Merge pull request #3874 from paroj:calib_sample

This commit is contained in:
Vadim Pisarevsky 2015-04-01 11:13:04 +00:00
commit 5ab26e3202
2 changed files with 159 additions and 341 deletions

View File

@ -30,7 +30,7 @@ y_{corrected} = y + [ p_1(r^2+ 2y^2)+ 2p_2xy]\f]
So we have five distortion parameters which in OpenCV are presented as one row matrix with 5 So we have five distortion parameters which in OpenCV are presented as one row matrix with 5
columns: columns:
\f[Distortion_{coefficients}=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)\f] \f[distortion\_coefficients=(k_1 \hspace{10pt} k_2 \hspace{10pt} p_1 \hspace{10pt} p_2 \hspace{10pt} k_3)\f]
Now for the unit conversion we use the following formula: Now for the unit conversion we use the following formula:
@ -96,83 +96,30 @@ on how to do this you can find in the @ref tutorial_file_input_output_with_xml_y
Explanation Explanation
----------- -----------
-# **Read the settings.** -# **Read the settings**
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp file_read
Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{
cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
return -1;
}
fs["Settings"] >> s;
fs.release(); // close Settings file
if (!s.goodInput)
{
cout << "Invalid input detected. Application stopping. " << endl;
return -1;
}
@endcode
For this I've used simple OpenCV class input operation. After reading the file I've an For this I've used simple OpenCV class input operation. After reading the file I've an
additional post-processing function that checks validity of the input. Only if all inputs are additional post-processing function that checks validity of the input. Only if all inputs are
good then *goodInput* variable will be true. good then *goodInput* variable will be true.
-# **Get next input, if it fails or we have enough of them - calibrate**. After this we have a big -# **Get next input, if it fails or we have enough of them - calibrate**
After this we have a big
loop where we do the following operations: get the next image from the image list, camera or loop where we do the following operations: get the next image from the image list, camera or
video file. If this fails or we have enough images then we run the calibration process. In case video file. If this fails or we have enough images then we run the calibration process. In case
of image we step out of the loop and otherwise the remaining frames will be undistorted (if the of image we step out of the loop and otherwise the remaining frames will be undistorted (if the
option is set) via changing from *DETECTION* mode to the *CALIBRATED* one. option is set) via changing from *DETECTION* mode to the *CALIBRATED* one.
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp get_input
for(int i = 0;;++i)
{
Mat view;
bool blinkOutput = false;
view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames )
{
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;
else
mode = DETECTION;
}
if(view.empty()) // If no more images then run calibration, save and stop loop.
{
if( imagePoints.size() > 0 )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
break;
imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 );
}
@endcode
For some cameras we may need to flip the input image. Here we do this too. For some cameras we may need to flip the input image. Here we do this too.
-# **Find the pattern in the current input**. The formation of the equations I mentioned above aims -# **Find the pattern in the current input**
The formation of the equations I mentioned above aims
to finding major patterns in the input: in case of the chessboard this are corners of the to finding major patterns in the input: in case of the chessboard this are corners of the
squares and for the circles, well, the circles themselves. The position of these will form the squares and for the circles, well, the circles themselves. The position of these will form the
result which will be written into the *pointBuf* vector. result which will be written into the *pointBuf* vector.
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp find_pattern
vector<Point2f> pointBuf;
bool found;
switch( s.calibrationPattern ) // Find feature points on the input format
{
case Settings::CHESSBOARD:
found = findChessboardCorners( view, s.boardSize, pointBuf,
CALIB_CB_ADAPTIVE_THRESH | CALIB_CB_FAST_CHECK | CALIB_CB_NORMALIZE_IMAGE);
break;
case Settings::CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf );
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid( view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID );
break;
}
@endcode
Depending on the type of the input pattern you use either the @ref cv::findChessboardCorners or Depending on the type of the input pattern you use either the @ref cv::findChessboardCorners or
the @ref cv::findCirclesGrid function. For both of them you pass the current image and the size the @ref cv::findCirclesGrid function. For both of them you pass the current image and the size
of the board and you'll get the positions of the patterns. Furthermore, they return a boolean of the board and you'll get the positions of the patterns. Furthermore, they return a boolean
@ -188,109 +135,27 @@ Explanation
*imagePoints* vector to collect all of the equations into a single container. Finally, for *imagePoints* vector to collect all of the equations into a single container. Finally, for
visualization feedback purposes we will draw the found points on the input image using @ref visualization feedback purposes we will draw the found points on the input image using @ref
cv::findChessboardCorners function. cv::findChessboardCorners function.
