mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 03:30:34 +08:00
Merge pull request #12046 from VladKarpushin:tutorial-using-out-of-focus-deblur-filter
This commit is contained in:
commit
5d12c070ea
@ -1016,3 +1016,17 @@
|
||||
year = {2017},
|
||||
organization = {IEEE}
|
||||
}
|
||||
|
||||
@ARTICLE{gonzalez,
|
||||
title={Digital Image Fundamentals, Digital Imaging Processing},
|
||||
author={Gonzalez, Rafael C and others},
|
||||
year={1987},
|
||||
publisher={Addison Wesley Publishing Company}
|
||||
}
|
||||
|
||||
@ARTICLE{gruzman,
|
||||
title={Цифровая обработка изображений в информационных системах},
|
||||
author={Грузман, И.С. and Киричук, В.С. and Косых, В.П. and Перетягин, Г.И. and Спектор, А.А.},
|
||||
year={2000},
|
||||
publisher={Изд-во НГТУ Новосибирск}
|
||||
}
|
||||
|
BIN
doc/tutorials/imgproc/out_of_focus_deblur_filter/images/original.jpg
Executable file
BIN
doc/tutorials/imgproc/out_of_focus_deblur_filter/images/original.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
BIN
doc/tutorials/imgproc/out_of_focus_deblur_filter/images/psf.png
Executable file
BIN
doc/tutorials/imgproc/out_of_focus_deblur_filter/images/psf.png
Executable file
Binary file not shown.
After Width: | Height: | Size: 630 B |
BIN
doc/tutorials/imgproc/out_of_focus_deblur_filter/images/recovered.jpg
Executable file
BIN
doc/tutorials/imgproc/out_of_focus_deblur_filter/images/recovered.jpg
Executable file
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
@ -0,0 +1,112 @@
|
||||
Out-of-focus Deblur Filter {#tutorial_out_of_focus_deblur_filter}
|
||||
==========================
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will learn:
|
||||
|
||||
- what is a degradation image model
|
||||
- what is PSF of out-of-focus image
|
||||
- how to restore a blurred image
|
||||
- what is Wiener filter
|
||||
|
||||
Theory
|
||||
------
|
||||
|
||||
@note The explanation is based on the books @cite gonzalez and @cite gruzman. Also, you can refer to Matlab's tutorial [Image Deblurring in Matlab] and an article [SmartDeblur].
|
||||
@note An out-of-focus image on this page is a real world image. An out-of-focus was done manually by camera optics.
|
||||
|
||||
### What is a degradation image model?
|
||||
|
||||
A mathematical model of the image degradation in frequency domain representation is:
|
||||
|
||||
\f[S = H\cdot U + N\f]
|
||||
|
||||
where
|
||||
\f$S\f$ is a spectrum of blurred (degraded) image,
|
||||
\f$U\f$ is a spectrum of original true (undegraded) image,
|
||||
\f$H\f$ is frequency response of point spread function (PSF),
|
||||
\f$N\f$ is a spectrum of additive noise.
|
||||
|
||||
Circular PSF is a good approximation of out-of-focus distortion. Such PSF is specified by only one parameter - radius \f$R\f$. Circular PSF is used in this work.
|
||||
|
||||
![Circular point spread function](psf.png)
|
||||
|
||||
### How to restore an blurred image?
|
||||
|
||||
The objective of restoration (deblurring) is to obtain an estimate of the original image. Restoration formula in frequency domain is:
|
||||
|
||||
\f[U' = H_w\cdot S\f]
|
||||
|
||||
where
|
||||
\f$U'\f$ is spectrum of estimation of original image \f$U\f$,
|
||||
\f$H_w\f$ is restoration filter, for example, Wiener filter.
|
||||
|
||||
### What is Wiener filter?
|
||||
|
||||
Wiener filter is a way to restore a blurred image. Let's suppose that PSF is a real and symmetric signal, a power spectrum of the original true image and noise are not known,
|
||||
then simplified Wiener formula is:
|
||||
|
||||
\f[H_w = \frac{H}{|H|^2+\frac{1}{SNR}} \f]
|
||||
|
||||
where
|
||||
\f$SNR\f$ is signal-to-noise ratio.
