|
||||
PyObject* item = pyopencv_from(std::get<I>(cpp_tuple));
|
||||
|
||||
if (!item)
|
||||
return;
|
||||
|
||||
PyTuple_SetItem(py_tuple, I, item);
|
||||
convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple);
|
||||
}
|
||||
|
||||
|
||||
template<typename... Ts>
|
||||
PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple)
|
||||
{
|
||||
size_t size = sizeof...(Ts);
|
||||
PyObject* py_tuple = PyTuple_New(size);
|
||||
convert_to_python_tuple(cpp_tuple, py_tuple);
|
||||
size_t actual_size = PyTuple_Size(py_tuple);
|
||||
|
||||
if (actual_size < size)
|
||||
{
|
||||
Py_DECREF(py_tuple);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return py_tuple;
|
||||
}
|
||||
|
||||
template <typename Tp>
|
||||
struct pyopencvVecConverter
|
||||
{
|
||||
typedef typename std::vector<Tp>::iterator VecIt;
|
||||
|
||||
static bool to(PyObject* obj, std::vector<Tp>& value, const ArgInfo& info)
|
||||
{
|
||||
if (!PyArray_Check(obj))
|
||||
{
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
// If user passed an array it is possible to make faster conversions in several cases
|
||||
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(obj);
|
||||
const NPY_TYPES target_type = asNumpyType<Tp>();
|
||||
const NPY_TYPES source_type = static_cast<NPY_TYPES>(PyArray_TYPE(array_obj));
|
||||
if (target_type == NPY_OBJECT)
|
||||
{
|
||||
// Non-planar arrays representing objects (e.g. array of N Rect is an array of shape Nx4) have NPY_OBJECT
|
||||
// as their target type.
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
if (PyArray_NDIM(array_obj) > 1)
|
||||
{
|
||||
failmsg("Can't parse %dD array as '%s' vector argument", PyArray_NDIM(array_obj), info.name);
|
||||
return false;
|
||||
}
|
||||
if (target_type != source_type)
|
||||
{
|
||||
// Source type requires conversion
|
||||
// Allowed conversions for target type is handled in the corresponding pyopencv_to function
|
||||
return pyopencv_to_generic_vec(obj, value, info);
|
||||
}
|
||||
// For all other cases, all array data can be directly copied to std::vector data
|
||||
// Simple `memcpy` is not possible because NumPy array can reference a slice of the bigger array:
|
||||
// ```
|
||||
// arr = np.ones((8, 4, 5), dtype=np.int32)
|
||||
// convertible_to_vector_of_int = arr[:, 0, 1]
|
||||
// ```
|
||||
value.resize(static_cast<size_t>(PyArray_SIZE(array_obj)));
|
||||
const npy_intp item_step = PyArray_STRIDE(array_obj, 0) / PyArray_ITEMSIZE(array_obj);
|
||||
const Tp* data_ptr = static_cast<Tp*>(PyArray_DATA(array_obj));
|
||||
for (VecIt it = value.begin(); it != value.end(); ++it, data_ptr += item_step) {
|
||||
*it = *data_ptr;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<Tp>& value)
|
||||
{
|
||||
if (value.empty())
|
||||
{
|
||||
return PyTuple_New(0);
|
||||
}
|
||||
return from(value, ::traits::IsRepresentableAsMatDataType<Tp>());
|
||||
}
|
||||
|
||||
private:
|
||||
static PyObject* from(const std::vector<Tp>& value, ::traits::FalseType)
|
||||
{
|
||||
// Underlying type is not representable as Mat Data Type
|
||||
return pyopencv_from_generic_vec(value);
|
||||
}
|
||||
|
||||
static PyObject* from(const std::vector<Tp>& value, ::traits::TrueType)
|
||||
{
|
||||
// Underlying type is representable as Mat Data Type, so faster return type is available
|
||||
typedef DataType<Tp> DType;
|
||||
typedef typename DType::channel_type UnderlyingArrayType;
|
||||
|
||||
// If Mat is always exposed as NumPy array this code path can be reduced to the following snipped:
|
||||
// Mat src(value);
|
||||
// PyObject* array = pyopencv_from(src);
|
||||
// return PyArray_Squeeze(reinterpret_cast<PyArrayObject*>(array));
|
||||
// This puts unnecessary restrictions on Mat object those might be avoided without losing the performance.
