Merge remote-tracking branch 'upstream/master'

This commit is contained in:
Brian Park 2014-10-29 23:15:22 -07:00
commit 5de5f26223
18 changed files with 1238 additions and 241 deletions

View File

@ -44,217 +44,251 @@
////////////////////////////////////////// stereoBM //////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef csize
#define MAX_VAL 32767
void calcDisp(__local short * cost, __global short * disp, int uniquenessRatio, int mindisp, int ndisp, int w,
__local int * bestDisp, __local int * bestCost, int d, int x, int y, int cols, int rows, int wsz2)
#ifndef WSZ
#define WSZ 2
#endif
#define WSZ2 (WSZ / 2)
#ifdef DEFINE_KERNEL_STEREOBM
#define DISPARITY_SHIFT 4
#define FILTERED ((MIN_DISP - 1) << DISPARITY_SHIFT)
void calcDisp(__local short * cost, __global short * disp, int uniquenessRatio,
__local int * bestDisp, __local int * bestCost, int d, int x, int y, int cols, int rows)
{
short FILTERED = (mindisp - 1)<<4;
int best_disp = *bestDisp, best_cost = *bestCost, best_disp_back = ndisp - best_disp - 1;
int best_disp = *bestDisp, best_cost = *bestCost;
barrier(CLK_LOCAL_MEM_FENCE);
short c = cost[0];
int thresh = best_cost + (best_cost * uniquenessRatio / 100);
bool notUniq = ( (c <= thresh) && (d < (best_disp - 1) || d > (best_disp + 1) ) );
int thresh = best_cost + (best_cost * uniquenessRatio/100);
bool notUniq = ( (c <= thresh) && (d < (best_disp_back - 1) || d > (best_disp_back + 1) ) );
if(notUniq)
if (notUniq)
*bestCost = FILTERED;
barrier(CLK_LOCAL_MEM_FENCE);
if( *bestCost != FILTERED && x < cols-wsz2-mindisp && y < rows-wsz2 && d == best_disp_back)
if( *bestCost != FILTERED && x < cols - WSZ2 - MIN_DISP && y < rows - WSZ2 && d == best_disp)
{
int y3 = (best_disp_back > 0) ? cost[-w] : cost[w],
y2 = c,
y1 = (best_disp_back < ndisp-1) ? cost[w] : cost[-w];
int d_aprox = y3+y1-2*y2 + abs(y3-y1);
disp[0] = (short)(((best_disp_back + mindisp)*256 + (d_aprox != 0 ? (y3-y1)*256/d_aprox : 0) + 15) >> 4);
int d_aprox = 0;
int yp =0, yn = 0;
if ((0 < best_disp) && (best_disp < NUM_DISP - 1))
{
yp = cost[-2 * BLOCK_SIZE_Y];
yn = cost[2 * BLOCK_SIZE_Y];
d_aprox = yp + yn - 2 * c + abs(yp - yn);
}
disp[0] = (short)(((best_disp + MIN_DISP)*256 + (d_aprox != 0 ? (yp - yn) * 256 / d_aprox : 0) + 15) >> 4);
}
}
int calcLocalIdx(int x, int y, int d, int w)
{
return d*2*w + (w - 1 - y + x);
}
void calcNewCoordinates(int * x, int * y, int nthread)
{
int oldX = *x - (1-nthread), oldY = *y;
*x = (oldX == oldY) ? (0*nthread + (oldX + 2)*(1-nthread) ) : (oldX+1)*(1-nthread) + (oldX+1)*nthread;
*y = (oldX == oldY) ? (0*(1-nthread) + (oldY + 1)*nthread) : oldY + 1*(1-nthread);
}
short calcCostBorder(__global const uchar * leftptr, __global const uchar * rightptr, int x, int y, int nthread,
int wsz2, short * costbuf, int * h, int cols, int d, short cost, int winsize)
short * costbuf, int *h, int cols, int d, short cost)
{
int head = (*h)%wsz;
int head = (*h) % WSZ;
__global const uchar * left, * right;
int idx = mad24(y+wsz2*(2*nthread-1), cols, x+wsz2*(1-2*nthread));
int idx = mad24(y + WSZ2 * (2 * nthread - 1), cols, x + WSZ2 * (1 - 2 * nthread));
left = leftptr + idx;
right = rightptr + (idx - d);
int shift = 1*nthread + cols*(1-nthread);
short costdiff = 0;
for(int i = 0; i < winsize; i++)
if (0 == nthread)
{
costdiff += abs( left[0] - right[0] );
left += shift;
right += shift;
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
costdiff += abs( left[0] - right[0] );
left += cols;
right += cols;
}
}
else // (1 == nthread)
{
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
costdiff += abs(left[i] - right[i]);
}
}
cost += costdiff - costbuf[head];
costbuf[head] = costdiff;
(*h) = (*h)%wsz + 1;
*h = head + 1;
return cost;
}
short calcCostInside(__global const uchar * leftptr, __global const uchar * rightptr, int x, int y,
int wsz2, int cols, int d, short cost_up_left, short cost_up, short cost_left,
int winsize)
int cols, int d, short cost_up_left, short cost_up, short cost_left)
{
__global const uchar * left, * right;
int idx = mad24(y-wsz2-1, cols, x-wsz2-1);
int idx = mad24(y - WSZ2 - 1, cols, x - WSZ2 - 1);
left = leftptr + idx;
right = rightptr + (idx - d);
int idx2 = winsize*cols;
int idx2 = WSZ*cols;
uchar corrner1 = abs(left[0] - right[0]),
corrner2 = abs(left[winsize] - right[winsize]),
corrner2 = abs(left[WSZ] - right[WSZ]),
corrner3 = abs(left[idx2] - right[idx2]),
corrner4 = abs(left[idx2 + winsize] - right[idx2 + winsize]);
corrner4 = abs(left[idx2 + WSZ] - right[idx2 + WSZ]);
return cost_up + cost_left - cost_up_left + corrner1 -
corrner2 - corrner3 + corrner4;
}
__kernel void stereoBM(__global const uchar * leftptr, __global const uchar * rightptr, __global uchar * dispptr,
int disp_step, int disp_offset, int rows, int cols, int mindisp, int ndisp,
int preFilterCap, int textureTreshold, int uniquenessRatio, int sizeX, int sizeY, int winsize)
__kernel void stereoBM(__global const uchar * leftptr,
__global const uchar * rightptr,
__global uchar * dispptr, int disp_step, int disp_offset,
int rows, int cols, // rows, cols of left and right images, not disp
int textureTreshold, int uniquenessRatio)
{
int gx = get_global_id(0)*sizeX;
int gy = get_global_id(1)*sizeY;
int lz = get_local_id(2);
int lz = get_local_id(0);
int gx = get_global_id(1) * BLOCK_SIZE_X;
int gy = get_global_id(2) * BLOCK_SIZE_Y;
int nthread = lz/ndisp;
int d = lz%ndisp;
int wsz2 = wsz/2;
int nthread = lz / NUM_DISP;
int disp_idx = lz % NUM_DISP;
__global short * disp;
__global const uchar * left, * right;
__local short costFunc[csize];
__local short costFunc[2 * BLOCK_SIZE_Y * NUM_DISP];
__local short * cost;
__local int best_disp[2];
__local int best_cost[2];
best_cost[nthread] = MAX_VAL;
best_disp[nthread] = MAX_VAL;
best_disp[nthread] = -1;
barrier(CLK_LOCAL_MEM_FENCE);
short costbuf[wsz];
short costbuf[WSZ];
int head = 0;
int shiftX = wsz2 + ndisp + mindisp - 1;
int shiftY = wsz2;
int shiftX = WSZ2 + NUM_DISP + MIN_DISP - 1;
int shiftY = WSZ2;
int x = gx + shiftX, y = gy + shiftY, lx = 0, ly = 0;
int costIdx = calcLocalIdx(lx, ly, d, sizeY);
int costIdx = disp_idx * 2 * BLOCK_SIZE_Y + (BLOCK_SIZE_Y - 1);
cost = costFunc + costIdx;
int tempcost = 0;
if(x < cols-wsz2-mindisp && y < rows-wsz2)
if (x < cols - WSZ2 - MIN_DISP && y < rows - WSZ2)
{
int shift = 1*nthread + cols*(1-nthread);
for(int i = 0; i < winsize; i++)
if (0 == nthread)
{
int idx = mad24(y-wsz2+i*nthread, cols, x-wsz2+i*(1-nthread));
left = leftptr + idx;
right = rightptr + (idx - d);
short costdiff = 0;
for(int j = 0; j < winsize; j++)