|
||||
|
||||
So, in order to recover an out-of-focus image by Wiener filter, it needs to know \f$SNR\f$ and \f$R\f$ of circular PSF.
|
||||
|
||||
|
||||
Source code
|
||||
-----------
|
||||
|
||||
You can find source code in the `samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp` of the OpenCV source code library.
|
||||
|
||||
@include cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
An out-of-focus image recovering algorithm consists of PSF generation, Wiener filter generation and filtering an blurred image in frequency domain:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp main
|
||||
|
||||
A function calcPSF() forms an circular PSF according to input parameter radius \f$R\f$:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp calcPSF
|
||||
|
||||
A function calcWnrFilter() synthesizes simplified Wiener filter \f$H_w\f$ according to formula described above:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp calcWnrFilter
|
||||
|
||||
A function fftshift() rearranges PSF. This code was just copied from tutorial @ref tutorial_discrete_fourier_transform "Discrete Fourier Transform":
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp fftshift
|
||||
|
||||
A function filter2DFreq() filters an blurred image in frequency domain:
|
||||
@snippet samples/cpp/tutorial_code/ImgProc/out_of_focus_deblur_filter/out_of_focus_deblur_filter.cpp filter2DFreq
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
Below you can see real out-of-focus image:
|
||||
![Out-of-focus image](images/original.jpg)
|
||||
|
||||
|
||||
Below result was done by \f$R\f$ = 53 and \f$SNR\f$ = 5200 parameters:
|
||||
![The restored (deblurred) image](images/recovered.jpg)
|
||||
|
||||
The Wiener filter was used, values of \f$R\f$ and \f$SNR\f$ were selected manually to give the best possible visual result.
|
||||
We can see that the result is not perfect, but it gives us a hint to the image content. With some difficulty, the text is readable.
|
||||
|
||||
@note The parameter \f$R\f$ is the most important. So you should adjust \f$R\f$ first, then \f$SNR\f$.
|
||||
@note Sometimes you can observe the ringing effect in an restored image. This effect can be reduced by several methods. For example, you can taper input image edges.
|
||||
|
||||
You can also find a quick video demonstration of this on
|
||||
[YouTube](https://youtu.be/0bEcE4B0XP4).
|
||||
@youtube{0bEcE4B0XP4}
|
||||
|
||||
References
|
||||
------
|
||||
- [Image Deblurring in Matlab] - Image Deblurring in Matlab
|
||||
- [SmartDeblur] - SmartDeblur site
|
||||
|
||||
<!-- invisible references list -->
|
||||
[Digital Image Processing]: http://web.ipac.caltech.edu/staff/fmasci/home/astro_refs/Digital_Image_Processing_2ndEd.pdf
|
||||
[Image Deblurring in Matlab]: https://www.mathworks.com/help/images/image-deblurring.html
|
||||
[SmartDeblur]: http://yuzhikov.com/articles/BlurredImagesRestoration1.htm
|
@ -292,3 +292,13 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
*Author:* Theodore Tsesmelis
|
||||
|
||||
Where we learn to segment objects using Laplacian filtering, the Distance Transformation and the Watershed algorithm.
|
||||
|
||||
- @subpage tutorial_out_of_focus_deblur_filter
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Karpushin Vladislav
|
||||
|
||||
You will learn how to recover an out-of-focus image by Wiener filter.