|
||||
// Moreover, this version is a bit faster, because it doesn't create temporary objects with reference counting.
|
||||
|
||||
const NPY_TYPES target_type = asNumpyType<UnderlyingArrayType>();
|
||||
const int cols = DType::channels;
|
||||
PyObject* array = NULL;
|
||||
if (cols == 1)
|
||||
{
|
||||
npy_intp dims = static_cast<npy_intp>(value.size());
|
||||
array = PyArray_SimpleNew(1, &dims, target_type);
|
||||
}
|
||||
else
|
||||
{
|
||||
npy_intp dims[2] = {static_cast<npy_intp>(value.size()), cols};
|
||||
array = PyArray_SimpleNew(2, dims, target_type);
|
||||
}
|
||||
if(!array)
|
||||
{
|
||||
// NumPy arrays with shape (N, 1) and (N) are not equal, so correct error message should distinguish
|
||||
// them too.
|
||||
String shape;
|
||||
if (cols > 1)
|
||||
{
|
||||
shape = format("(%d x %d)", static_cast<int>(value.size()), cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
shape = format("(%d)", static_cast<int>(value.size()));
|
||||
}
|
||||
const String error_message = format("Can't allocate NumPy array for vector with dtype=%d and shape=%s",
|
||||
static_cast<int>(target_type), shape.c_str());
|
||||
emit_failmsg(PyExc_MemoryError, error_message.c_str());
|
||||
return array;
|
||||
}
|
||||
// Fill the array
|
||||
PyArrayObject* array_obj = reinterpret_cast<PyArrayObject*>(array);
|
||||
UnderlyingArrayType* array_data = static_cast<UnderlyingArrayType*>(PyArray_DATA(array_obj));
|
||||
// if Tp is representable as Mat DataType, so the following cast is pretty safe...
|
||||
const UnderlyingArrayType* value_data = reinterpret_cast<const UnderlyingArrayType*>(value.data());
|
||||
memcpy(array_data, value_data, sizeof(UnderlyingArrayType) * value.size() * static_cast<size_t>(cols));
|
||||
return array;
|
||||
}
|
||||
};
|
||||
|
||||
static int OnError(int status, const char *func_name, const char *err_msg, const char *file_name, int line, void *userdata)
|
||||
{
|
||||
PyGILState_STATE gstate;
|
||||
|
@ -20,8 +20,13 @@ class Hackathon244Tests(NewOpenCVTests):
|
||||
flag, ajpg = cv.imencode("img_q90.jpg", a, [cv.IMWRITE_JPEG_QUALITY, 90])
|
||||
self.assertEqual(flag, True)
|
||||
self.assertEqual(ajpg.dtype, np.uint8)
|
||||
self.assertGreater(ajpg.shape[0], 1)
|
||||
self.assertEqual(ajpg.shape[1], 1)
|
||||
self.assertTrue(isinstance(ajpg, np.ndarray), "imencode returned buffer of wrong type: {}".format(type(ajpg)))
|
||||
self.assertEqual(len(ajpg.shape), 1, "imencode returned buffer with wrong shape: {}".format(ajpg.shape))
|
||||
self.assertGreaterEqual(len(ajpg), 1, "imencode length of the returned buffer should be at least 1")
|
||||
self.assertLessEqual(
|
||||
len(ajpg), a.size,
|
||||
"imencode length of the returned buffer shouldn't exceed number of elements in original image"
|
||||
)
|
||||
|
||||
def test_projectPoints(self):
|
||||
objpt = np.float64([[1,2,3]])
|
||||
|
@ -481,6 +481,109 @@ class Arguments(NewOpenCVTests):
|
||||
cv.utils.testReservedKeywordConversion(20, lambda_=-4, from_=12), format_str.format(20, -4, 12)