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
costdiff += abs( left[0] - right[0] );
left += shift;
right += shift;
int idx = mad24(y - WSZ2, cols, x - WSZ2 + i);
left = leftptr + idx;
right = rightptr + (idx - disp_idx);
short costdiff = 0;
for(int j = 0; j < WSZ; j++)
{
costdiff += abs( left[0] - right[0] );
left += cols;
right += cols;
}
costbuf[i] = costdiff;
}
if(nthread==1)
}
else // (1 == nthread)
{
#pragma unroll
for (int i = 0; i < WSZ; i++)
{
int idx = mad24(y - WSZ2 + i, cols, x - WSZ2);
left = leftptr + idx;
right = rightptr + (idx - disp_idx);
short costdiff = 0;
for (int j = 0; j < WSZ; j++)
{
costdiff += abs( left[j] - right[j]);
}
tempcost += costdiff;
costbuf[i] = costdiff;
}
costbuf[head] = costdiff;
head++;
}
}
if(nthread==1)
if (nthread == 1)
{
cost[0] = tempcost;
atomic_min(best_cost+nthread, tempcost);
atomic_min(best_cost + 1, tempcost);
}
barrier(CLK_LOCAL_MEM_FENCE);
if(best_cost[1] == tempcost)
atomic_min(best_disp + 1, ndisp - d - 1);
if (best_cost[1] == tempcost)
atomic_max(best_disp + 1, disp_idx);
barrier(CLK_LOCAL_MEM_FENCE);
int dispIdx = mad24(gy, disp_step, disp_offset + gx*(int)sizeof(short));
int dispIdx = mad24(gy, disp_step, mad24((int)sizeof(short), gx, disp_offset));
disp = (__global short *)(dispptr + dispIdx);
calcDisp(cost, disp, uniquenessRatio, mindisp, ndisp, 2*sizeY,
best_disp + 1, best_cost+1, d, x, y, cols, rows, wsz2);
calcDisp(cost, disp, uniquenessRatio, best_disp + 1, best_cost + 1, disp_idx, x, y, cols, rows);
barrier(CLK_LOCAL_MEM_FENCE);
lx = 1 - nthread;
ly = nthread;
for(int i = 0; i < sizeY*sizeX/2; i++)
for (int i = 0; i < BLOCK_SIZE_Y * BLOCK_SIZE_X / 2; i++)
{
x = (lx < sizeX) ? gx + shiftX + lx : cols;
y = (ly < sizeY) ? gy + shiftY + ly : rows;
x = (lx < BLOCK_SIZE_X) ? gx + shiftX + lx : cols;
y = (ly < BLOCK_SIZE_Y) ? gy + shiftY + ly : rows;
best_cost[nthread] = MAX_VAL;
best_disp[nthread] = MAX_VAL;
best_disp[nthread] = -1;
barrier(CLK_LOCAL_MEM_FENCE);
costIdx = calcLocalIdx(lx, ly, d, sizeY);
costIdx = mad24(2 * BLOCK_SIZE_Y, disp_idx, (BLOCK_SIZE_Y - 1 - ly + lx));
if (0 > costIdx)
costIdx = BLOCK_SIZE_Y - 1;
cost = costFunc + costIdx;
if(x < cols-wsz2-mindisp && y < rows-wsz2 )
if (x < cols - WSZ2 - MIN_DISP && y < rows - WSZ2)
{
tempcost = ( ly*(1-nthread) + lx*nthread == 0 ) ?
calcCostBorder(leftptr, rightptr, x, y, nthread, wsz2, costbuf, &head, cols, d,
cost[2*nthread-1], winsize) :
calcCostInside(leftptr, rightptr, x, y, wsz2, cols, d,
cost[0], cost[1], cost[-1], winsize);
tempcost = (ly * (1 - nthread) + lx * nthread == 0) ?
calcCostBorder(leftptr, rightptr, x, y, nthread, costbuf, &head, cols, disp_idx, cost[2*nthread-1]) :
calcCostInside(leftptr, rightptr, x, y, cols, disp_idx, cost[0], cost[1], cost[-1]);
}
cost[0] = tempcost;
atomic_min(best_cost + nthread, tempcost);
barrier(CLK_LOCAL_MEM_FENCE);
if(best_cost[nthread] == tempcost)
atomic_min(best_disp + nthread, ndisp - d - 1);
if (best_cost[nthread] == tempcost)
atomic_max(best_disp + nthread, disp_idx);
barrier(CLK_LOCAL_MEM_FENCE);
int dispIdx = mad24(gy+ly, disp_step, disp_offset + (gx+lx)*(int)sizeof(short));
dispIdx = mad24(gy + ly, disp_step, mad24((int)sizeof(short), (gx + lx), disp_offset));
disp = (__global short *)(dispptr + dispIdx);
calcDisp(cost, disp, uniquenessRatio, mindisp, ndisp, 2*sizeY,
best_disp + nthread, best_cost + nthread, d, x, y, cols, rows, wsz2);
calcDisp(cost, disp, uniquenessRatio, best_disp + nthread, best_cost + nthread, disp_idx, x, y, cols, rows);
barrier(CLK_LOCAL_MEM_FENCE);
calcNewCoordinates(&lx, &ly, nthread);
if (lx + nthread - 1 == ly)
{
lx = (lx + nthread + 1) * (1 - nthread);
ly = (ly + 1) * nthread;
}
else
{
lx += nthread;
ly = ly - nthread + 1;
}
}
}
#endif
#endif //DEFINE_KERNEL_STEREOBM
//////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////// Norm Prefiler ////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
__kernel void prefilter_norm(__global unsigned char *input, __global unsigned char *output,
int rows, int cols, int prefilterCap, int winsize, int scale_g, int scale_s)
int rows, int cols, int prefilterCap, int scale_g, int scale_s)
{
// prefilterCap in range 1..63, checked in StereoBMImpl::compute
int x = get_global_id(0);
int y = get_global_id(1);
int wsz2 = winsize/2;
if(x < cols && y < rows)
{
@ -262,13 +296,13 @@ __kernel void prefilter_norm(__global unsigned char *input, __global unsigned ch
input[y * cols + max(x-1,0)] * 1 + input[ y * cols + x] * 4 + input[y * cols + min(x+1, cols-1)] * 1 +
input[min(y+1, rows-1) * cols + x] * 1;
int cov2 = 0;
for(int i = -wsz2; i < wsz2+1; i++)
for(int j = -wsz2; j < wsz2+1; j++)
for(int i = -WSZ2; i < WSZ2+1; i++)
for(int j = -WSZ2; j < WSZ2+1; j++)
cov2 += input[clamp(y+i, 0, rows-1) * cols + clamp(x+j, 0, cols-1)];
int res = (cov1*scale_g - cov2*scale_s)>>10;
res = min(clamp(res, -prefilterCap, prefilterCap) + prefilterCap, 255);
output[y * cols + x] = res & 0xFF;
res = clamp(res, -prefilterCap, prefilterCap) + prefilterCap;
output[y * cols + x] = res;
}
}
@ -280,20 +314,21 @@ __kernel void prefilter_norm(__global unsigned char *input, __global unsigned ch
__kernel void prefilter_xsobel(__global unsigned char *input, __global unsigned char *output,
int rows, int cols, int prefilterCap)
{
// prefilterCap in range 1..63, checked in StereoBMImpl::compute
int x = get_global_id(0);
int y = get_global_id(1);
if(x < cols && y < rows)
{
output[y * cols + x] = min(prefilterCap, 255) & 0xFF;
}
if (0 < x && !((y == rows-1) & (rows%2==1) ) )
{
int cov = input[ ((y > 0) ? y-1 : y+1) * cols + (x-1)] * (-1) + input[ ((y > 0) ? y-1 : y+1) * cols + ((x<cols-1) ? x+1 : x-1)] * (1) +
input[ (y) * cols + (x-1)] * (-2) + input[ (y) * cols + ((x<cols-1) ? x+1 : x-1)] * (2) +
input[((y<rows-1)?(y+1):(y-1))* cols + (x-1)] * (-1) + input[((y<rows-1)?(y+1):(y-1))* cols + ((x<cols-1) ? x+1 : x-1)] * (1);
if(x < cols && y < rows && x > 0 && !((y == rows-1)&(rows%2==1) ) )
{
int cov = input[ ((y > 0) ? y-1 : y+1) * cols + (x-1)] * (-1) + input[ ((y > 0) ? y-1 : y+1) * cols + ((x<cols-1) ? x+1 : x-1)] * (1) +
input[ (y) * cols + (x-1)] * (-2) + input[ (y) * cols + ((x<cols-1) ? x+1 : x-1)] * (2) +
input[((y<rows-1)?(y+1):(y-1))* cols + (x-1)] * (-1) + input[((y<rows-1)?(y+1):(y-1))* cols + ((x<cols-1) ? x+1 : x-1)] * (1);
cov = min(clamp(cov, -prefilterCap, prefilterCap) + prefilterCap, 255);
output[y * cols + x] = cov & 0xFF;
cov = clamp(cov, -prefilterCap, prefilterCap) + prefilterCap;
output[y * cols + x] = cov;
}
else
output[y * cols + x] = prefilterCap;
}
}
}