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp pattern_found
if ( found) // If done with success, -# **Show state and result to the user, plus command line control of the application**
{
// improve the found corners' coordinate accuracy for chessboard
if( s.calibrationPattern == Settings::CHESSBOARD)
{
Mat viewGray;
cvtColor(view, viewGray, COLOR_BGR2GRAY);
cornerSubPix( viewGray, pointBuf, Size(11,11),
Size(-1,-1), TermCriteria( TermCriteria::EPS+TermCriteria::MAX_ITER, 30, 0.1 ));
}
if( mode == CAPTURING && // For camera only take new samples after delay time This part shows text output on the image.
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC) ) @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp output_text
{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();
}
// Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
}
@endcode
-# **Show state and result to the user, plus command line control of the application**. This part
shows text output on the image.
@code{.cpp}
//----------------------------- Output Text ------------------------------------------------
string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);
if( mode == CAPTURING )
{
if(s.showUndistorsed)
msg = format( "%d/%d Undist", (int)imagePoints.size(), s.nrFrames );
else
msg = format( "%d/%d", (int)imagePoints.size(), s.nrFrames );
}
putText( view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);
if( blinkOutput )
bitwise_not(view, view);
@endcode
If we ran calibration and got camera's matrix with the distortion coefficients we may want to If we ran calibration and got camera's matrix with the distortion coefficients we may want to
correct the image using @ref cv::undistort function: correct the image using @ref cv::undistort function:
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp output_undistorted
//------------------------- Video capture output undistorted ------------------------------ Then we show the image and wait for an input key and if this is *u* we toggle the distortion removal,
if( mode == CALIBRATED && s.showUndistorsed ) if it is *g* we start again the detection process, and finally for the *ESC* key we quit the application:
{ @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp await_input
Mat temp = view.clone(); -# **Show the distortion removal for the images too**
undistort(temp, view, cameraMatrix, distCoeffs);
}
//------------------------------ Show image and check for input commands -------------------
imshow("Image View", view);
@endcode
Then we wait for an input key and if this is *u* we toggle the distortion removal, if it is *g*
we start again the detection process, and finally for the *ESC* key we quit the application:
@code{.cpp}
char key = waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
if( key == ESC_KEY )
break;
if( key == 'u' && mode == CALIBRATED ) When you work with an image list it is not
s.showUndistorsed = !s.showUndistorsed;
if( s.inputCapture.isOpened() && key == 'g' )
{
mode = CAPTURING;
imagePoints.clear();
}
@endcode
-# **Show the distortion removal for the images too**. When you work with an image list it is not
possible to remove the distortion inside the loop. Therefore, you must do this after the loop. possible to remove the distortion inside the loop. Therefore, you must do this after the loop.
Taking advantage of this now I'll expand the @ref cv::undistort function, which is in fact first Taking advantage of this now I'll expand the @ref cv::undistort function, which is in fact first
calls @ref cv::initUndistortRectifyMap to find transformation matrices and then performs calls @ref cv::initUndistortRectifyMap to find transformation matrices and then performs
transformation using @ref cv::remap function. Because, after successful calibration map transformation using @ref cv::remap function. Because, after successful calibration map
calculation needs to be done only once, by using this expanded form you may speed up your calculation needs to be done only once, by using this expanded form you may speed up your
application: application:
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp show_results
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{
Mat view, rview, map1, map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2);
for(int i = 0; i < (int)s.imageList.size(); i++ )
{
view = imread(s.imageList[i], 1);
if(view.empty())
continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = waitKey();
if( c == ESC_KEY || c == 'q' || c == 'Q' )
break;
}
}
@endcode
The calibration and save The calibration and save
------------------------ ------------------------
@ -304,24 +169,7 @@ Therefore in the first function we just split up these two processes. Because we
of the calibration variables we'll create these variables here and pass on both of them to the of the calibration variables we'll create these variables here and pass on both of them to the
calibration and saving function. Again, I'll not show the saving part as that has little in common calibration and saving function. Again, I'll not show the saving part as that has little in common
with the calibration. Explore the source file in order to find out how and what: with the calibration. Explore the source file in order to find out how and what:
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp run_and_save
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints )
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;
bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
reprojErrs, totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ;
if( ok ) // save only if the calibration was done with success
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,
imagePoints, totalAvgErr);
return ok;
}
@endcode
We do the calibration with the help of the @ref cv::calibrateCamera function. It has the following We do the calibration with the help of the @ref cv::calibrateCamera function. It has the following
parameters: parameters:
@ -331,29 +179,7 @@ parameters:
present. Because, we use a single pattern for all the input images we can calculate this just present. Because, we use a single pattern for all the input images we can calculate this just
once and multiply it for all the other input views. We calculate the corner points with the once and multiply it for all the other input views. We calculate the corner points with the
*calcBoardCornerPositions* function as: *calcBoardCornerPositions* function as:
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp board_corners
void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{
corners.clear();
switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0));
break;
case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));
break;
}
}
@endcode
And then multiply it as: And then multiply it as:
@code{.cpp} @code{.cpp}
vector<vector<Point3f> > objectPoints(1); vector<vector<Point3f> > objectPoints(1);
@ -365,12 +191,8 @@ parameters:
circle pattern). We have already collected this from @ref cv::findChessboardCorners or @ref circle pattern). We have already collected this from @ref cv::findChessboardCorners or @ref
cv::findCirclesGrid function. We just need to pass it on. cv::findCirclesGrid function. We just need to pass it on.
