mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
parent
b17c1c6721
commit
5d9c6723ee
@ -88,7 +88,7 @@ struct CvVectors
|
|||||||
#if 0
|
#if 0
|
||||||
/* A structure, representing the lattice range of statmodel parameters.
|
/* A structure, representing the lattice range of statmodel parameters.
|
||||||
It is used for optimizing statmodel parameters by cross-validation method.
|
It is used for optimizing statmodel parameters by cross-validation method.
|
||||||
The lattice is logarithmic, so <step> must be greater then 1. */
|
The lattice is logarithmic, so <step> must be greater than 1. */
|
||||||
typedef struct CvParamLattice
|
typedef struct CvParamLattice
|
||||||
{
|
{
|
||||||
double min_val;
|
double min_val;
|
||||||
@ -158,7 +158,7 @@ protected:
|
|||||||
/* The structure, representing the grid range of statmodel parameters.
|
/* The structure, representing the grid range of statmodel parameters.
|
||||||
It is used for optimizing statmodel accuracy by varying model parameters,
|
It is used for optimizing statmodel accuracy by varying model parameters,
|
||||||
the accuracy estimate being computed by cross-validation.
|
the accuracy estimate being computed by cross-validation.
|
||||||
The grid is logarithmic, so <step> must be greater then 1. */
|
The grid is logarithmic, so <step> must be greater than 1. */
|
||||||
|
|
||||||
class CvMLData;
|
class CvMLData;
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ python gen_pattern.py -o out.svg -r 11 -c 8 -T circles -s 20.0 -R 5.0 -u mm -w 2
|
|||||||
-u, --units - mm, inches, px, m (default mm)
|
-u, --units - mm, inches, px, m (default mm)
|
||||||
-w, --page_width - page width in units (default 216)
|
-w, --page_width - page width in units (default 216)
|
||||||
-h, --page_height - page height in units (default 279)
|
-h, --page_height - page height in units (default 279)
|
||||||
-a, --page_size - page size (default A4), supercedes -h -w arguments
|
-a, --page_size - page size (default A4), supersedes -h -w arguments
|
||||||
-H, --help - show help
|
-H, --help - show help
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -12,7 +12,7 @@ Theory
|
|||||||
|
|
||||||
We know SIFT uses 128-dim vector for descriptors. Since it is using floating point numbers, it takes
|
We know SIFT uses 128-dim vector for descriptors. Since it is using floating point numbers, it takes
|
||||||
basically 512 bytes. Similarly SURF also takes minimum of 256 bytes (for 64-dim). Creating such a
|
basically 512 bytes. Similarly SURF also takes minimum of 256 bytes (for 64-dim). Creating such a
|
||||||
vector for thousands of features takes a lot of memory which are not feasible for resouce-constraint
|
vector for thousands of features takes a lot of memory which are not feasible for resource-constraint
|
||||||
applications especially for embedded systems. Larger the memory, longer the time it takes for
|
applications especially for embedded systems. Larger the memory, longer the time it takes for
|
||||||
matching.
|
matching.
|
||||||
|
|
||||||
|
@ -2164,7 +2164,7 @@ inline void RHO_HEST_REFC::refine(void){
|
|||||||
* order to compute a candidate homography (newH).
|
* order to compute a candidate homography (newH).
|
||||||
*
|
*
|
||||||
* The system above is solved by Cholesky decomposition of a
|
* The system above is solved by Cholesky decomposition of a
|
||||||
* sufficently-damped JtJ into a lower-triangular matrix (and its
|
* sufficiently-damped JtJ into a lower-triangular matrix (and its
|
||||||
* transpose), whose inverse is then computed. This inverse (and its
|
* transpose), whose inverse is then computed. This inverse (and its
|
||||||
* transpose) then multiply Jte in order to find dH.
|
* transpose) then multiply Jte in order to find dH.
|
||||||
*/
|
*/
|
||||||
|
@ -103,7 +103,7 @@ double memory deallocation.
|
|||||||
CV_EXPORTS void fastFree(void* ptr);
|
CV_EXPORTS void fastFree(void* ptr);
|
||||||
|
|
||||||
/*!
|
/*!