View File

@ -88,7 +88,7 @@ struct StereoBMParams
static bool ocl_prefilter_norm(InputArray _input, OutputArray _output, int winsize, int prefilterCap)
{
ocl::Kernel k("prefilter_norm", ocl::calib3d::stereobm_oclsrc);
ocl::Kernel k("prefilter_norm", ocl::calib3d::stereobm_oclsrc, cv::format("-D WSZ=%d", winsize));
if(k.empty())
return false;
@ -102,7 +102,7 @@ static bool ocl_prefilter_norm(InputArray _input, OutputArray _output, int winsi
size_t globalThreads[3] = { input.cols, input.rows, 1 };
k.args(ocl::KernelArg::PtrReadOnly(input), ocl::KernelArg::PtrWriteOnly(output), input.rows, input.cols,
prefilterCap, winsize, scale_g, scale_s);
prefilterCap, scale_g, scale_s);
return k.run(2, globalThreads, NULL, false);
}
@ -743,9 +743,16 @@ static bool ocl_stereobm( InputArray _left, InputArray _right,
int wsz = state->SADWindowSize;
int wsz2 = wsz/2;
int sizeX = std::max(11, 27 - ocl::Device::getDefault().maxComputeUnits() ), sizeY = sizeX-1, N = ndisp*2;
ocl::Device devDef = ocl::Device::getDefault();
int sizeX = devDef.isIntel() ? 32 : std::max(11, 27 - devDef.maxComputeUnits()),
sizeY = sizeX - 1,
N = ndisp * 2;
ocl::Kernel k("stereoBM", ocl::calib3d::stereobm_oclsrc, cv::format("-D csize=%d -D wsz=%d", (2*sizeY)*ndisp, wsz) );
cv::String opt = cv::format("-D DEFINE_KERNEL_STEREOBM -D MIN_DISP=%d -D NUM_DISP=%d"
" -D BLOCK_SIZE_X=%d -D BLOCK_SIZE_Y=%d -D WSZ=%d",
mindisp, ndisp,
sizeX, sizeY, wsz);
ocl::Kernel k("stereoBM", ocl::calib3d::stereobm_oclsrc, opt);
if(k.empty())
return false;
@ -753,15 +760,14 @@ static bool ocl_stereobm( InputArray _left, InputArray _right,
int cols = left.cols, rows = left.rows;
_disp.create(_left.size(), CV_16S);
_disp.setTo((mindisp - 1)<<4);
_disp.setTo((mindisp - 1) << 4);
Rect roi = Rect(Point(wsz2 + mindisp + ndisp - 1, wsz2), Point(cols-wsz2-mindisp, rows-wsz2) );
UMat disp = (_disp.getUMat())(roi);
int globalX = disp.cols/sizeX, globalY = disp.rows/sizeY;
globalX += (disp.cols%sizeX) > 0 ? 1 : 0;
globalY += (disp.rows%sizeY) > 0 ? 1 : 0;
size_t globalThreads[3] = { globalX, globalY, N};
size_t localThreads[3] = {1, 1, N};
int globalX = (disp.cols + sizeX - 1) / sizeX,
globalY = (disp.rows + sizeY - 1) / sizeY;
size_t globalThreads[3] = {N, globalX, globalY};
size_t localThreads[3] = {N, 1, 1};
int idx = 0;
idx = k.set(idx, ocl::KernelArg::PtrReadOnly(left));
@ -769,15 +775,8 @@ static bool ocl_stereobm( InputArray _left, InputArray _right,
idx = k.set(idx, ocl::KernelArg::WriteOnlyNoSize(disp));
idx = k.set(idx, rows);
idx = k.set(idx, cols);
idx = k.set(idx, mindisp);
idx = k.set(idx, ndisp);
idx = k.set(idx, state->preFilterCap);
idx = k.set(idx, state->textureThreshold);
idx = k.set(idx, state->uniquenessRatio);
idx = k.set(idx, sizeX);
idx = k.set(idx, sizeY);
idx = k.set(idx, wsz);
return k.run(3, globalThreads, localThreads, false);
}