- The size of the image acquired from the camera, video file or the images. - The size of the image acquired from the camera, video file or the images.
- The camera matrix. If we used the fixed aspect ratio option we need to set the \f$f_x\f$ to zero: - The camera matrix. If we used the fixed aspect ratio option we need to set \f$f_x\f$:
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp fixed_aspect
cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = 1.0;
@endcode
- The distortion coefficient matrix. Initialize with zero. - The distortion coefficient matrix. Initialize with zero.
@code{.cpp} @code{.cpp}
distCoeffs = Mat::zeros(8, 1, CV_64F); distCoeffs = Mat::zeros(8, 1, CV_64F);
@ -393,33 +215,7 @@ double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
calculate the absolute norm between what we got with our transformation and the corner/circle calculate the absolute norm between what we got with our transformation and the corner/circle
finding algorithm. To find the average error we calculate the arithmetical mean of the errors finding algorithm. To find the average error we calculate the arithmetical mean of the errors
calculated for all the calibration images. calculated for all the calibration images.
@code{.cpp} @snippet samples/cpp/tutorial_code/calib3d/camera_calibration/camera_calibration.cpp compute_errors
double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector<float>& perViewErrors)
{
vector<Point2f> imagePoints2;
int i, totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());
for( i = 0; i < (int)objectPoints.size(); ++i )
{
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, // project
distCoeffs, imagePoints2);
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), NORM_L2); // difference
int n = (int)objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n); // save for this view
totalErr += err*err; // sum it up
totalPoints += n;
}
return std::sqrt(totalErr/totalPoints); // calculate the arithmetical mean
}
@endcode
Results Results
------- -------
@ -461,20 +257,20 @@ the input. Here's, how a detected pattern should look:
In both cases in the specified output XML/YAML file you'll find the camera and distortion In both cases in the specified output XML/YAML file you'll find the camera and distortion
coefficients matrices: coefficients matrices:
@code{.xml} @code{.xml}
<Camera_Matrix type_id="opencv-matrix"> <camera_matrix type_id="opencv-matrix">
<rows>3</rows> <rows>3</rows>
<cols>3</cols> <cols>3</cols>
<dt>d</dt> <dt>d</dt>
<data> <data>
6.5746697944293521e+002 0. 3.1950000000000000e+002 0. 6.5746697944293521e+002 0. 3.1950000000000000e+002 0.
6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></Camera_Matrix> 6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></camera_matrix>
<Distortion_Coefficients type_id="opencv-matrix"> <distortion_coefficients type_id="opencv-matrix">
<rows>5</rows> <rows>5</rows>
<cols>1</cols> <cols>1</cols>
<dt>d</dt> <dt>d</dt>
<data> <data>
-4.1802327176423804e-001 5.0715244063187526e-001 0. 0. -4.1802327176423804e-001 5.0715244063187526e-001 0. 0.