|
||||||
The STL-compilant memory Allocator based on cv::fastMalloc() and cv::fastFree()
|
The STL-compliant memory Allocator based on cv::fastMalloc() and cv::fastFree()
|
||||||
*/
|
*/
|
||||||
template<typename _Tp> class Allocator
|
template<typename _Tp> class Allocator
|
||||||
{
|
{
|
||||||
|
@ -2266,7 +2266,7 @@ inline v_float32x4 v_matmuladd(const v_float32x4& v, const v_float32x4& m0,
|
|||||||
v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + m3.s[3]);
|
v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + m3.s[3]);
|
||||||
}
|
}
|
||||||
|
|
||||||
////// FP16 suport ///////
|
////// FP16 support ///////
|
||||||
|
|
||||||
inline v_reg<float, V_TypeTraits<float>::nlanes128>
|
inline v_reg<float, V_TypeTraits<float>::nlanes128>
|
||||||
v_load_expand(const float16_t* ptr)
|
v_load_expand(const float16_t* ptr)
|
||||||
|
@ -1635,7 +1635,7 @@ inline void v_lut_deinterleave(const double* tab, const v_int32x4& idxvec, v_flo
|
|||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
////// FP16 suport ///////
|
////// FP16 support ///////
|
||||||
#if CV_FP16
|
#if CV_FP16
|
||||||
inline v_float32x4 v_load_expand(const float16_t* ptr)
|
inline v_float32x4 v_load_expand(const float16_t* ptr)
|
||||||
{
|
{
|
||||||
|
@ -33,7 +33,7 @@ String dumpInputArray(InputArray argument)
|
|||||||
}
|
}
|
||||||
catch (...)
|
catch (...)
|
||||||
{
|
{
|
||||||
ss << " ERROR: exception occured, dump is non-complete"; // need to properly support different kinds
|
ss << " ERROR: exception occurred, dump is non-complete"; // need to properly support different kinds
|
||||||
}
|
}
|
||||||
return ss.str();
|
return ss.str();
|
||||||
}
|
}
|
||||||
@ -70,7 +70,7 @@ CV_EXPORTS_W String dumpInputArrayOfArrays(InputArrayOfArrays argument)
|
|||||||
}
|
}
|
||||||
catch (...)
|
catch (...)
|
||||||
{
|
{
|
||||||
ss << " ERROR: exception occured, dump is non-complete"; // need to properly support different kinds
|
ss << " ERROR: exception occurred, dump is non-complete"; // need to properly support different kinds
|
||||||
}
|
}
|
||||||
return ss.str();
|
return ss.str();
|
||||||
}
|
}
|
||||||
@ -100,7 +100,7 @@ CV_EXPORTS_W String dumpInputOutputArray(InputOutputArray argument)
|
|||||||
}
|
}
|
||||||
catch (...)
|
catch (...)
|
||||||
{
|
{
|
||||||
ss << " ERROR: exception occured, dump is non-complete"; // need to properly support different kinds
|
ss << " ERROR: exception occurred, dump is non-complete"; // need to properly support different kinds
|
||||||
}
|
}
|
||||||
return ss.str();
|
return ss.str();
|
||||||
}
|
}
|
||||||
@ -137,7 +137,7 @@ CV_EXPORTS_W String dumpInputOutputArrayOfArrays(InputOutputArrayOfArrays argume
|
|||||||
}
|
}
|
||||||
catch (...)
|
catch (...)
|
||||||
{
|
{
|
||||||
ss << " ERROR: exception occured, dump is non-complete"; // need to properly support different kinds
|
ss << " ERROR: exception occurred, dump is non-complete"; // need to properly support different kinds
|
||||||
}
|
}
|
||||||
return ss.str();
|
return ss.str();
|
||||||
}
|
}
|
||||||
|
@ -250,7 +250,7 @@ BinaryFunc getCopyMaskFunc(size_t esz);
|
|||||||
|
|
||||||
// There is some mess in code with vectors representation.
|
// There is some mess in code with vectors representation.
|
||||||
// Both vector-column / vector-rows are used with dims=2 (as Mat2D always).
|
// Both vector-column / vector-rows are used with dims=2 (as Mat2D always).
|
||||||
// Reshape matrices if neccessary (in case of vectors) and returns size with scaled width.
|
// Reshape matrices if necessary (in case of vectors) and returns size with scaled width.