|
||||
)
|
||||
|
||||
def test_parse_vector_int_convertible(self):
|
||||
np.random.seed(123098765)
|
||||
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfInt)
|
||||
arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2)
|
||||
int_min, int_max = get_limits(ctypes.c_int)
|
||||
for convertible in ((int_min, 1, 2, 3, int_max), [40, 50], tuple(),
|
||||
np.array([int_min, -10, 24, int_max], dtype=np.int32),
|
||||
np.array([10, 230, 12], dtype=np.uint8), arr[:, 0, 1],):
|
||||
expected = "[" + ", ".join(map(str, convertible)) + "]"
|
||||
actual = try_to_convert(convertible)
|
||||
self.assertEqual(expected, actual,
|
||||
msg=get_conversion_error_msg(convertible, expected, actual))
|
||||
|
||||
def test_parse_vector_int_not_convertible(self):
|
||||
np.random.seed(123098765)
|
||||
arr = np.random.randint(-20, 20, 40).astype(np.float).reshape(10, 2, 2)
|
||||
int_min, int_max = get_limits(ctypes.c_int)
|
||||
test_dict = {1: 2, 3: 10, 10: 20}
|
||||
for not_convertible in ((int_min, 1, 2.5, 3, int_max), [True, 50], 'test', test_dict,
|
||||
reversed([1, 2, 3]),
|
||||
np.array([int_min, -10, 24, [1, 2]], dtype=np.object),
|
||||
np.array([[1, 2], [3, 4]]), arr[:, 0, 1],):
|
||||
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpVectorOfInt(not_convertible)
|
||||
|
||||
def test_parse_vector_double_convertible(self):
|
||||
np.random.seed(1230965)
|
||||
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfDouble)
|
||||
arr = np.random.randint(-20, 20, 40).astype(np.int32).reshape(10, 2, 2)
|
||||
for convertible in ((1, 2.12, 3.5), [40, 50], tuple(),
|
||||
np.array([-10, 24], dtype=np.int32),
|
||||
np.array([-12.5, 1.4], dtype=np.double),
|
||||
np.array([10, 230, 12], dtype=np.float), arr[:, 0, 1], ):
|
||||
expected = "[" + ", ".join(map(lambda v: "{:.2f}".format(v), convertible)) + "]"
|
||||
actual = try_to_convert(convertible)
|
||||
self.assertEqual(expected, actual,
|
||||
msg=get_conversion_error_msg(convertible, expected, actual))
|
||||
|
||||
def test_parse_vector_double_not_convertible(self):
|
||||
test_dict = {1: 2, 3: 10, 10: 20}
|
||||
for not_convertible in (('t', 'e', 's', 't'), [True, 50.55], 'test', test_dict,
|
||||
np.array([-10.1, 24.5, [1, 2]], dtype=np.object),
|
||||
np.array([[1, 2], [3, 4]]),):
|
||||
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpVectorOfDouble(not_convertible)
|
||||
|
||||
def test_parse_vector_rect_convertible(self):
|
||||
np.random.seed(1238765)
|
||||
try_to_convert = partial(self._try_to_convert, cv.utils.dumpVectorOfRect)
|
||||
arr_of_rect_int32 = np.random.randint(5, 20, 4 * 3).astype(np.int32).reshape(3, 4)
|
||||
arr_of_rect_cast = np.random.randint(10, 40, 4 * 5).astype(np.uint8).reshape(5, 4)
|
||||
for convertible in (((1, 2, 3, 4), (10, -20, 30, 10)), arr_of_rect_int32, arr_of_rect_cast,
|
||||
arr_of_rect_int32.astype(np.int8), [[5, 3, 1, 4]],
|
||||
((np.int8(4), np.uint8(10), np.int(32), np.int16(55)),)):
|
||||