-5.7843597214487474e-001</data></Distortion_Coefficients> -5.7843597214487474e-001</data></distortion_coefficients>
@endcode @endcode
Add these values as constants to your program, call the @ref cv::initUndistortRectifyMap and the Add these values as constants to your program, call the @ref cv::initUndistortRectifyMap and the
@ref cv::remap function to remove distortion and enjoy distortion free inputs for cheap and low @ref cv::remap function to remove distortion and enjoy distortion free inputs for cheap and low

View File

@ -34,7 +34,8 @@ public:
void write(FileStorage& fs) const //Write serialization for this class void write(FileStorage& fs) const //Write serialization for this class
{ {
fs << "{" << "BoardSize_Width" << boardSize.width fs << "{"
<< "BoardSize_Width" << boardSize.width
<< "BoardSize_Height" << boardSize.height << "BoardSize_Height" << boardSize.height
<< "Square_Size" << squareSize << "Square_Size" << squareSize
<< "Calibrate_Pattern" << patternToUse << "Calibrate_Pattern" << patternToUse
@ -43,8 +44,8 @@ public:
<< "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist << "Calibrate_AssumeZeroTangentialDistortion" << calibZeroTangentDist
<< "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint << "Calibrate_FixPrincipalPointAtTheCenter" << calibFixPrincipalPoint
<< "Write_DetectedFeaturePoints" << bwritePoints << "Write_DetectedFeaturePoints" << writePoints
<< "Write_extrinsicParameters" << bwriteExtrinsics << "Write_extrinsicParameters" << writeExtrinsics
<< "Write_outputFileName" << outputFileName << "Write_outputFileName" << outputFileName
<< "Show_UndistortedImage" << showUndistorsed << "Show_UndistortedImage" << showUndistorsed
@ -62,8 +63,8 @@ public:
node["Square_Size"] >> squareSize; node["Square_Size"] >> squareSize;
node["Calibrate_NrOfFrameToUse"] >> nrFrames; node["Calibrate_NrOfFrameToUse"] >> nrFrames;
node["Calibrate_FixAspectRatio"] >> aspectRatio; node["Calibrate_FixAspectRatio"] >> aspectRatio;
node["Write_DetectedFeaturePoints"] >> bwritePoints; node["Write_DetectedFeaturePoints"] >> writePoints;
node["Write_extrinsicParameters"] >> bwriteExtrinsics; node["Write_extrinsicParameters"] >> writeExtrinsics;
node["Write_outputFileName"] >> outputFileName; node["Write_outputFileName"] >> outputFileName;
node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist; node["Calibrate_AssumeZeroTangentialDistortion"] >> calibZeroTangentDist;
node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint; node["Calibrate_FixPrincipalPointAtTheCenter"] >> calibFixPrincipalPoint;
@ -71,9 +72,9 @@ public:
node["Show_UndistortedImage"] >> showUndistorsed; node["Show_UndistortedImage"] >> showUndistorsed;
node["Input"] >> input; node["Input"] >> input;
node["Input_Delay"] >> delay; node["Input_Delay"] >> delay;
interprate(); validate();
} }
void interprate() void validate()
{ {
goodInput = true; goodInput = true;
if (boardSize.width <= 0 || boardSize.height <= 0) if (boardSize.width <= 0 || boardSize.height <= 0)
@ -105,10 +106,10 @@ public:
else else
{ {
if (readStringList(input, imageList)) if (readStringList(input, imageList))
{ {
inputType = IMAGE_LIST; inputType = IMAGE_LIST;
nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size(); nrFrames = (nrFrames < (int)imageList.size()) ? nrFrames : (int)imageList.size();
} }
else else
inputType = VIDEO_FILE; inputType = VIDEO_FILE;
} }
@ -121,7 +122,7 @@ public:
} }
if (inputType == INVALID) if (inputType == INVALID)
{ {
cerr << " Inexistent input: " << input; cerr << " Input does not exist: " << input;
goodInput = false; goodInput = false;
} }
@ -136,10 +137,10 @@ public:
if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID; if (!patternToUse.compare("CIRCLES_GRID")) calibrationPattern = CIRCLES_GRID;
if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID; if (!patternToUse.compare("ASYMMETRIC_CIRCLES_GRID")) calibrationPattern = ASYMMETRIC_CIRCLES_GRID;
if (calibrationPattern == NOT_EXISTING) if (calibrationPattern == NOT_EXISTING)
{ {
cerr << " Inexistent camera calibration mode: " << patternToUse << endl; cerr << " Camera calibration mode does not exist: " << patternToUse << endl;
goodInput = false; goodInput = false;
} }
atImageList = 0; atImageList = 0;
} }
@ -152,7 +153,7 @@ public:
inputCapture >> view0; inputCapture >> view0;
view0.copyTo(result); view0.copyTo(result);
} }
else if( atImageList < (int)imageList.size() ) else if( atImageList < imageList.size() )
result = imread(imageList[atImageList++], IMREAD_COLOR); result = imread(imageList[atImageList++], IMREAD_COLOR);
return result; return result;
@ -173,26 +174,24 @@ public:
return true; return true;
} }
public: public:
Size boardSize; // The size of the board -> Number of items by width and height Size boardSize; // The size of the board -> Number of items by width and height
Pattern calibrationPattern;// One of the Chessboard, circles, or asymmetric circle pattern Pattern calibrationPattern; // One of the Chessboard, circles, or asymmetric circle pattern
float squareSize; // The size of a square in your defined unit (point, millimeter,etc). float squareSize; // The size of a square in your defined unit (point, millimeter,etc).