View File

@ -618,7 +618,7 @@ CV_EXPORTS int predictOptimalVectorWidth(InputArray src1, InputArray src2 = noAr
InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(),
OclVectorStrategy strat = OCL_VECTOR_DEFAULT);
CV_EXPORTS int checkOptimalVectorWidth(int *vectorWidths,
CV_EXPORTS int checkOptimalVectorWidth(const int *vectorWidths,
InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(),
InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(),
InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(),

View File

@ -3275,13 +3275,26 @@ static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta )
{
const ocl::Device & d = ocl::Device::getDefault();
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type),
kercn = ocl::predictOptimalVectorWidth(_src, _dst), rowsPerWI = d.isIntel() ? 4 : 1;
bool doubleSupport = d.doubleFPConfig() > 0;
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = d.doubleFPConfig() > 0;
if (!doubleSupport && depth == CV_64F)
return false;
_dst.create(_src.size(), CV_8UC(cn));
int kercn = 1;
if (d.isIntel())
{
static const int vectorWidths[] = {4, 4, 4, 4, 4, 4, 4, -1};
kercn = ocl::checkOptimalVectorWidth( vectorWidths, _src, _dst,
noArray(), noArray(), noArray(),
noArray(), noArray(), noArray(),
noArray(), ocl::OCL_VECTOR_MAX);
}
else
kercn = ocl::predictOptimalVectorWidthMax(_src, _dst);
int rowsPerWI = d.isIntel() ? 4 : 1;
char cvt[2][50];
int wdepth = std::max(depth, CV_32F);
String build_opt = format("-D OP_CONVERT_SCALE_ABS -D UNARY_OP -D dstT=%s -D srcT1=%s"
@ -3299,7 +3312,6 @@ static bool ocl_convertScaleAbs( InputArray _src, OutputArray _dst, double alpha
return false;
UMat src = _src.getUMat();
_dst.create(src.size(), CV_8UC(cn));
UMat dst = _dst.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),

View File

@ -693,7 +693,7 @@ static void GEMMStore_64fc( const Complexd* c_data, size_t c_step,
#ifdef HAVE_CLAMDBLAS
static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
static bool ocl_gemm_amdblas( InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray matD, int flags )
{
int type = matA.type(), esz = CV_ELEM_SIZE(type);
@ -775,6 +775,84 @@ static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
#endif
#ifdef HAVE_OPENCL
static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray matD, int flags )
{
int depth = matA.depth(), cn = matA.channels();
int type = CV_MAKETYPE(depth, cn);
CV_Assert( type == matB.type() && (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
const ocl::Device & dev = ocl::Device::getDefault();
bool doubleSupport = dev.doubleFPConfig() > 0;
if (!doubleSupport && depth == CV_64F)
return false;
bool haveC = matC.kind() != cv::_InputArray::NONE;
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0);
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0;
if (atrans)
sizeA = Size(sizeA.height, sizeA.width);
if (btrans)
sizeB = Size(sizeB.height, sizeB.width);
if (haveC && ctrans)
sizeC = Size(sizeC.height, sizeC.width);
Size sizeD(sizeB.width, sizeA.height);
CV_Assert( !haveC || matC.type() == type );
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) );
int max_wg_size = (int)dev.maxWorkGroupSize();
int block_size = (max_wg_size / (32*cn) < 32) ? (max_wg_size / (16*cn) < 16) ? (max_wg_size / (8*cn) < 8) ? 1 : 8 : 16 : 32;
matD.create(sizeD, type);
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat();
if (atrans)
A = A.t();
if (btrans)
B = B.t();
if (haveC)
ctrans ? transpose(matC, D) : matC.copyTo(D);
int vectorWidths[] = { 4, 4, 2, 2, 1, 4, cn, -1 };
int kercn = ocl::checkOptimalVectorWidth(vectorWidths, B, D);
String opts = format("-D T=%s -D T1=%s -D WT=%s -D cn=%d -D kercn=%d -D LOCAL_SIZE=%d %s %s %s",
ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)),
cn, kercn, block_size,
(sizeA.width % block_size !=0) ? "-D NO_MULT" : "",
haveC ? "-D HAVE_C" : "",
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
ocl::Kernel k("gemm", cv::ocl::core::gemm_oclsrc, opts);
if (k.empty())
return false;
if (depth == CV_64F)
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, alpha, beta);
else
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, (float)alpha, (float)beta);
size_t globalsize[2] = { sizeD.width * cn / kercn, sizeD.height};
size_t localsize[2] = { block_size, block_size};
return k.run(2, globalsize, block_size!=1 ? localsize : NULL, false);
}
#endif
}
void cv::gemm( InputArray matA, InputArray matB, double alpha,
@ -783,7 +861,12 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha,
#ifdef HAVE_CLAMDBLAS
CV_OCL_RUN(ocl::haveAmdBlas() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2 && _matD.isUMat() &&
matA.cols() > 20 && matA.rows() > 20 && matB.cols() > 20, // since it works incorrect for small sizes
ocl_gemm(matA, matB, alpha, matC, beta, _matD, flags))
ocl_gemm_amdblas(matA, matB, alpha, matC, beta, _matD, flags))
#endif
#ifdef HAVE_OPENCL
CV_OCL_RUN(_matD.isUMat() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2,
ocl_gemm(matA, matB, alpha, matC, beta, _matD, flags))
#endif
const int block_lin_size = 128;
@ -2173,14 +2256,18 @@ typedef void (*ScaleAddFunc)(const uchar* src1, const uchar* src2, uchar* dst, i
static bool ocl_scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst, int type )
{
const ocl::Device & d = ocl::Device::getDefault();
int depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), wdepth = std::max(depth, CV_32F),
kercn = ocl::predictOptimalVectorWidth(_src1, _src2, _dst), rowsPerWI = d.isIntel() ? 4 : 1;
bool doubleSupport = d.doubleFPConfig() > 0;
Size size = _src1.size();
int depth = CV_MAT_DEPTH(type);
if ( (!doubleSupport && depth == CV_64F) || size != _src2.size() )
return false;
_dst.create(size, type);
int cn = CV_MAT_CN(type), wdepth = std::max(depth, CV_32F);
int kercn = ocl::predictOptimalVectorWidthMax(_src1, _src2, _dst),
rowsPerWI = d.isIntel() ? 4 : 1;
char cvt[2][50];
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
format("-D OP_SCALE_ADD -D BINARY_OP -D dstT=%s -D workT=%s -D convertToWT1=%s"
@ -2195,9 +2282,7 @@ static bool ocl_scaleAdd( InputArray _src1, double alpha, InputArray _src2, Outp
if (k.empty())
return false;
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat();
_dst.create(size, type);
UMat dst = _dst.getUMat();
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat();
ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1),
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),

View File

@ -3979,6 +3979,11 @@ public:
u->markDeviceMemMapped(false);
CV_Assert( (retval = clEnqueueUnmapMemObject(q,
(cl_mem)u->handle, u->data, 0, 0, 0)) == CL_SUCCESS );
if (Device::getDefault().isAMD())
{
// required for multithreaded applications (see stitching test)
CV_OclDbgAssert(clFinish(q) == CL_SUCCESS);
}
u->data = 0;
}
else if( u->copyOnMap() && u->deviceCopyObsolete() )
@ -4531,12 +4536,14 @@ int predictOptimalVectorWidth(InputArray src1, InputArray src2, InputArray src3,
return checkOptimalVectorWidth(vectorWidths, src1, src2, src3, src4, src5, src6, src7, src8, src9, strat);
}
int checkOptimalVectorWidth(int *vectorWidths,
int checkOptimalVectorWidth(const int *vectorWidths,
InputArray src1, InputArray src2, InputArray src3,
InputArray src4, InputArray src5, InputArray src6,
InputArray src7, InputArray src8, InputArray src9,
OclVectorStrategy strat)
{
CV_Assert(vectorWidths);
int ref_type = src1.type();
std::vector<size_t> offsets, steps, cols;
@ -4624,6 +4631,9 @@ struct Image2D::Impl
static bool isFormatSupported(cl_image_format format)
{
if (!haveOpenCL())
CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");
cl_context context = (cl_context)Context::getDefault().ptr();
// Figure out how many formats are supported by this context.
cl_uint numFormats = 0;
@ -4647,6 +4657,10 @@ struct Image2D::Impl
void init(const UMat &src, bool norm, bool alias)
{
if (!haveOpenCL())
CV_Error(Error::OpenCLApiCallError, "OpenCL runtime not found!");
CV_Assert(!src.empty());
CV_Assert(ocl::Device::getDefault().imageSupport());
int err, depth = src.depth(), cn = src.channels();
@ -4656,6 +4670,9 @@ struct Image2D::Impl
if (!isFormatSupported(format))
CV_Error(Error::OpenCLApiCallError, "Image format is not supported");
if (alias && !src.handle(ACCESS_RW))
CV_Error(Error::OpenCLApiCallError, "Incorrect UMat, handle is null");
cl_context context = (cl_context)Context::getDefault().ptr();
cl_command_queue queue = (cl_command_queue)Queue::getDefault().ptr();
@ -4740,7 +4757,7 @@ bool Image2D::canCreateAlias(const UMat &m)
{
bool ret = false;
const Device & d = ocl::Device::getDefault();
if (d.imageFromBufferSupport())
if (d.imageFromBufferSupport() && !m.empty())
{
// This is the required pitch alignment in pixels
uint pitchAlign = d.imagePitchAlignment();

