mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
Merge pull request #21841 from victor1234:calib3d-undistortPoints-tests
Add distort/undistort test for fisheye::undistortPoints() * Add distort/undistort test for fisheye::undistortPoints() Lack of test has allowed error described in 19138 to be unnoticed. In addition to random points, four corners and principal center added to point set * Add random distortion coefficients set * Move undistortPoints test to google test, refactor * Add fisheye::undistortPoints() perf test * Add negative distortion coefficients to undistortPoints test, increase value * Move to theRNG() * Change test check from cvtest::norm(L2) to EXPECT_MAT_NEAR() * Layout fix * Add points number parameters, comments
This commit is contained in:
parent
9cd5a0a1e6
commit
5cc154147f
@ -27,4 +27,40 @@ PERF_TEST(Undistort, DISABLED_InitInverseRectificationMap)
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
using PerfIntType = perf::TestBaseWithParam<std::tuple<int>>;
|
||||
PERF_TEST_P(PerfIntType, fisheye_undistortPoints,
|
||||
(testing::Values(1e2, 1e3, 1e4)))
|
||||
{
|
||||
const cv::Size imageSize(1280, 800);
|
||||
|
||||
/* Set camera matrix */
|
||||
const cv::Matx33d K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
/* Set distortion coefficients */
|
||||
Mat D(1, 4, CV_64F);
|
||||
theRNG().fill(D, RNG::UNIFORM, -1.e-5, 1.e-5);
|
||||
|
||||
int pointsNumber = std::get<0>(GetParam());
|
||||
|
||||
/* Create two-channel points matrix */
|
||||
cv::Mat xy[2] = {};
|
||||
xy[0].create(pointsNumber, 1, CV_64F);
|
||||
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, imageSize.width); // x
|
||||
xy[1].create(pointsNumber, 1, CV_64F);
|
||||
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, imageSize.height); // y
|
||||
|
||||
cv::Mat points;
|
||||
merge(xy, 2, points);
|
||||
|
||||
/* Set fixed iteration number to check only c++ code, not algo convergence */
|
||||
TermCriteria termCriteria(TermCriteria::MAX_ITER, 10, 0);
|
||||
|
||||
Mat undistortedPoints;
|
||||
TEST_CYCLE() fisheye::undistortPoints(points, undistortedPoints, K, D, noArray(), noArray(), termCriteria);
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
@ -101,6 +101,55 @@ TEST_F(fisheyeTest, projectPoints)
|
||||
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, distortUndistortPoints)
|
||||
{
|
||||
int width = imageSize.width;
|
||||
int height = imageSize.height;
|
||||
|
||||
/* Create test points */
|
||||
std::vector<cv::Point2d> points0Vector;
|
||||
cv::Mat principalPoints = (cv::Mat_<double>(5, 2) << K(0, 2), K(1, 2), // (cx, cy)
|
||||
/* Image corners */
|
||||
0, 0,
|
||||
0, height,
|
||||
width, 0,
|
||||
width, height
|
||||
);
|
||||
|
||||
/* Random points inside image */
|
||||
cv::Mat xy[2] = {};
|
||||
xy[0].create(100, 1, CV_64F);
|
||||
theRNG().fill(xy[0], cv::RNG::UNIFORM, 0, width); // x
|
||||
xy[1].create(100, 1, CV_64F);
|
||||
theRNG().fill(xy[1], cv::RNG::UNIFORM, 0, height); // y
|
||||
|
||||
cv::Mat randomPoints;
|
||||
merge(xy, 2, randomPoints);
|
||||
|
||||
cv::Mat points0;
|
||||
cv::vconcat(principalPoints.reshape(2), randomPoints, points0);
|
||||
|
||||
/* Test with random D set */
|
||||
for (size_t i = 0; i < 10; ++i) {
|
||||
cv::Mat D(1, 4, CV_64F);
|
||||
theRNG().fill(D, cv::RNG::UNIFORM, -0.00001, 0.00001);
|
||||
|
||||
/* Distort -> Undistort */
|
||||
cv::Mat distortedPoints;
|
||||
cv::fisheye::distortPoints(points0, distortedPoints, K, D);
|
||||
cv::Mat undistortedPoints;
|
||||