int nrFrames; // The number of frames to use from the input for calibration int nrFrames; // The number of frames to use from the input for calibration
float aspectRatio; // The aspect ratio float aspectRatio; // The aspect ratio
int delay; // In case of a video input int delay; // In case of a video input
bool bwritePoints; // Write detected feature points bool writePoints; // Write detected feature points
bool bwriteExtrinsics; // Write extrinsic parameters bool writeExtrinsics; // Write extrinsic parameters
bool calibZeroTangentDist; // Assume zero tangential distortion bool calibZeroTangentDist; // Assume zero tangential distortion
bool calibFixPrincipalPoint;// Fix the principal point at the center bool calibFixPrincipalPoint; // Fix the principal point at the center
bool flipVertical; // Flip the captured images around the horizontal axis bool flipVertical; // Flip the captured images around the horizontal axis
string outputFileName; // The name of the file where to write string outputFileName; // The name of the file where to write
bool showUndistorsed; // Show undistorted images after calibration bool showUndistorsed; // Show undistorted images after calibration
string input; // The input -> string input; // The input ->
int cameraID; int cameraID;
vector<string> imageList; vector<string> imageList;
int atImageList; size_t atImageList;
VideoCapture inputCapture; VideoCapture inputCapture;
InputType inputType; InputType inputType;
bool goodInput; bool goodInput;
@ -204,7 +203,7 @@ private:
}; };
static void read(const FileNode& node, Settings& x, const Settings& default_value = Settings()) static inline void read(const FileNode& node, Settings& x, const Settings& default_value = Settings())
{ {
if(node.empty()) if(node.empty())
x = default_value; x = default_value;
@ -212,6 +211,11 @@ static void read(const FileNode& node, Settings& x, const Settings& default_valu
x.read(node); x.read(node);
} }
static inline void write(FileStorage& fs, const String&, const Settings& s )
{
s.write(fs);
}
enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 }; enum { DETECTION = 0, CAPTURING = 1, CALIBRATED = 2 };
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs, bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
@ -220,6 +224,8 @@ bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat&
int main(int argc, char* argv[]) int main(int argc, char* argv[])
{ {
help(); help();
//! [file_read]
Settings s; Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml"; const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
@ -230,6 +236,10 @@ int main(int argc, char* argv[])
} }
fs["Settings"] >> s; fs["Settings"] >> s;
fs.release(); // close Settings file fs.release(); // close Settings file
//! [file_read]
//FileStorage fout("settings.yml", FileStorage::WRITE); // write config as YAML
//fout << "Settings" << s;
if (!s.goodInput) if (!s.goodInput)
{ {
@ -245,32 +255,35 @@ int main(int argc, char* argv[])
const Scalar RED(0,0,255), GREEN(0,255,0); const Scalar RED(0,0,255), GREEN(0,255,0);
const char ESC_KEY = 27; const char ESC_KEY = 27;
for(int i = 0;;++i) //! [get_input]
for(;;)
{ {
Mat view; Mat view;
bool blinkOutput = false; bool blinkOutput = false;
view = s.nextImage(); view = s.nextImage();
//----- If no more image, or got enough, then stop calibration and show result ------------- //----- If no more image, or got enough, then stop calibration and show result -------------
if( mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames ) if( mode == CAPTURING && imagePoints.size() >= (size_t)s.nrFrames )
{ {
if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints)) if( runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED; mode = CALIBRATED;
else else
mode = DETECTION; mode = DETECTION;
} }
if(view.empty()) // If no more images then run calibration, save and stop loop. if(view.empty()) // If there are no more images stop the loop
{ {
if( imagePoints.size() > 0 ) // if calibration threshold was not reached yet, calibrate now
if( mode != CALIBRATED && !imagePoints.empty() )
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints); runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);
break; break;
} }
//! [get_input]
imageSize = view.size(); // Format input image. imageSize = view.size(); // Format input image.