|
||||
|
@ -0,0 +1,149 @@
|
||||
/**
|
||||
* @brief You will learn how to recover an out-of-focus image by Wiener filter
|
||||
* @author Karpushin Vladislav, karpushin@ngs.ru, https://github.com/VladKarpushin
|
||||
*/
|
||||
#include <iostream>
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
void help();
|
||||
void calcPSF(Mat& outputImg, Size filterSize, int R);
|
||||
void fftshift(const Mat& inputImg, Mat& outputImg);
|
||||
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
|
||||
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);
|
||||
|
||||
const String keys =
|
||||
"{help h usage ? | | print this message }"
|
||||
"{image |original.JPG | input image name }"
|
||||
"{R |53 | radius }"
|
||||
"{SNR |5200 | signal to noise ratio}"
|
||||
;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
help();
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
if (parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
int R = parser.get<int>("R");
|
||||
int snr = parser.get<int>("SNR");
|
||||
string strInFileName = parser.get<String>("image");
|
||||
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 0;
|
||||
}
|
||||
|
||||
Mat imgIn;
|
||||
imgIn = imread(strInFileName, IMREAD_GRAYSCALE);
|
||||
if (imgIn.empty()) //check whether the image is loaded or not
|
||||
{
|
||||
cout << "ERROR : Image cannot be loaded..!!" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat imgOut;
|
||||
|
||||
//! [main]
|
||||
// it needs to process even image only
|
||||
Rect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);
|
||||
|
||||
//Hw calculation (start)
|
||||
Mat Hw, h;
|
||||
calcPSF(h, roi.size(), R);
|
||||
calcWnrFilter(h, Hw, 1.0 / double(snr));
|
||||
//Hw calculation (stop)
|
||||
|
||||
// filtering (start)
|
||||
filter2DFreq(imgIn(roi), imgOut, Hw);
|
||||
// filtering (stop)
|
||||
//! [main]
|
||||
|
||||
imgOut.convertTo(imgOut, CV_8U);
|
||||
normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);
|
||||
imwrite("result.jpg", imgOut);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "2018-07-12" << endl;
|
||||
cout << "DeBlur_v8" << endl;
|
||||
cout << "You will learn how to recover an out-of-focus image by Wiener filter" << endl;
|
||||
}
|
||||
|
||||
//! [calcPSF]
|
||||
void calcPSF(Mat& outputImg, Size filterSize, int R)
|
||||
{
|
||||
Mat h(filterSize, CV_32F, Scalar(0));
|
||||
Point point(filterSize.width / 2, filterSize.height / 2);
|
||||
circle(h, point, R, 255, -1, 8);
|
||||
Scalar summa = sum(h);
|
||||
outputImg = h / summa[0];
|
||||
}
|
||||
//! [calcPSF]
|
||||
|
||||
//! [fftshift]
|
||||
void fftshift(const Mat& inputImg, Mat& outputImg)
|
||||
{
|
||||
outputImg = inputImg.clone();
|
||||
int cx = outputImg.cols / 2;
|
||||
int cy = outputImg.rows / 2;
|
||||
Mat q0(outputImg, Rect(0, 0, cx, cy));
|
||||
Mat q1(outputImg, Rect(cx, 0, cx, cy));
|
||||
Mat q2(outputImg, Rect(0, cy, cx, cy));
|
||||
Mat q3(outputImg, Rect(cx, cy, cx, cy));
|
||||
Mat tmp;
|
||||
q0.copyTo(tmp);
|
||||
q3.copyTo(q0);
|
||||
tmp.copyTo(q3);
|
||||
q1.copyTo(tmp);
|
||||
q2.copyTo(q1);
|
||||
tmp.copyTo(q2);
|
||||
}
|
||||
//! [fftshift]
|
||||
|
||||
//! [filter2DFreq]
|
||||
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
|
||||
{
|
||||
Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };
|
||||
Mat complexI;
|
||||
merge(planes, 2, complexI);
|
||||
dft(complexI, complexI, DFT_SCALE);
|
||||
|
||||
Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };
|
||||
Mat complexH;
|
||||
merge(planesH, 2, complexH);
|
||||
Mat complexIH;
|
||||
mulSpectrums(complexI, complexH, complexIH, 0);
|
||||
|
||||
idft(complexIH, complexIH);
|
||||
split(complexIH, planes);
|
||||
outputImg = planes[0];
|
||||
}
|
||||
//! [filter2DFreq]
|
||||
|
||||
//! [calcWnrFilter]
|
||||
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
|
||||
{
|
||||
Mat h_PSF_shifted;
|
||||
fftshift(input_h_PSF, h_PSF_shifted);
|
||||
Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };
|
||||
Mat complexI;
|
||||
merge(planes, 2, complexI);
|
||||
dft(complexI, complexI);
|
||||
split(complexI, planes);
|
||||
Mat denom;
|
||||
pow(abs(planes[0]), 2, denom);
|
||||
denom += nsr;
|
||||
divide(planes[0], denom, output_G);
|
||||
}
|
||||
//! [calcWnrFilter]
|
Loading…
Reference in New Issue
Block a user