View File

@ -0,0 +1,112 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#define TSIZE (int)sizeof(T)
#define WTSIZE (int)sizeof(WT)
#define IND_A mad24(y, A_step, A_offset)
#define IND_B mad24(x, WTSIZE, B_offset)
#define STEP_B B_step / WTSIZE
#define LOCAL_SIZE_ODD (LOCAL_SIZE + 1)
#if cn==2
#if kercn==2
#define MUL(a, b)\
{\
sum.x += fma(a.x, b.x, - a.y * b.y);\
sum.y += fma(a.x, b.y, a.y * b.x);\
}
#else
#define MUL(a, b)\
{\
sum.x += fma(a.x, b.x, - a.y * b.y);\
sum.y += fma(a.x, b.y, a.y * b.x);\
sum.z += fma(a.x, b.z, - a.y * b.w);\
sum.w += fma(a.x, b.w, a.y * b.z);\
}
#endif
#else
#define MUL(a, b) sum = fma(a, b, sum);
#endif
__kernel void gemm(__global const uchar * A_ptr, int A_step, int A_offset,
__global const uchar * B_ptr, int B_step, int B_offset,
__global uchar * D_ptr, int D_step, int D_offset, int D_rows, int D_cols,
int n, T1 alpha, T1 beta)
{
int x = get_global_id(0);
int y = get_global_id(1);
int lidx = get_local_id(0);
int lidy = get_local_id(1);
__global const T* A = (__global const T*)(A_ptr + IND_A);
__global const WT* B = (__global const WT*)(B_ptr + IND_B);
WT sum = (WT)(0);
#if LOCAL_SIZE == 1
if (x < D_cols && y < D_rows)
{
for (int i = 0; i < n; ++i)
MUL(A[i], B[i*STEP_B]);
#else
__local T a_local[LOCAL_SIZE_ODD*LOCAL_SIZE];
__local WT b_local[LOCAL_SIZE_ODD*LOCAL_SIZE];
int reps;
#if NO_MULT
reps = (n + LOCAL_SIZE-1)/LOCAL_SIZE;
#else
reps = n/LOCAL_SIZE;
#endif
for (int p = 0; p < reps; ++p)
{
if (p * LOCAL_SIZE + lidx < n && y < D_rows)
a_local[mad24(lidy, LOCAL_SIZE_ODD, lidx)] = A[mad24(p, LOCAL_SIZE, lidx)];
if (p * LOCAL_SIZE + lidy < n && x < D_cols)
b_local[mad24(lidy, LOCAL_SIZE_ODD, lidx)] = B[mad24(p, LOCAL_SIZE, lidy)*STEP_B];
barrier(CLK_LOCAL_MEM_FENCE);
if (x < D_cols && y < D_rows)
{
#if NO_MULT
int ie = min(LOCAL_SIZE, n - p * LOCAL_SIZE);
for (int i = 0; i < ie; ++i)
#else
for (int i = 0; i < LOCAL_SIZE; ++i)
#endif
MUL(a_local[mad24(lidy, LOCAL_SIZE_ODD, i)], b_local[mad24(i, LOCAL_SIZE_ODD, lidx)]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (x < D_cols && y < D_rows)
{
#endif
__global WT* D = (__global WT*)(D_ptr + mad24(y, D_step, mad24(x, WTSIZE, D_offset)));
#if HAVE_C
D[0] = mad(alpha, sum, D[0]*beta);
#else
D[0] = alpha * sum;
#endif
}
}

View File

@ -0,0 +1,96 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace cvtest {
namespace ocl {
TEST(Image2D, createAliasEmptyUMat)
{
if (cv::ocl::haveOpenCL())
{
UMat um;
EXPECT_FALSE(cv::ocl::Image2D::canCreateAlias(um));
}
else
std::cout << "OpenCL runtime not found. Test skipped." << std::endl;
}
TEST(Image2D, createImage2DWithEmptyUMat)
{
if (cv::ocl::haveOpenCL())
{
UMat um;
EXPECT_ANY_THROW(cv::ocl::Image2D image(um));
}
else
std::cout << "OpenCL runtime not found. Test skipped." << std::endl;
}
TEST(Image2D, createAlias)
{
if (cv::ocl::haveOpenCL())
{
const cv::ocl::Device & d = cv::ocl::Device::getDefault();
int minor = d.deviceVersionMinor(), major = d.deviceVersionMajor();
// aliases is OpenCL 1.2 extension
if (1 < major || (1 == major && 2 <= minor))
{
UMat um(128, 128, CV_8UC1);
bool isFormatSupported = false, canCreateAlias = false;
EXPECT_NO_THROW(isFormatSupported = cv::ocl::Image2D::isFormatSupported(CV_8U, 1, false));
EXPECT_NO_THROW(canCreateAlias = cv::ocl::Image2D::canCreateAlias(um));
if (isFormatSupported && canCreateAlias)
{
EXPECT_NO_THROW(cv::ocl::Image2D image(um, false, true));
}
else
std::cout << "Impossible to create alias for selected image. Test skipped." << std::endl;
}
}
else
std::cout << "OpenCL runtime not found. Test skipped" << std::endl;
}
TEST(Image2D, turnOffOpenCL)
{
if (cv::ocl::haveOpenCL())
{
// save the current state
bool useOCL = cv::ocl::useOpenCL();
bool isFormatSupported = false;
cv::ocl::setUseOpenCL(true);
UMat um(128, 128, CV_8UC1);
cv::ocl::setUseOpenCL(false);
EXPECT_NO_THROW(isFormatSupported = cv::ocl::Image2D::isFormatSupported(CV_8U, 1, true));
if (isFormatSupported)
{
EXPECT_NO_THROW(cv::ocl::Image2D image(um));
}
else
std::cout << "CV_8UC1 is not supported for OpenCL images. Test skipped." << std::endl;
// reset state to the previous one
cv::ocl::setUseOpenCL(useOCL);
}
else
std::cout << "OpenCL runtime not found. Test skipped." << std::endl;
}
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL

View File

@ -4848,7 +4848,7 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
bool ok = false;
UMat src = _src.getUMat(), dst;
Size sz = src.size(), dstSz = sz;
int scn = src.channels(), depth = src.depth(), bidx;
int scn = src.channels(), depth = src.depth(), bidx, uidx, yidx;
int dims = 2, stripeSize = 1;
ocl::Kernel k;
@ -4857,6 +4857,7 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
ocl::Device dev = ocl::Device::getDefault();
int pxPerWIy = dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU) ? 4 : 1;
int pxPerWIx = 1;
size_t globalsize[] = { src.cols, (src.rows + pxPerWIy - 1) / pxPerWIy };
cv::String opts = format("-D depth=%d -D scn=%d -D PIX_PER_WI_Y=%d ",
@ -4960,17 +4961,107 @@ static bool ocl_cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
opts + format("-D dcn=%d -D bidx=%d", dcn, bidx));
break;
}
case COLOR_YUV2RGB_NV12: case COLOR_YUV2BGR_NV12:
case COLOR_YUV2RGBA_NV12: case COLOR_YUV2BGRA_NV12:
case COLOR_YUV2RGB_NV12: case COLOR_YUV2BGR_NV12: case COLOR_YUV2RGB_NV21: case COLOR_YUV2BGR_NV21:
case COLOR_YUV2RGBA_NV12: case COLOR_YUV2BGRA_NV12: case COLOR_YUV2RGBA_NV21: case COLOR_YUV2BGRA_NV21:
{
CV_Assert( scn == 1 );
CV_Assert( sz.width % 2 == 0 && sz.height % 3 == 0 && depth == CV_8U );
dcn = code == COLOR_YUV2BGRA_NV12 || code == COLOR_YUV2RGBA_NV12 ? 4 : 3;
bidx = code == COLOR_YUV2BGRA_NV12 || code == COLOR_YUV2BGR_NV12 ? 0 : 2;
dcn = code == COLOR_YUV2BGRA_NV12 || code == COLOR_YUV2RGBA_NV12 ||
code == COLOR_YUV2BGRA_NV21 || code == COLOR_YUV2RGBA_NV21 ? 4 : 3;
bidx = code == COLOR_YUV2BGRA_NV12 || code == COLOR_YUV2BGR_NV12 ||
code == COLOR_YUV2BGRA_NV21 || code == COLOR_YUV2BGR_NV21 ? 0 : 2;
uidx = code == COLOR_YUV2RGBA_NV21 || code == COLOR_YUV2RGB_NV21 ||
code == COLOR_YUV2BGRA_NV21 || code == COLOR_YUV2BGR_NV21 ? 1 : 0;
dstSz = Size(sz.width, sz.height * 2 / 3);
k.create("YUV2RGB_NV12", ocl::imgproc::cvtcolor_oclsrc,
opts + format("-D dcn=%d -D bidx=%d", dcn, bidx));
globalsize[0] = dstSz.width / 2; globalsize[1] = (dstSz.height/2 + pxPerWIy - 1) / pxPerWIy;
k.create("YUV2RGB_NVx", ocl::imgproc::cvtcolor_oclsrc,
opts + format("-D dcn=%d -D bidx=%d -D uidx=%d", dcn, bidx, uidx));
break;
}
case COLOR_YUV2BGR_YV12: case COLOR_YUV2RGB_YV12: case COLOR_YUV2BGRA_YV12: case COLOR_YUV2RGBA_YV12:
case COLOR_YUV2BGR_IYUV: case COLOR_YUV2RGB_IYUV: case COLOR_YUV2BGRA_IYUV: case COLOR_YUV2RGBA_IYUV:
{
CV_Assert( scn == 1 );
CV_Assert( sz.width % 2 == 0 && sz.height % 3 == 0 && depth == CV_8U );
dcn = code == COLOR_YUV2BGRA_YV12 || code == COLOR_YUV2RGBA_YV12 ||
code == COLOR_YUV2BGRA_IYUV || code == COLOR_YUV2RGBA_IYUV ? 4 : 3;
bidx = code == COLOR_YUV2BGRA_YV12 || code == COLOR_YUV2BGR_YV12 ||
code == COLOR_YUV2BGRA_IYUV || code == COLOR_YUV2BGR_IYUV ? 0 : 2;
uidx = code == COLOR_YUV2BGRA_YV12 || code == COLOR_YUV2BGR_YV12 ||
code == COLOR_YUV2RGBA_YV12 || code == COLOR_YUV2RGB_YV12 ? 1 : 0;
dstSz = Size(sz.width, sz.height * 2 / 3);
globalsize[0] = dstSz.width / 2; globalsize[1] = (dstSz.height/2 + pxPerWIy - 1) / pxPerWIy;
k.create("YUV2RGB_YV12_IYUV", ocl::imgproc::cvtcolor_oclsrc,
opts + format("-D dcn=%d -D bidx=%d -D uidx=%d%s", dcn, bidx, uidx,
src.isContinuous() ? " -D SRC_CONT" : ""));
break;
}
case COLOR_YUV2GRAY_420:
{
if (dcn <= 0) dcn = 1;
CV_Assert( dcn == 1 );
CV_Assert( sz.width % 2 == 0 && sz.height % 3 == 0 && depth == CV_8U );
dstSz = Size(sz.width, sz.height * 2 / 3);
_dst.create(dstSz, CV_MAKETYPE(depth, dcn));
dst = _dst.getUMat();
src.rowRange(0, dstSz.height).copyTo(dst);
return true;
}
case COLOR_RGB2YUV_YV12: case COLOR_BGR2YUV_YV12: case COLOR_RGBA2YUV_YV12: case COLOR_BGRA2YUV_YV12:
case COLOR_RGB2YUV_IYUV: case COLOR_BGR2YUV_IYUV: case COLOR_RGBA2YUV_IYUV: case COLOR_BGRA2YUV_IYUV:
{
if (dcn <= 0) dcn = 1;
bidx = code == COLOR_BGRA2YUV_YV12 || code == COLOR_BGR2YUV_YV12 ||
code == COLOR_BGRA2YUV_IYUV || code == COLOR_BGR2YUV_IYUV ? 0 : 2;
uidx = code == COLOR_RGBA2YUV_YV12 || code == COLOR_RGB2YUV_YV12 ||
code == COLOR_BGRA2YUV_YV12 || code == COLOR_BGR2YUV_YV12 ? 1 : 0;
CV_Assert( (scn == 3 || scn == 4) && depth == CV_8U );
CV_Assert( dcn == 1 );
CV_Assert( sz.width % 2 == 0 && sz.height % 2 == 0 );
dstSz = Size(sz.width, sz.height / 2 * 3);
_dst.create(dstSz, CV_MAKETYPE(depth, dcn));
dst = _dst.getUMat();
if (dev.isIntel() && src.cols % 4 == 0 && src.step % 4 == 0 && src.offset % 4 == 0 &&
dst.step % 4 == 0 && dst.offset % 4 == 0)
{
pxPerWIx = 2;
}
globalsize[0] = dstSz.width / (2 * pxPerWIx); globalsize[1] = (dstSz.height/3 + pxPerWIy - 1) / pxPerWIy;
k.create("RGB2YUV_YV12_IYUV", ocl::imgproc::cvtcolor_oclsrc,
opts + format("-D dcn=%d -D bidx=%d -D uidx=%d -D PIX_PER_WI_X=%d", dcn, bidx, uidx, pxPerWIx));
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst));
return k.run(2, globalsize, NULL, false);
}
case COLOR_YUV2RGB_UYVY: case COLOR_YUV2BGR_UYVY: case COLOR_YUV2RGBA_UYVY: case COLOR_YUV2BGRA_UYVY:
case COLOR_YUV2RGB_YUY2: case COLOR_YUV2BGR_YUY2: case COLOR_YUV2RGB_YVYU: case COLOR_YUV2BGR_YVYU:
case COLOR_YUV2RGBA_YUY2: case COLOR_YUV2BGRA_YUY2: case COLOR_YUV2RGBA_YVYU: case COLOR_YUV2BGRA_YVYU:
{
if (dcn <= 0)
dcn = (code==COLOR_YUV2RGBA_UYVY || code==COLOR_YUV2BGRA_UYVY || code==COLOR_YUV2RGBA_YUY2 ||
code==COLOR_YUV2BGRA_YUY2 || code==COLOR_YUV2RGBA_YVYU || code==COLOR_YUV2BGRA_YVYU) ? 4 : 3;
bidx = (code==COLOR_YUV2BGR_UYVY || code==COLOR_YUV2BGRA_UYVY || code==COLOR_YUV2BGRA_YUY2 ||
code==COLOR_YUV2BGR_YUY2 || code==COLOR_YUV2BGRA_YVYU || code==COLOR_YUV2BGR_YVYU) ? 0 : 2;
yidx = (code==COLOR_YUV2RGB_UYVY || code==COLOR_YUV2RGBA_UYVY || code==COLOR_YUV2BGR_UYVY || code==COLOR_YUV2BGRA_UYVY) ? 1 : 0;
uidx = (code==COLOR_YUV2RGB_YVYU || code==COLOR_YUV2RGBA_YVYU ||
code==COLOR_YUV2BGR_YVYU || code==COLOR_YUV2BGRA_YVYU) ? 2 : 0;
uidx = 1 - yidx + uidx;
CV_Assert( dcn == 3 || dcn == 4 );
CV_Assert( scn == 2 && depth == CV_8U );
k.create("YUV2RGB_422", ocl::imgproc::cvtcolor_oclsrc,
opts + format("-D dcn=%d -D bidx=%d -D uidx=%d -D yidx=%d%s", dcn, bidx, uidx, yidx,
src.offset % 4 == 0 && src.step % 4 == 0 ? " -D USE_OPTIMIZED_LOAD" : ""));
break;
}
case COLOR_BGR2YCrCb:

View File

@ -275,6 +275,12 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
_mask, blockSize, useHarrisDetector, harrisK))
Mat image = _image.getMat(), eig, tmp;
if (image.empty())
{
_corners.release();
return;
}
if( useHarrisDetector )
cornerHarris( image, eig, blockSize, 3, harrisK );
else

View File

@ -77,7 +77,7 @@ enum
{
yuv_shift = 14,
xyz_shift = 12,
hsv_shift = 12,
hsv_shift = 12,
R2Y = 4899,
G2Y = 9617,
B2Y = 1868,
@ -111,6 +111,18 @@ enum
#define B_COMP w
#endif
#ifndef uidx
#define uidx 0
#endif
#ifndef yidx
#define yidx 0
#endif
#ifndef PIX_PER_WI_X
#define PIX_PER_WI_X 1
#endif
#define __CAT(x, y) x##y
#define CAT(x, y) __CAT(x, y)
@ -141,7 +153,7 @@ __kernel void RGB2Gray(__global const uchar * srcptr, int src_step, int src_offs
#ifdef DEPTH_5
dst[0] = fma(src_pix.B_COMP, 0.114f, fma(src_pix.G_COMP, 0.587f, src_pix.R_COMP * 0.299f));
#else
dst[0] = (DATA_TYPE)CV_DESCALE(mad24(src_pix.B_COMP, B2Y, mad24(src_pix.G_COMP, G2Y, src_pix.R_COMP * R2Y)), yuv_shift);
dst[0] = (DATA_TYPE)CV_DESCALE(mad24(src_pix.B_COMP, B2Y, mad24(src_pix.G_COMP, G2Y, mul24(src_pix.R_COMP, R2Y))), yuv_shift);
#endif
++y;
src_index += src_step;
@ -216,13 +228,13 @@ __kernel void RGB2YUV(__global const uchar* srcptr, int src_step, int src_offset
#ifdef DEPTH_5
__constant float * coeffs = c_RGB2YUVCoeffs_f;
const DATA_TYPE Y = fma(b, coeffs[0], fma(g, coeffs[1], r * coeffs[2]));
const DATA_TYPE Y = fma(b, coeffs[0], fma(g, coeffs[1], r * coeffs[2]));
const DATA_TYPE U = fma(b - Y, coeffs[3], HALF_MAX);
const DATA_TYPE V = fma(r - Y, coeffs[4], HALF_MAX);
#else
__constant int * coeffs = c_RGB2YUVCoeffs_i;
const int delta = HALF_MAX * (1 << yuv_shift);
const int Y = CV_DESCALE(mad24(b, coeffs[0], mad24(g, coeffs[1], r * coeffs[2])), yuv_shift);
const int Y = CV_DESCALE(mad24(b, coeffs[0], mad24(g, coeffs[1], mul24(r, coeffs[2]))), yuv_shift);
const int U = CV_DESCALE(mad24(b - Y, coeffs[3], delta), yuv_shift);
const int V = CV_DESCALE(mad24(r - Y, coeffs[4], delta), yuv_shift);
#endif
@ -239,8 +251,8 @@ __kernel void RGB2YUV(__global const uchar* srcptr, int src_step, int src_offset
}
}
__constant float c_YUV2RGBCoeffs_f[5] = { 2.032f, -0.395f, -0.581f, 1.140f };
__constant int c_YUV2RGBCoeffs_i[5] = { 33292, -6472, -9519, 18678 };
__constant float c_YUV2RGBCoeffs_f[4] = { 2.032f, -0.395f, -0.581f, 1.140f };
__constant int c_YUV2RGBCoeffs_i[4] = { 33292, -6472, -9519, 18678 };
__kernel void YUV2RGB(__global const uchar* srcptr, int src_step, int src_offset,
__global uchar* dstptr, int dst_step, int dt_offset,
@ -271,9 +283,9 @@ __kernel void YUV2RGB(__global const uchar* srcptr, int src_step, int src_offset
float b = fma(U - HALF_MAX, coeffs[0], Y);
#else
__constant int * coeffs = c_YUV2RGBCoeffs_i;
const int r = Y + CV_DESCALE((V - HALF_MAX) * coeffs[3], yuv_shift);
const int g = Y + CV_DESCALE(mad24(V - HALF_MAX, coeffs[2], (U - HALF_MAX) * coeffs[1]), yuv_shift);
const int b = Y + CV_DESCALE((U - HALF_MAX) * coeffs[0], yuv_shift);
const int r = Y + CV_DESCALE(mul24(V - HALF_MAX, coeffs[3]), yuv_shift);
const int g = Y + CV_DESCALE(mad24(V - HALF_MAX, coeffs[2], mul24(U - HALF_MAX, coeffs[1])), yuv_shift);
const int b = Y + CV_DESCALE(mul24(U - HALF_MAX, coeffs[0]), yuv_shift);
#endif
dst[bidx] = SAT_CAST( b );
@ -289,15 +301,10 @@ __kernel void YUV2RGB(__global const uchar* srcptr, int src_step, int src_offset
}
}
}
__constant float c_YUV2RGBCoeffs_420[5] = { 1.163999557f, 2.017999649f, -0.390999794f,
-0.812999725f, 1.5959997177f };
__constant int ITUR_BT_601_CY = 1220542;
__constant int ITUR_BT_601_CUB = 2116026;
__constant int ITUR_BT_601_CUG = 409993;
__constant int ITUR_BT_601_CVG = 852492;
__constant int ITUR_BT_601_CVR = 1673527;
__constant int ITUR_BT_601_SHIFT = 20;
__kernel void YUV2RGB_NV12(__global const uchar* srcptr, int src_step, int src_offset,
__kernel void YUV2RGB_NVx(__global const uchar* srcptr, int src_step, int src_offset,
__global uchar* dstptr, int dst_step, int dt_offset,
int rows, int cols)
{
@ -313,49 +320,50 @@ __kernel void YUV2RGB_NV12(__global const uchar* srcptr, int src_step, int src_o
{
__global const uchar* ysrc = srcptr + mad24(y << 1, src_step, (x << 1) + src_offset);
__global const uchar* usrc = srcptr + mad24(rows + y, src_step, (x << 1) + src_offset);
__global uchar* dst1 = dstptr + mad24(y << 1, dst_step, x * (dcn<<1) + dt_offset);
__global uchar* dst2 = dstptr + mad24((y << 1) + 1, dst_step, x * (dcn<<1) + dt_offset);
__global uchar* dst1 = dstptr + mad24(y << 1, dst_step, mad24(x, dcn<<1, dt_offset));
__global uchar* dst2 = dst1 + dst_step;
int Y1 = ysrc[0];
int Y2 = ysrc[1];
int Y3 = ysrc[src_step];
int Y4 = ysrc[src_step + 1];
float Y1 = ysrc[0];
float Y2 = ysrc[1];
float Y3 = ysrc[src_step];
float Y4 = ysrc[src_step + 1];
int U = usrc[0] - 128;
int V = usrc[1] - 128;
float U = ((float)usrc[uidx]) - HALF_MAX;
float V = ((float)usrc[1-uidx]) - HALF_MAX;
int ruv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CVR * V;
int guv = (1 << (ITUR_BT_601_SHIFT - 1)) - ITUR_BT_601_CVG * V - ITUR_BT_601_CUG * U;
int buv = (1 << (ITUR_BT_601_SHIFT - 1)) + ITUR_BT_601_CUB * U;
__constant float* coeffs = c_YUV2RGBCoeffs_420;
float ruv = fma(coeffs[4], V, 0.5f);
float guv = fma(coeffs[3], V, fma(coeffs[2], U, 0.5f));
float buv = fma(coeffs[1], U, 0.5f);
Y1 = max(0, Y1 - 16) * ITUR_BT_601_CY;
dst1[2 - bidx] = convert_uchar_sat((Y1 + ruv) >> ITUR_BT_601_SHIFT);
dst1[1] = convert_uchar_sat((Y1 + guv) >> ITUR_BT_601_SHIFT);
dst1[bidx] = convert_uchar_sat((Y1 + buv) >> ITUR_BT_601_SHIFT);
Y1 = max(0.f, Y1 - 16.f) * coeffs[0];
dst1[2 - bidx] = convert_uchar_sat(Y1 + ruv);
dst1[1] = convert_uchar_sat(Y1 + guv);
dst1[bidx] = convert_uchar_sat(Y1 + buv);
#if dcn == 4
dst1[3] = 255;
#endif
Y2 = max(0, Y2 - 16) * ITUR_BT_601_CY;
dst1[dcn + 2 - bidx] = convert_uchar_sat((Y2 + ruv) >> ITUR_BT_601_SHIFT);
dst1[dcn + 1] = convert_uchar_sat((Y2 + guv) >> ITUR_BT_601_SHIFT);
dst1[dcn + bidx] = convert_uchar_sat((Y2 + buv) >> ITUR_BT_601_SHIFT);
Y2 = max(0.f, Y2 - 16.f) * coeffs[0];
dst1[dcn + 2 - bidx] = convert_uchar_sat(Y2 + ruv);
dst1[dcn + 1] = convert_uchar_sat(Y2 + guv);
dst1[dcn + bidx] = convert_uchar_sat(Y2 + buv);
#if dcn == 4
dst1[7] = 255;
#endif
Y3 = max(0, Y3 - 16) * ITUR_BT_601_CY;
dst2[2 - bidx] = convert_uchar_sat((Y3 + ruv) >> ITUR_BT_601_SHIFT);
dst2[1] = convert_uchar_sat((Y3 + guv) >> ITUR_BT_601_SHIFT);
dst2[bidx] = convert_uchar_sat((Y3 + buv) >> ITUR_BT_601_SHIFT);
Y3 = max(0.f, Y3 - 16.f) * coeffs[0];
dst2[2 - bidx] = convert_uchar_sat(Y3 + ruv);
dst2[1] = convert_uchar_sat(Y3 + guv);
dst2[bidx] = convert_uchar_sat(Y3 + buv);
#if dcn == 4
dst2[3] = 255;
#endif
Y4 = max(0, Y4 - 16) * ITUR_BT_601_CY;
dst2[dcn + 2 - bidx] = convert_uchar_sat((Y4 + ruv) >> ITUR_BT_601_SHIFT);
dst2[dcn + 1] = convert_uchar_sat((Y4 + guv) >> ITUR_BT_601_SHIFT);
dst2[dcn + bidx] = convert_uchar_sat((Y4 + buv) >> ITUR_BT_601_SHIFT);
Y4 = max(0.f, Y4 - 16.f) * coeffs[0];
dst2[dcn + 2 - bidx] = convert_uchar_sat(Y4 + ruv);
dst2[dcn + 1] = convert_uchar_sat(Y4 + guv);
dst2[dcn + bidx] = convert_uchar_sat(Y4 + buv);
#if dcn == 4
dst2[7] = 255;
#endif
@ -365,6 +373,247 @@ __kernel void YUV2RGB_NV12(__global const uchar* srcptr, int src_step, int src_o
}
}
__kernel void YUV2RGB_YV12_IYUV(__global const uchar* srcptr, int src_step, int src_offset,
__global uchar* dstptr, int dst_step, int dt_offset,
int rows, int cols)
{
int x = get_global_id(0);
int y = get_global_id(1) * PIX_PER_WI_Y;
if (x < cols / 2)
{
#pragma unroll
for (int cy = 0; cy < PIX_PER_WI_Y; ++cy)
{
if (y < rows / 2 )
{
__global const uchar* ysrc = srcptr + mad24(y << 1, src_step, (x << 1) + src_offset);
__global uchar* dst1 = dstptr + mad24(y << 1, dst_step, x * (dcn<<1) + dt_offset);
__global uchar* dst2 = dst1 + dst_step;
float Y1 = ysrc[0];
float Y2 = ysrc[1];
float Y3 = ysrc[src_step];
float Y4 = ysrc[src_step + 1];
#ifdef SRC_CONT
__global const uchar* uvsrc = srcptr + mad24(rows, src_step, src_offset);
int u_ind = mad24(y, cols >> 1, x);
float uv[2] = { ((float)uvsrc[u_ind]) - HALF_MAX, ((float)uvsrc[u_ind + ((rows * cols) >> 2)]) - HALF_MAX };
#else
int vsteps[2] = { cols >> 1, src_step - (cols >> 1)};
__global const uchar* usrc = srcptr + mad24(rows + (y>>1), src_step, src_offset + (y%2)*(cols >> 1) + x);
__global const uchar* vsrc = usrc + mad24(rows >> 2, src_step, rows % 4 ? vsteps[y%2] : 0);
float uv[2] = { ((float)usrc[0]) - HALF_MAX, ((float)vsrc[0]) - HALF_MAX };
#endif
float U = uv[uidx];
float V = uv[1-uidx];