if( s.flipVertical ) flip( view, view, 0 ); if( s.flipVertical ) flip( view, view, 0 );
//! [find_pattern]
vector<Point2f> pointBuf; vector<Point2f> pointBuf;
bool found; bool found;
@ -290,7 +303,8 @@ int main(int argc, char* argv[])
found = false; found = false;
break; break;
} }
//! [find_pattern]
//! [pattern_found]
if ( found) // If done with success, if ( found) // If done with success,
{ {
// improve the found corners' coordinate accuracy for chessboard // improve the found corners' coordinate accuracy for chessboard
@ -313,8 +327,9 @@ int main(int argc, char* argv[])
// Draw the corners. // Draw the corners.
drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found ); drawChessboardCorners( view, s.boardSize, Mat(pointBuf), found );
} }
//! [pattern_found]
//----------------------------- Output Text ------------------------------------------------ //----------------------------- Output Text ------------------------------------------------
//! [output_text]
string msg = (mode == CAPTURING) ? "100/100" : string msg = (mode == CAPTURING) ? "100/100" :
mode == CALIBRATED ? "Calibrated" : "Press 'g' to start"; mode == CALIBRATED ? "Calibrated" : "Press 'g' to start";
int baseLine = 0; int baseLine = 0;
@ -333,15 +348,17 @@ int main(int argc, char* argv[])
if( blinkOutput ) if( blinkOutput )
bitwise_not(view, view); bitwise_not(view, view);
//! [output_text]
//------------------------- Video capture output undistorted ------------------------------ //------------------------- Video capture output undistorted ------------------------------
//! [output_undistorted]
if( mode == CALIBRATED && s.showUndistorsed ) if( mode == CALIBRATED && s.showUndistorsed )
{ {
Mat temp = view.clone(); Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs); undistort(temp, view, cameraMatrix, distCoeffs);
} }
//! [output_undistorted]
//------------------------------ Show image and check for input commands ------------------- //------------------------------ Show image and check for input commands -------------------
//! [await_input]
imshow("Image View", view); imshow("Image View", view);
char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay); char key = (char)waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
@ -356,9 +373,11 @@ int main(int argc, char* argv[])
mode = CAPTURING; mode = CAPTURING;
imagePoints.clear(); imagePoints.clear();
} }
//! [await_input]
} }
// -----------------------Show the undistorted image for the image list ------------------------ // -----------------------Show the undistorted image for the image list ------------------------
//! [show_results]
if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed ) if( s.inputType == Settings::IMAGE_LIST && s.showUndistorsed )
{ {
Mat view, rview, map1, map2; Mat view, rview, map1, map2;
@ -366,7 +385,7 @@ int main(int argc, char* argv[])
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0), getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2); imageSize, CV_16SC2, map1, map2);
for(int i = 0; i < (int)s.imageList.size(); i++ ) for(size_t i = 0; i < s.imageList.size(); i++ )
{ {
view = imread(s.imageList[i], 1); view = imread(s.imageList[i], 1);
if(view.empty()) if(view.empty())
@ -378,11 +397,12 @@ int main(int argc, char* argv[])
break; break;
} }
} }
//! [show_results]
return 0; return 0;
} }
//! [compute_errors]
static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints, static double computeReprojectionErrors( const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints, const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs, const vector<Mat>& rvecs, const vector<Mat>& tvecs,
@ -390,17 +410,16 @@ static double computeReprojectionErrors( const vector<vector<Point3f> >& objectP
vector<float>& perViewErrors) vector<float>& perViewErrors)
{ {
vector<Point2f> imagePoints2; vector<Point2f> imagePoints2;
int i, totalPoints = 0; size_t totalPoints = 0;
double totalErr = 0, err; double totalErr = 0, err;