expected = "[" + ", ".join(map(lambda v: "[x={}, y={}, w={}, h={}]".format(*v), convertible)) + "]"
|
||||
actual = try_to_convert(convertible)
|
||||
self.assertEqual(expected, actual,
|
||||
msg=get_conversion_error_msg(convertible, expected, actual))
|
||||
|
||||
def test_parse_vector_rect_not_convertible(self):
|
||||
np.random.seed(1238765)
|
||||
arr = np.random.randint(5, 20, 4 * 3).astype(np.float).reshape(3, 4)
|
||||
for not_convertible in (((1, 2, 3, 4), (10.5, -20, 30.1, 10)), arr,
|
||||
[[5, 3, 1, 4], []],
|
||||
((np.float(4), np.uint8(10), np.int(32), np.int16(55)),)):
|
||||
with self.assertRaises(TypeError, msg=get_no_exception_msg(not_convertible)):
|
||||
_ = cv.utils.dumpVectorOfRect(not_convertible)
|
||||
|
||||
def test_vector_general_return(self):
|
||||
expected_number_of_mats = 5
|
||||
expected_shape = (10, 10, 3)
|
||||
expected_type = np.uint8
|
||||
mats = cv.utils.generateVectorOfMat(5, 10, 10, cv.CV_8UC3)
|
||||
self.assertTrue(isinstance(mats, tuple),
|
||||
"Vector of Mats objects should be returned as tuple. Got: {}".format(type(mats)))
|
||||
self.assertEqual(len(mats), expected_number_of_mats, "Returned array has wrong length")
|
||||
for mat in mats:
|
||||
self.assertEqual(mat.shape, expected_shape, "Returned Mat has wrong shape")
|
||||
self.assertEqual(mat.dtype, expected_type, "Returned Mat has wrong elements type")
|
||||
empty_mats = cv.utils.generateVectorOfMat(0, 10, 10, cv.CV_32FC1)
|
||||
self.assertTrue(isinstance(empty_mats, tuple),
|
||||
"Empty vector should be returned as empty tuple. Got: {}".format(type(mats)))
|
||||
self.assertEqual(len(empty_mats), 0, "Vector of size 0 should be returned as tuple of length 0")
|
||||
|
||||
def test_vector_fast_return(self):
|
||||
expected_shape = (5, 4)
|
||||
rects = cv.utils.generateVectorOfRect(expected_shape[0])
|
||||
self.assertTrue(isinstance(rects, np.ndarray),
|
||||
"Vector of rectangles should be returned as numpy array. Got: {}".format(type(rects)))
|
||||
self.assertEqual(rects.dtype, np.int32, "Vector of rectangles has wrong elements type")
|
||||
self.assertEqual(rects.shape, expected_shape, "Vector of rectangles has wrong shape")
|
||||
empty_rects = cv.utils.generateVectorOfRect(0)
|
||||
self.assertTrue(isinstance(empty_rects, tuple),
|
||||
"Empty vector should be returned as empty tuple. Got: {}".format(type(empty_rects)))
|
||||
self.assertEqual(len(empty_rects), 0, "Vector of size 0 should be returned as tuple of length 0")
|
||||
|
||||
expected_shape = (10,)
|
||||
ints = cv.utils.generateVectorOfInt(expected_shape[0])
|
||||
self.assertTrue(isinstance(ints, np.ndarray),
|
||||
"Vector of integers should be returned as numpy array. Got: {}".format(type(ints)))
|
||||
self.assertEqual(ints.dtype, np.int32, "Vector of integers has wrong elements type")
|
||||
self.assertEqual(ints.shape, expected_shape, "Vector of integers has wrong shape.")
|
||||
|
||||
|
||||
class SamplesFindFile(NewOpenCVTests):
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user