__constant float* coeffs = c_YUV2RGBCoeffs_420;
float ruv = fma(coeffs[4], V, 0.5f);
float guv = fma(coeffs[3], V, fma(coeffs[2], U, 0.5f));
float buv = fma(coeffs[1], U, 0.5f);
Y1 = max(0.f, Y1 - 16.f) * coeffs[0];
dst1[2 - bidx] = convert_uchar_sat(Y1 + ruv);
dst1[1] = convert_uchar_sat(Y1 + guv);
dst1[bidx] = convert_uchar_sat(Y1 + buv);
#if dcn == 4
dst1[3] = 255;
#endif
Y2 = max(0.f, Y2 - 16.f) * coeffs[0];
dst1[dcn + 2 - bidx] = convert_uchar_sat(Y2 + ruv);
dst1[dcn + 1] = convert_uchar_sat(Y2 + guv);
dst1[dcn + bidx] = convert_uchar_sat(Y2 + buv);
#if dcn == 4
dst1[7] = 255;
#endif
Y3 = max(0.f, Y3 - 16.f) * coeffs[0];
dst2[2 - bidx] = convert_uchar_sat(Y3 + ruv);
dst2[1] = convert_uchar_sat(Y3 + guv);
dst2[bidx] = convert_uchar_sat(Y3 + buv);
#if dcn == 4
dst2[3] = 255;
#endif
Y4 = max(0.f, Y4 - 16.f) * coeffs[0];
dst2[dcn + 2 - bidx] = convert_uchar_sat(Y4 + ruv);
dst2[dcn + 1] = convert_uchar_sat(Y4 + guv);
dst2[dcn + bidx] = convert_uchar_sat(Y4 + buv);
#if dcn == 4
dst2[7] = 255;
#endif
}
++y;
}
}
}
__constant float c_RGB2YUVCoeffs_420[8] = { 0.256999969f, 0.50399971f, 0.09799957f, -0.1479988098f, -0.2909994125f,
0.438999176f, -0.3679990768f, -0.0709991455f };
__kernel void RGB2YUV_YV12_IYUV(__global const uchar* srcptr, int src_step, int src_offset,
__global uchar* dstptr, int dst_step, int dst_offset,
int rows, int cols)
{
int x = get_global_id(0) * PIX_PER_WI_X;
int y = get_global_id(1) * PIX_PER_WI_Y;
if (x < cols/2)
{
int src_index = mad24(y << 1, src_step, mad24(x << 1, scn, src_offset));
int ydst_index = mad24(y << 1, dst_step, (x << 1) + dst_offset);
int y_rows = rows / 3 * 2;
int vsteps[2] = { cols >> 1, dst_step - (cols >> 1)};
__constant float* coeffs = c_RGB2YUVCoeffs_420;
#pragma unroll
for (int cy = 0; cy < PIX_PER_WI_Y; ++cy)
{
if (y < rows / 3)
{
__global const uchar* src1 = srcptr + src_index;
__global const uchar* src2 = src1 + src_step;
__global uchar* ydst1 = dstptr + ydst_index;
__global uchar* ydst2 = ydst1 + dst_step;
__global uchar* udst = dstptr + mad24(y_rows + (y>>1), dst_step, dst_offset + (y%2)*(cols >> 1) + x);
__global uchar* vdst = udst + mad24(y_rows >> 2, dst_step, y_rows % 4 ? vsteps[y%2] : 0);
#if PIX_PER_WI_X == 2
int s11 = *((__global const int*) src1);
int s12 = *((__global const int*) src1 + 1);
int s13 = *((__global const int*) src1 + 2);
#if scn == 4
int s14 = *((__global const int*) src1 + 3);
#endif
int s21 = *((__global const int*) src2);
int s22 = *((__global const int*) src2 + 1);
int s23 = *((__global const int*) src2 + 2);
#if scn == 4
int s24 = *((__global const int*) src2 + 3);
#endif
float src_pix1[scn * 4], src_pix2[scn * 4];
*((float4*) src_pix1) = convert_float4(as_uchar4(s11));
*((float4*) src_pix1 + 1) = convert_float4(as_uchar4(s12));
*((float4*) src_pix1 + 2) = convert_float4(as_uchar4(s13));
#if scn == 4
*((float4*) src_pix1 + 3) = convert_float4(as_uchar4(s14));
#endif
*((float4*) src_pix2) = convert_float4(as_uchar4(s21));
*((float4*) src_pix2 + 1) = convert_float4(as_uchar4(s22));
*((float4*) src_pix2 + 2) = convert_float4(as_uchar4(s23));
#if scn == 4
*((float4*) src_pix2 + 3) = convert_float4(as_uchar4(s24));
#endif
uchar4 y1, y2;
y1.x = convert_uchar_sat(fma(coeffs[0], src_pix1[ 2-bidx], fma(coeffs[1], src_pix1[ 1], fma(coeffs[2], src_pix1[ bidx], 16.5f))));
y1.y = convert_uchar_sat(fma(coeffs[0], src_pix1[ scn+2-bidx], fma(coeffs[1], src_pix1[ scn+1], fma(coeffs[2], src_pix1[ scn+bidx], 16.5f))));
y1.z = convert_uchar_sat(fma(coeffs[0], src_pix1[2*scn+2-bidx], fma(coeffs[1], src_pix1[2*scn+1], fma(coeffs[2], src_pix1[2*scn+bidx], 16.5f))));
y1.w = convert_uchar_sat(fma(coeffs[0], src_pix1[3*scn+2-bidx], fma(coeffs[1], src_pix1[3*scn+1], fma(coeffs[2], src_pix1[3*scn+bidx], 16.5f))));
y2.x = convert_uchar_sat(fma(coeffs[0], src_pix2[ 2-bidx], fma(coeffs[1], src_pix2[ 1], fma(coeffs[2], src_pix2[ bidx], 16.5f))));
y2.y = convert_uchar_sat(fma(coeffs[0], src_pix2[ scn+2-bidx], fma(coeffs[1], src_pix2[ scn+1], fma(coeffs[2], src_pix2[ scn+bidx], 16.5f))));
y2.z = convert_uchar_sat(fma(coeffs[0], src_pix2[2*scn+2-bidx], fma(coeffs[1], src_pix2[2*scn+1], fma(coeffs[2], src_pix2[2*scn+bidx], 16.5f))));
y2.w = convert_uchar_sat(fma(coeffs[0], src_pix2[3*scn+2-bidx], fma(coeffs[1], src_pix2[3*scn+1], fma(coeffs[2], src_pix2[3*scn+bidx], 16.5f))));
*((__global int*) ydst1) = as_int(y1);
*((__global int*) ydst2) = as_int(y2);
float uv[4] = { fma(coeffs[3], src_pix1[ 2-bidx], fma(coeffs[4], src_pix1[ 1], fma(coeffs[5], src_pix1[ bidx], 128.5f))),
fma(coeffs[5], src_pix1[ 2-bidx], fma(coeffs[6], src_pix1[ 1], fma(coeffs[7], src_pix1[ bidx], 128.5f))),
fma(coeffs[3], src_pix1[2*scn+2-bidx], fma(coeffs[4], src_pix1[2*scn+1], fma(coeffs[5], src_pix1[2*scn+bidx], 128.5f))),
fma(coeffs[5], src_pix1[2*scn+2-bidx], fma(coeffs[6], src_pix1[2*scn+1], fma(coeffs[7], src_pix1[2*scn+bidx], 128.5f))) };
udst[0] = convert_uchar_sat(uv[uidx] );
vdst[0] = convert_uchar_sat(uv[1 - uidx]);
udst[1] = convert_uchar_sat(uv[2 + uidx]);
vdst[1] = convert_uchar_sat(uv[3 - uidx]);
#else
float4 src_pix1 = convert_float4(vload4(0, src1));
float4 src_pix2 = convert_float4(vload4(0, src1+scn));
float4 src_pix3 = convert_float4(vload4(0, src2));
float4 src_pix4 = convert_float4(vload4(0, src2+scn));
ydst1[0] = convert_uchar_sat(fma(coeffs[0], src_pix1.R_COMP, fma(coeffs[1], src_pix1.G_COMP, fma(coeffs[2], src_pix1.B_COMP, 16.5f))));
ydst1[1] = convert_uchar_sat(fma(coeffs[0], src_pix2.R_COMP, fma(coeffs[1], src_pix2.G_COMP, fma(coeffs[2], src_pix2.B_COMP, 16.5f))));
ydst2[0] = convert_uchar_sat(fma(coeffs[0], src_pix3.R_COMP, fma(coeffs[1], src_pix3.G_COMP, fma(coeffs[2], src_pix3.B_COMP, 16.5f))));
ydst2[1] = convert_uchar_sat(fma(coeffs[0], src_pix4.R_COMP, fma(coeffs[1], src_pix4.G_COMP, fma(coeffs[2], src_pix4.B_COMP, 16.5f))));
float uv[2] = { fma(coeffs[3], src_pix1.R_COMP, fma(coeffs[4], src_pix1.G_COMP, fma(coeffs[5], src_pix1.B_COMP, 128.5f))),
fma(coeffs[5], src_pix1.R_COMP, fma(coeffs[6], src_pix1.G_COMP, fma(coeffs[7], src_pix1.B_COMP, 128.5f))) };
udst[0] = convert_uchar_sat(uv[uidx] );
vdst[0] = convert_uchar_sat(uv[1-uidx]);
#endif
++y;
src_index += 2*src_step;
ydst_index += 2*dst_step;
}
}
}
}
__kernel void YUV2RGB_422(__global const uchar* srcptr, int src_step, int src_offset,
__global uchar* dstptr, int dst_step, int dst_offset,
int rows, int cols)
{
int x = get_global_id(0);
int y = get_global_id(1) * PIX_PER_WI_Y;
if (x < cols / 2)
{
__global const uchar* src = srcptr + mad24(y, src_step, (x << 2) + src_offset);
__global uchar* dst = dstptr + mad24(y, dst_step, mad24(x << 1, dcn, dst_offset));
#pragma unroll
for (int cy = 0; cy < PIX_PER_WI_Y; ++cy)
{
if (y < rows )
{
__constant float* coeffs = c_YUV2RGBCoeffs_420;
#ifndef USE_OPTIMIZED_LOAD
float U = ((float) src[uidx]) - HALF_MAX;
float V = ((float) src[(2 + uidx) % 4]) - HALF_MAX;
float y00 = max(0.f, ((float) src[yidx]) - 16.f) * coeffs[0];
float y01 = max(0.f, ((float) src[yidx + 2]) - 16.f) * coeffs[0];
#else
int load_src = *((__global int*) src);
float vec_src[4] = { load_src & 0xff, (load_src >> 8) & 0xff, (load_src >> 16) & 0xff, (load_src >> 24) & 0xff};
float U = vec_src[uidx] - HALF_MAX;
float V = vec_src[(2 + uidx) % 4] - HALF_MAX;
float y00 = max(0.f, vec_src[yidx] - 16.f) * coeffs[0];
float y01 = max(0.f, vec_src[yidx + 2] - 16.f) * coeffs[0];
#endif
float ruv = fma(coeffs[4], V, 0.5f);
float guv = fma(coeffs[3], V, fma(coeffs[2], U, 0.5f));
float buv = fma(coeffs[1], U, 0.5f);
dst[2 - bidx] = convert_uchar_sat(y00 + ruv);
dst[1] = convert_uchar_sat(y00 + guv);
dst[bidx] = convert_uchar_sat(y00 + buv);
#if dcn == 4
dst[3] = 255;
#endif
dst[dcn + 2 - bidx] = convert_uchar_sat(y01 + ruv);
dst[dcn + 1] = convert_uchar_sat(y01 + guv);
dst[dcn + bidx] = convert_uchar_sat(y01 + buv);
#if dcn == 4
dst[7] = 255;
#endif
}
++y;
src += src_step;
dst += dst_step;
}
}
}
///////////////////////////////////// RGB <-> YCrCb //////////////////////////////////////
__constant float c_RGB2YCrCbCoeffs_f[5] = {0.299f, 0.587f, 0.114f, 0.713f, 0.564f};
@ -400,7 +649,7 @@ __kernel void RGB2YCrCb(__global const uchar* srcptr, int src_step, int src_offs
#else
__constant int * coeffs = c_RGB2YCrCbCoeffs_i;
int delta = HALF_MAX * (1 << yuv_shift);
int Y = CV_DESCALE(mad24(b, coeffs[2], mad24(g, coeffs[1], r * coeffs[0])), yuv_shift);
int Y = CV_DESCALE(mad24(b, coeffs[2], mad24(g, coeffs[1], mul24(r, coeffs[0]))), yuv_shift);
int Cr = CV_DESCALE(mad24(r - Y, coeffs[3], delta), yuv_shift);
int Cb = CV_DESCALE(mad24(b - Y, coeffs[4], delta), yuv_shift);
#endif