perViewErrors.resize(objectPoints.size()); perViewErrors.resize(objectPoints.size());
for( i = 0; i < (int)objectPoints.size(); ++i ) for(size_t i = 0; i < objectPoints.size(); ++i )
{ {
projectPoints( Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, projectPoints(objectPoints[i], rvecs[i], tvecs[i], cameraMatrix, distCoeffs, imagePoints2);
distCoeffs, imagePoints2); err = norm(imagePoints[i], imagePoints2, NORM_L2);
err = norm(Mat(imagePoints[i]), Mat(imagePoints2), NORM_L2);
int n = (int)objectPoints[i].size(); size_t n = objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n); perViewErrors[i] = (float) std::sqrt(err*err/n);
totalErr += err*err; totalErr += err*err;
totalPoints += n; totalPoints += n;
@ -408,7 +427,8 @@ static double computeReprojectionErrors( const vector<vector<Point3f> >& objectP
return std::sqrt(totalErr/totalPoints); return std::sqrt(totalErr/totalPoints);
} }
//! [compute_errors]
//! [board_corners]
static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners, static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/) Settings::Pattern patternType /*= Settings::CHESSBOARD*/)
{ {
@ -420,28 +440,28 @@ static void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Po
case Settings::CIRCLES_GRID: case Settings::CIRCLES_GRID:
for( int i = 0; i < boardSize.height; ++i ) for( int i = 0; i < boardSize.height; ++i )
for( int j = 0; j < boardSize.width; ++j ) for( int j = 0; j < boardSize.width; ++j )
corners.push_back(Point3f(float( j*squareSize ), float( i*squareSize ), 0)); corners.push_back(Point3f(j*squareSize, i*squareSize, 0));
break; break;
case Settings::ASYMMETRIC_CIRCLES_GRID: case Settings::ASYMMETRIC_CIRCLES_GRID:
for( int i = 0; i < boardSize.height; i++ ) for( int i = 0; i < boardSize.height; i++ )
for( int j = 0; j < boardSize.width; j++ ) for( int j = 0; j < boardSize.width; j++ )
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0)); corners.push_back(Point3f((2*j + i % 2)*squareSize, i*squareSize, 0));
break; break;
default: default:
break; break;
} }
} }
//! [board_corners]
static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs, static bool runCalibration( Settings& s, Size& imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs, vector<vector<Point2f> > imagePoints, vector<Mat>& rvecs, vector<Mat>& tvecs,
vector<float>& reprojErrs, double& totalAvgErr) vector<float>& reprojErrs, double& totalAvgErr)
{ {
//! [fixed_aspect]
cameraMatrix = Mat::eye(3, 3, CV_64F); cameraMatrix = Mat::eye(3, 3, CV_64F);
if( s.flag & CALIB_FIX_ASPECT_RATIO ) if( s.flag & CALIB_FIX_ASPECT_RATIO )
cameraMatrix.at<double>(0,0) = 1.0; cameraMatrix.at<double>(0,0) = s.aspectRatio;
//! [fixed_aspect]
distCoeffs = Mat::zeros(8, 1, CV_64F); distCoeffs = Mat::zeros(8, 1, CV_64F);
vector<vector<Point3f> > objectPoints(1); vector<vector<Point3f> > objectPoints(1);
@ -475,49 +495,48 @@ static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, M
time( &tm ); time( &tm );
struct tm *t2 = localtime( &tm ); struct tm *t2 = localtime( &tm );
char buf[1024]; char buf[1024];
strftime( buf, sizeof(buf)-1, "%c", t2 ); strftime( buf, sizeof(buf), "%c", t2 );
fs << "calibration_Time" << buf; fs << "calibration_time" << buf;
if( !rvecs.empty() || !reprojErrs.empty() ) if( !rvecs.empty() || !reprojErrs.empty() )
fs << "nrOfFrames" << (int)std::max(rvecs.size(), reprojErrs.size()); fs << "nr_of_frames" << (int)std::max(rvecs.size(), reprojErrs.size());
fs << "image_Width" << imageSize.width; fs << "image_width" << imageSize.width;
fs << "image_Height" << imageSize.height; fs << "image_height" << imageSize.height;
fs << "board_Width" << s.boardSize.width; fs << "board_width" << s.boardSize.width;
fs << "board_Height" << s.boardSize.height; fs << "board_height" << s.boardSize.height;
fs << "square_Size" << s.squareSize; fs << "square_size" << s.squareSize;
if( s.flag & CALIB_FIX_ASPECT_RATIO ) if( s.flag & CALIB_FIX_ASPECT_RATIO )
fs << "FixAspectRatio" << s.aspectRatio; fs << "fix_aspect_ratio" << s.aspectRatio;