cv::fisheye::undistortPoints(distortedPoints, undistortedPoints, K, D);
|
||||
|
||||
EXPECT_MAT_NEAR(points0, undistortedPoints, 1e-8);
|
||||
|
||||
/* Undistort -> Distort */
|
||||
cv::fisheye::undistortPoints(points0, undistortedPoints, K, D);
|
||||
cv::fisheye::distortPoints(undistortedPoints, distortedPoints, K, D);
|
||||
|
||||
EXPECT_MAT_NEAR(points0, distortedPoints, 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, undistortImage)
|
||||
{
|
||||
cv::Matx33d theK = this->K;
|
||||
|
@ -1,34 +1,24 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#include <opencv2/ts/cuda_test.hpp> // EXPECT_MAT_NEAR
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_UndistortTest : public cvtest::BaseTest
|
||||
class UndistortPointsTest : public ::testing::Test
|
||||
{
|
||||
public:
|
||||
CV_UndistortTest();
|
||||
~CV_UndistortTest();
|
||||
protected:
|
||||
void run(int);
|
||||
private:
|
||||
void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
|
||||
-1, 5), Point3f pmax = Point3f(1, 1, 10));
|
||||
void generateCameraMatrix(Mat& cameraMatrix);
|
||||
void generateDistCoeffs(Mat& distCoeffs, int count);
|
||||
|
||||
double thresh;
|
||||
RNG rng;
|
||||
double thresh = 1.0e-2;
|
||||
};
|
||||
|
||||
CV_UndistortTest::CV_UndistortTest()
|
||||
{
|
||||
thresh = 1.0e-2;
|
||||
}
|
||||
CV_UndistortTest::~CV_UndistortTest() {}
|
||||
|
||||
void CV_UndistortTest::generate3DPointCloud(vector<Point3f>& points, Point3f pmin, Point3f pmax)
|
||||
void UndistortPointsTest::generate3DPointCloud(vector<Point3f>& points, Point3f pmin, Point3f pmax)
|
||||
{
|
||||
RNG rng_Point = cv::theRNG(); // fix the seed to use "fixed" input 3D points
|
||||
for (size_t i = 0; i < points.size(); i++)
|
||||
@ -39,31 +29,35 @@ void CV_UndistortTest::generate3DPointCloud(vector<Point3f>& points, Point3f pmi
|
||||
points[i] = Point3f(_x, _y, _z);
|
||||
}
|
||||
}
|
||||
void CV_UndistortTest::generateCameraMatrix(Mat& cameraMatrix)
|
||||
|
||||
void UndistortPointsTest::generateCameraMatrix(Mat& cameraMatrix)
|
||||
{
|
||||
const double fcMinVal = 1e-3;
|
||||
const double fcMaxVal = 100;
|
||||
cameraMatrix.create(3, 3, CV_64FC1);
|
||||
cameraMatrix.setTo(Scalar(0));
|
||||
cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(0,0) = theRNG().uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(1,1) = theRNG().uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(0,2) = theRNG().uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(1,2) = theRNG().uniform(fcMinVal, fcMaxVal);
|
||||
cameraMatrix.at<double>(2,2) = 1;
|
||||
}
|
||||
void CV_UndistortTest::generateDistCoeffs(Mat& distCoeffs, int count)
|
||||
|
||||
void UndistortPointsTest::generateDistCoeffs(Mat& distCoeffs, int count)
|
||||
{
|
||||
distCoeffs = Mat::zeros(count, 1, CV_64FC1);
|
||||
for (int i = 0; i < count; i++)
|
||||
distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-3);
|
||||
distCoeffs.at<double>(i,0) = theRNG().uniform(-0.1, 0.1);
|
||||
}
|
||||
|
||||
void CV_UndistortTest::run(int /* start_from */)
|
||||
TEST_F(UndistortPointsTest, accuracy)
|
||||
{
|
||||
Mat intrinsics, distCoeffs;
|
||||
generateCameraMatrix(intrinsics);
|
||||
|
||||
vector<Point3f> points(500);
|
||||
generate3DPointCloud(points);
|
||||
|
||||
vector<Point2f> projectedPoints;
|
||||
projectedPoints.resize(points.size());
|
||||
|
||||
@ -71,10 +65,15 @@ void CV_UndistortTest::run(int /* start_from */)
|
||||
for (int idx = 0; idx < 3; idx++)
|
||||
{
|
||||
generateDistCoeffs(distCoeffs, modelMembersCount[idx]);