|
||||||
Size getContinuousSize2D(Mat& m1, int widthScale=1);
|
Size getContinuousSize2D(Mat& m1, int widthScale=1);
|
||||||
Size getContinuousSize2D(Mat& m1, Mat& m2, int widthScale=1);
|
Size getContinuousSize2D(Mat& m1, Mat& m2, int widthScale=1);
|
||||||
Size getContinuousSize2D(Mat& m1, Mat& m2, Mat& m3, int widthScale=1);
|
Size getContinuousSize2D(Mat& m1, Mat& m2, Mat& m3, int widthScale=1);
|
||||||
|
@ -344,7 +344,7 @@ cv::String findDataFile(const cv::String& relative_path,
|
|||||||
#if defined OPENCV_INSTALL_PREFIX && defined OPENCV_DATA_INSTALL_PATH
|
#if defined OPENCV_INSTALL_PREFIX && defined OPENCV_DATA_INSTALL_PATH
|
||||||
cv::String install_dir(OPENCV_INSTALL_PREFIX);
|
cv::String install_dir(OPENCV_INSTALL_PREFIX);
|
||||||
// use core/world module path and verify that library is running from installation directory
|
// use core/world module path and verify that library is running from installation directory
|
||||||
// It is neccessary to avoid touching of unrelated common /usr/local path
|
// It is necessary to avoid touching of unrelated common /usr/local path
|
||||||
if (module_path.empty()) // can't determine
|
if (module_path.empty()) // can't determine
|
||||||
module_path = install_dir;
|
module_path = install_dir;
|
||||||
if (isSubDirectory(install_dir, module_path) || isSubDirectory(utils::fs::canonical(install_dir), utils::fs::canonical(module_path)))
|
if (isSubDirectory(install_dir, module_path) || isSubDirectory(utils::fs::canonical(install_dir), utils::fs::canonical(module_path)))
|
||||||
|
@ -119,7 +119,7 @@ message AttributeProto {
|
|||||||
// implementations needed to use has_field hueristics to determine
|
// implementations needed to use has_field hueristics to determine
|
||||||
// which value field was in use. For IR_VERSION 0.0.2 or later, this
|
// which value field was in use. For IR_VERSION 0.0.2 or later, this
|
||||||
// field MUST be set and match the f|i|s|t|... field in use. This
|
// field MUST be set and match the f|i|s|t|... field in use. This
|
||||||
// change was made to accomodate proto3 implementations.
|
// change was made to accommodate proto3 implementations.
|
||||||
optional AttributeType type = 20; // discriminator that indicates which field below is in use
|
optional AttributeType type = 20; // discriminator that indicates which field below is in use
|
||||||
|
|
||||||
// Exactly ONE of the following fields must be present for this version of the IR
|
// Exactly ONE of the following fields must be present for this version of the IR
|
||||||
|
@ -120,7 +120,7 @@ public:
|
|||||||
\f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f]
|
\f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f]
|
||||||
where \f$n\f$ is the maximal index satisfying
|
where \f$n\f$ is the maximal index satisfying
|
||||||
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f]
|
\f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f]
|
||||||
The grid is logarithmic, so logStep must always be greater then 1. Default value is 1.
|
The grid is logarithmic, so logStep must always be greater than 1. Default value is 1.
|
||||||
*/
|
*/
|
||||||
CV_PROP_RW double logStep;
|
CV_PROP_RW double logStep;
|
||||||
|
|
||||||
|
@ -99,7 +99,7 @@ static void checkParamGrid(const ParamGrid& pg)
|
|||||||
if( pg.minVal < DBL_EPSILON )
|
if( pg.minVal < DBL_EPSILON )
|
||||||
CV_Error( CV_StsBadArg, "Lower bound of the grid must be positive" );
|
CV_Error( CV_StsBadArg, "Lower bound of the grid must be positive" );
|
||||||
if( pg.logStep < 1. + FLT_EPSILON )
|
if( pg.logStep < 1. + FLT_EPSILON )
|
||||||
CV_Error( CV_StsBadArg, "Grid step must greater then 1" );
|
CV_Error( CV_StsBadArg, "Grid step must greater than 1" );
|
||||||
}
|
}
|
||||||
|
|
||||||
// SVM training parameters
|
// SVM training parameters
|
||||||
|
@ -2171,7 +2171,7 @@ void videoInput::setPhyCon(int id, int conn){
|
|||||||
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------
|
// ----------------------------------------------------------------------
|
||||||
// Check that we are not trying to setup a non-existant device
|
// Check that we are not trying to setup a non-existent device
|
||||||
// Then start the graph building!
|
// Then start the graph building!
|
||||||
// ----------------------------------------------------------------------
|
// ----------------------------------------------------------------------
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user