if( s.flag ) if (s.flag)
{ {
sprintf( buf, "flags: %s%s%s%s", sprintf(buf, "flags: %s%s%s%s",
s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "", s.flag & CALIB_USE_INTRINSIC_GUESS ? " +use_intrinsic_guess" : "",
s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspectRatio" : "", s.flag & CALIB_FIX_ASPECT_RATIO ? " +fix_aspect_ratio" : "",
s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "", s.flag & CALIB_FIX_PRINCIPAL_POINT ? " +fix_principal_point" : "",
s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "" ); s.flag & CALIB_ZERO_TANGENT_DIST ? " +zero_tangent_dist" : "");
//cvWriteComment( *fs, buf, 0 ); cvWriteComment(*fs, buf, 0);
} }
fs << "flagValue" << s.flag; fs << "flags" << s.flag;
fs << "Camera_Matrix" << cameraMatrix; fs << "camera_matrix" << cameraMatrix;
fs << "Distortion_Coefficients" << distCoeffs; fs << "distortion_coefficients" << distCoeffs;
fs << "Avg_Reprojection_Error" << totalAvgErr; fs << "avg_reprojection_error" << totalAvgErr;
if( !reprojErrs.empty() ) if (s.writeExtrinsics && !reprojErrs.empty())
fs << "Per_View_Reprojection_Errors" << Mat(reprojErrs); fs << "per_view_reprojection_errors" << Mat(reprojErrs);
if( !rvecs.empty() && !tvecs.empty() ) if(s.writeExtrinsics && !rvecs.empty() && !tvecs.empty() )
{ {
CV_Assert(rvecs[0].type() == tvecs[0].type()); CV_Assert(rvecs[0].type() == tvecs[0].type());
Mat bigmat((int)rvecs.size(), 6, rvecs[0].type()); Mat bigmat((int)rvecs.size(), 6, rvecs[0].type());
for( int i = 0; i < (int)rvecs.size(); i++ ) for( size_t i = 0; i < rvecs.size(); i++ )
{ {
Mat r = bigmat(Range(i, i+1), Range(0,3)); Mat r = bigmat(Range(int(i), int(i+1)), Range(0,3));
Mat t = bigmat(Range(i, i+1), Range(3,6)); Mat t = bigmat(Range(int(i), int(i+1)), Range(3,6));
CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1); CV_Assert(rvecs[i].rows == 3 && rvecs[i].cols == 1);
CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1); CV_Assert(tvecs[i].rows == 3 && tvecs[i].cols == 1);
@ -526,35 +545,38 @@ static void saveCameraParams( Settings& s, Size& imageSize, Mat& cameraMatrix, M
t = tvecs[i].t(); t = tvecs[i].t();
} }
//cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 ); //cvWriteComment( *fs, "a set of 6-tuples (rotation vector + translation vector) for each view", 0 );
fs << "Extrinsic_Parameters" << bigmat; fs << "extrinsic_parameters" << bigmat;
} }
if( !imagePoints.empty() ) if(s.writePoints && !imagePoints.empty() )
{ {
Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2); Mat imagePtMat((int)imagePoints.size(), (int)imagePoints[0].size(), CV_32FC2);
for( int i = 0; i < (int)imagePoints.size(); i++ ) for( size_t i = 0; i < imagePoints.size(); i++ )
{ {
Mat r = imagePtMat.row(i).reshape(2, imagePtMat.cols); Mat r = imagePtMat.row(int(i)).reshape(2, imagePtMat.cols);
Mat imgpti(imagePoints[i]); Mat imgpti(imagePoints[i]);
imgpti.copyTo(r); imgpti.copyTo(r);
} }
fs << "Image_points" << imagePtMat; fs << "image_points" << imagePtMat;
} }
} }
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints ) //! [run_and_save]
bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,
vector<vector<Point2f> > imagePoints)
{ {
vector<Mat> rvecs, tvecs; vector<Mat> rvecs, tvecs;
vector<float> reprojErrs; vector<float> reprojErrs;
double totalAvgErr = 0; double totalAvgErr = 0;
bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, bool ok = runCalibration(s, imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs, reprojErrs,
reprojErrs, totalAvgErr); totalAvgErr);
cout << (ok ? "Calibration succeeded" : "Calibration failed") cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ; << ". avg re projection error = " << totalAvgErr << endl;
if( ok ) if (ok)
saveCameraParams( s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs, saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs, tvecs, reprojErrs, imagePoints,
imagePoints, totalAvgErr); totalAvgErr);
return ok; return ok;
} }
//! [run_and_save]