|
||||
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1), Mat::zeros(3,1,CV_64FC1), intrinsics, distCoeffs, projectedPoints);
|
||||
|
||||
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1),
|
||||
Mat::zeros(3,1,CV_64FC1), intrinsics,
|
||||
distCoeffs, projectedPoints);
|
||||
|
||||
vector<Point2f> realUndistortedPoints;
|
||||
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1), Mat::zeros(3,1,CV_64FC1), intrinsics, Mat::zeros(4,1,CV_64FC1), realUndistortedPoints);
|
||||
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1),
|
||||
Mat::zeros(3,1,CV_64FC1), intrinsics,
|
||||
Mat::zeros(4,1,CV_64FC1), realUndistortedPoints);
|
||||
|
||||
Mat undistortedPoints;
|
||||
undistortPoints(Mat(projectedPoints), undistortedPoints, intrinsics, distCoeffs);
|
||||
@ -82,44 +81,43 @@ void CV_UndistortTest::run(int /* start_from */)
|
||||
Mat p;
|
||||
perspectiveTransform(undistortedPoints, p, intrinsics);
|
||||
undistortedPoints = p;
|
||||
double diff = cvtest::norm(Mat(realUndistortedPoints), undistortedPoints, NORM_L2);
|
||||
if (diff > thresh)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
return;
|
||||
}
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
|
||||
EXPECT_MAT_NEAR(realUndistortedPoints, undistortedPoints.t(), thresh);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Calib3d_Undistort, accuracy) { CV_UndistortTest test; test.safe_run(); }
|
||||
|
||||
TEST(Calib3d_Undistort, stop_criteria)
|
||||
TEST_F(UndistortPointsTest, stop_criteria)
|
||||
{
|
||||
Mat cameraMatrix = (Mat_<double>(3,3,CV_64F) << 857.48296979, 0, 968.06224829,
|
||||
0, 876.71824265, 556.37145899,
|
||||
0, 0, 1);
|
||||
Mat distCoeffs = (Mat_<double>(5,1,CV_64F) <<
|
||||
-2.57614020e-01, 8.77086999e-02, -2.56970803e-04, -5.93390389e-04, -1.52194091e-02);
|
||||
RNG rng(2);
|
||||
Point2d pt_distorted(rng.uniform(0.0, 1920.0), rng.uniform(0.0, 1080.0));
|
||||
|
||||
Point2d pt_distorted(theRNG().uniform(0.0, 1920.0), theRNG().uniform(0.0, 1080.0));
|
||||
|
||||
std::vector<Point2d> pt_distorted_vec;
|
||||
pt_distorted_vec.push_back(pt_distorted);
|
||||
|
||||
const double maxError = 1e-6;
|
||||
TermCriteria criteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 100, maxError);
|
||||
|
||||
std::vector<Point2d> pt_undist_vec;
|
||||
undistortPoints(pt_distorted_vec, pt_undist_vec, cameraMatrix, distCoeffs, noArray(), noArray(), criteria);
|
||||
|
||||
std::vector<Point2d> pt_redistorted_vec;
|
||||
std::vector<Point3d> pt_undist_vec_homogeneous;
|
||||
pt_undist_vec_homogeneous.push_back( Point3d(pt_undist_vec[0].x, pt_undist_vec[0].y, 1.0) );
|
||||
projectPoints(pt_undist_vec_homogeneous, Mat::zeros(3,1,CV_64F), Mat::zeros(3,1,CV_64F), cameraMatrix, distCoeffs, pt_redistorted_vec);
|
||||
pt_undist_vec_homogeneous.emplace_back(pt_undist_vec[0].x, pt_undist_vec[0].y, 1.0 );
|
||||
|
||||
std::vector<Point2d> pt_redistorted_vec;
|
||||
projectPoints(pt_undist_vec_homogeneous, Mat::zeros(3,1,CV_64F),
|
||||
Mat::zeros(3,1,CV_64F), cameraMatrix, distCoeffs, pt_redistorted_vec);
|
||||
|
||||
const double obtainedError = sqrt( pow(pt_distorted.x - pt_redistorted_vec[0].x, 2) + pow(pt_distorted.y - pt_redistorted_vec[0].y, 2) );
|
||||
|
||||
ASSERT_LE(obtainedError, maxError);
|
||||
}
|
||||
|
||||
TEST(undistortPoints, regression_14583)
|
||||
TEST_F(UndistortPointsTest, regression_14583)
|
||||
{
|
||||
const int col = 720;
|
||||
// const int row = 540;
|
||||
|
Loading…
Reference in New Issue
Block a user