View File

@ -320,9 +320,9 @@ OCL_TEST_P(CvtColor8u32f, Luv2RGBA) { performTest(3, 4, CVTCODE(Luv2RGB), depth
OCL_TEST_P(CvtColor8u32f, Luv2LBGRA) { performTest(3, 4, CVTCODE(Luv2LBGR), depth == CV_8U ? 1 : 1e-5); }
OCL_TEST_P(CvtColor8u32f, Luv2LRGBA) { performTest(3, 4, CVTCODE(Luv2LRGB), depth == CV_8U ? 1 : 1e-5); }
// YUV -> RGBA_NV12
// YUV420 -> RGBA
struct CvtColor_YUV420 :
struct CvtColor_YUV2RGB_420 :
public CvtColor
{
void generateTestData(int channelsIn, int channelsOut)
@ -344,10 +344,94 @@ struct CvtColor_YUV420 :
}
};
OCL_TEST_P(CvtColor_YUV420, YUV2RGBA_NV12) { performTest(1, 4, COLOR_YUV2RGBA_NV12); }
OCL_TEST_P(CvtColor_YUV420, YUV2BGRA_NV12) { performTest(1, 4, COLOR_YUV2BGRA_NV12); }
OCL_TEST_P(CvtColor_YUV420, YUV2RGB_NV12) { performTest(1, 3, COLOR_YUV2RGB_NV12); }
OCL_TEST_P(CvtColor_YUV420, YUV2BGR_NV12) { performTest(1, 3, COLOR_YUV2BGR_NV12); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGBA_NV12) { performTest(1, 4, CVTCODE(YUV2RGBA_NV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGRA_NV12) { performTest(1, 4, CVTCODE(YUV2BGRA_NV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGB_NV12) { performTest(1, 3, CVTCODE(YUV2RGB_NV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGR_NV12) { performTest(1, 3, CVTCODE(YUV2BGR_NV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGBA_NV21) { performTest(1, 4, CVTCODE(YUV2RGBA_NV21)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGRA_NV21) { performTest(1, 4, CVTCODE(YUV2BGRA_NV21)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGB_NV21) { performTest(1, 3, CVTCODE(YUV2RGB_NV21)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGR_NV21) { performTest(1, 3, CVTCODE(YUV2BGR_NV21)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGBA_YV12) { performTest(1, 4, CVTCODE(YUV2RGBA_YV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGRA_YV12) { performTest(1, 4, CVTCODE(YUV2BGRA_YV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGB_YV12) { performTest(1, 3, CVTCODE(YUV2RGB_YV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGR_YV12) { performTest(1, 3, CVTCODE(YUV2BGR_YV12)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGBA_IYUV) { performTest(1, 4, CVTCODE(YUV2RGBA_IYUV)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGRA_IYUV) { performTest(1, 4, CVTCODE(YUV2BGRA_IYUV)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2RGB_IYUV) { performTest(1, 3, CVTCODE(YUV2RGB_IYUV)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2BGR_IYUV) { performTest(1, 3, CVTCODE(YUV2BGR_IYUV)); }
OCL_TEST_P(CvtColor_YUV2RGB_420, YUV2GRAY_420) { performTest(1, 1, CVTCODE(YUV2GRAY_420)); }
// RGBA -> YUV420
struct CvtColor_RGB2YUV_420 :
public CvtColor
{
void generateTestData(int channelsIn, int channelsOut)
{
const int srcType = CV_MAKE_TYPE(depth, channelsIn);
const int dstType = CV_MAKE_TYPE(depth, channelsOut);
Size srcRoiSize = randomSize(1, MAX_VALUE);
srcRoiSize.width *= 2;
srcRoiSize.height *= 2;
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, srcRoiSize, srcBorder, srcType, 2, 100);
Size dstRoiSize(srcRoiSize.width, srcRoiSize.height / 2 * 3);
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, dstRoiSize, dstBorder, dstType, 5, 16);
UMAT_UPLOAD_INPUT_PARAMETER(src);
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
}
};
OCL_TEST_P(CvtColor_RGB2YUV_420, RGBA2YUV_YV12) { performTest(4, 1, CVTCODE(RGBA2YUV_YV12), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, BGRA2YUV_YV12) { performTest(4, 1, CVTCODE(BGRA2YUV_YV12), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, RGB2YUV_YV12) { performTest(3, 1, CVTCODE(RGB2YUV_YV12), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, BGR2YUV_YV12) { performTest(3, 1, CVTCODE(BGR2YUV_YV12), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, RGBA2YUV_IYUV) { performTest(4, 1, CVTCODE(RGBA2YUV_IYUV), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, BGRA2YUV_IYUV) { performTest(4, 1, CVTCODE(BGRA2YUV_IYUV), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, RGB2YUV_IYUV) { performTest(3, 1, CVTCODE(RGB2YUV_IYUV), 1); }
OCL_TEST_P(CvtColor_RGB2YUV_420, BGR2YUV_IYUV) { performTest(3, 1, CVTCODE(BGR2YUV_IYUV), 1); }
// YUV422 -> RGBA
struct CvtColor_YUV2RGB_422 :
public CvtColor
{
void generateTestData(int channelsIn, int channelsOut)
{
const int srcType = CV_MAKE_TYPE(depth, channelsIn);
const int dstType = CV_MAKE_TYPE(depth, channelsOut);
Size roiSize = randomSize(1, MAX_VALUE);
roiSize.width *= 2;
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, roiSize, srcBorder, srcType, 2, 100);
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, roiSize, dstBorder, dstType, 5, 16);
UMAT_UPLOAD_INPUT_PARAMETER(src);
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
}
};
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2RGB_UYVY) { performTest(2, 3, CVTCODE(YUV2RGB_UYVY)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2BGR_UYVY) { performTest(2, 3, CVTCODE(YUV2BGR_UYVY)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2RGBA_UYVY) { performTest(2, 4, CVTCODE(YUV2RGBA_UYVY)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2BGRA_UYVY) { performTest(2, 4, CVTCODE(YUV2BGRA_UYVY)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2RGB_YUY2) { performTest(2, 3, CVTCODE(YUV2RGB_YUY2)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2BGR_YUY2) { performTest(2, 3, CVTCODE(YUV2BGR_YUY2)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2RGBA_YUY2) { performTest(2, 4, CVTCODE(YUV2RGBA_YUY2)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2BGRA_YUY2) { performTest(2, 4, CVTCODE(YUV2BGRA_YUY2)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2RGB_YVYU) { performTest(2, 3, CVTCODE(YUV2RGB_YVYU)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2BGR_YVYU) { performTest(2, 3, CVTCODE(YUV2BGR_YVYU)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2RGBA_YVYU) { performTest(2, 4, CVTCODE(YUV2RGBA_YVYU)); }
OCL_TEST_P(CvtColor_YUV2RGB_422, YUV2BGRA_YVYU) { performTest(2, 4, CVTCODE(YUV2BGRA_YVYU)); }
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor8u,
@ -361,7 +445,17 @@ OCL_INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor,
testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32F)),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor_YUV420,
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor_YUV2RGB_420,
testing::Combine(
testing::Values(MatDepth(CV_8U)),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor_RGB2YUV_420,
testing::Combine(
testing::Values(MatDepth(CV_8U)),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgProc, CvtColor_YUV2RGB_422,
testing::Combine(
testing::Values(MatDepth(CV_8U)),
Bool()));

View File

@ -135,6 +135,7 @@ public:
Point2f warpPoint(const Point2f &pt, InputArray K, InputArray R, InputArray T);
virtual Rect buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray xmap, OutputArray ymap);
Rect buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap);
virtual Point warp(InputArray src, InputArray K, InputArray R, InputArray T, int interp_mode, int border_mode,
OutputArray dst);

View File

@ -56,25 +56,27 @@ __kernel void buildWarpPlaneMaps(__global uchar * xmapptr, int xmap_step, int xm
int xmap_index = mad24(dv0, xmap_step, mad24(du, (int)sizeof(float), xmap_offset));
int ymap_index = mad24(dv0, ymap_step, mad24(du, (int)sizeof(float), ymap_offset));
float u = tl_u + du;
float x_ = fma(u, scale, -ct[0]);
float ct1 = 1 - ct[2];
for (int dv = dv0, dv1 = min(rows, dv0 + rowsPerWI); dv < dv1; ++dv, xmap_index += xmap_step,
ymap_index += ymap_step)
{
__global float * xmap = (__global float *)(xmapptr + xmap_index);
__global float * ymap = (__global float *)(ymapptr + ymap_index);
float u = tl_u + du;
float v = tl_v + dv;
float y_ = fma(v, scale, -ct[1]);
float x_ = u / scale - ct[0];
float y_ = v / scale - ct[1];
float ct1 = 1 - ct[2];
float x = fma(ck_rinv[0], x_, fma(ck_rinv[1], y_, ck_rinv[2] * ct1));
float y = fma(ck_rinv[3], x_, fma(ck_rinv[4], y_, ck_rinv[5] * ct1));
float z = fma(ck_rinv[6], x_, fma(ck_rinv[7], y_, ck_rinv[8] * ct1));
x /= z;
y /= z;
if (z != 0)
x /= z, y /= z;
else
x = y = -1;
xmap[0] = x;
ymap[0] = y;
@ -94,22 +96,19 @@ __kernel void buildWarpCylindricalMaps(__global uchar * xmapptr, int xmap_step,
int xmap_index = mad24(dv0, xmap_step, mad24(du, (int)sizeof(float), xmap_offset));
int ymap_index = mad24(dv0, ymap_step, mad24(du, (int)sizeof(float), ymap_offset));
float u = (tl_u + du) * scale;
float x_, z_;
x_ = sincos(u, &z_);
for (int dv = dv0, dv1 = min(rows, dv0 + rowsPerWI); dv < dv1; ++dv, xmap_index += xmap_step,
ymap_index += ymap_step)
{
__global float * xmap = (__global float *)(xmapptr + xmap_index);
__global float * ymap = (__global float *)(ymapptr + ymap_index);
float u = tl_u + du;
float v = tl_v + dv;
float x, y;
float y_ = (tl_v + dv) * scale;
u /= scale;
float x_, y_, z_;
x_ = sincos(u, &z_);
y_ = v / scale;
float z;
float x, y, z;
x = fma(ck_rinv[0], x_, fma(ck_rinv[1], y_, ck_rinv[2] * z_));
y = fma(ck_rinv[3], x_, fma(ck_rinv[4], y_, ck_rinv[5] * z_));
z = fma(ck_rinv[6], x_, fma(ck_rinv[7], y_, ck_rinv[8] * z_));
@ -137,25 +136,23 @@ __kernel void buildWarpSphericalMaps(__global uchar * xmapptr, int xmap_step, in
int xmap_index = mad24(dv0, xmap_step, mad24(du, (int)sizeof(float), xmap_offset));
int ymap_index = mad24(dv0, ymap_step, mad24(du, (int)sizeof(float), ymap_offset));
float u = (tl_u + du) * scale;
float cosu, sinu = sincos(u, &cosu);
for (int dv = dv0, dv1 = min(rows, dv0 + rowsPerWI); dv < dv1; ++dv, xmap_index += xmap_step,
ymap_index += ymap_step)
{
__global float * xmap = (__global float *)(xmapptr + xmap_index);
__global float * ymap = (__global float *)(ymapptr + ymap_index);
float u = tl_u + du;
float v = tl_v + dv;
float x, y;
float v = (tl_v + dv) * scale;
v /= scale;
u /= scale;
float cosv, sinv = sincos(v, &cosv), cosu, sinu = sincos(u, &cosu);
float cosv, sinv = sincos(v, &cosv);
float x_ = sinv * sinu;
float y_ = -cosv;
float z_ = sinv * cosu;
float z;
float x, y, z;
x = fma(ck_rinv[0], x_, fma(ck_rinv[1], y_, ck_rinv[2] * z_));
y = fma(ck_rinv[3], x_, fma(ck_rinv[4], y_, ck_rinv[5] * z_));
z = fma(ck_rinv[6], x_, fma(ck_rinv[7], y_, ck_rinv[8] * z_));

View File

@ -87,6 +87,11 @@ Point2f PlaneWarper::warpPoint(const Point2f &pt, InputArray K, InputArray R, In
return uv;
}
Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray xmap, OutputArray ymap)
{
return buildMaps(src_size, K, R, Mat::zeros(3, 1, CV_32FC1), xmap, ymap);
}
Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArray T, OutputArray _xmap, OutputArray _ymap)
{
projector_.setCameraParams(K, R, T);
@ -110,7 +115,7 @@ Rect PlaneWarper::buildMaps(Size src_size, InputArray K, InputArray R, InputArra
k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap),
ocl::KernelArg::PtrReadOnly(uk_rinv), ocl::KernelArg::PtrReadOnly(ut),
dst_tl.x, dst_tl.y, projector_.scale, rowsPerWI);
dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI);
size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI };
if (k.run(2, globalsize, NULL, true))
@ -388,7 +393,7 @@ Rect SphericalWarper::buildMaps(Size src_size, InputArray K, InputArray R, Outpu
UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ);
k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap),
ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, projector_.scale, rowsPerWI);
ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale, rowsPerWI);
size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI };
if (k.run(2, globalsize, NULL, true))
@ -436,7 +441,7 @@ Rect CylindricalWarper::buildMaps(Size src_size, InputArray K, InputArray R, Out
UMat uxmap = xmap.getUMat(), uymap = ymap.getUMat(), uk_rinv = k_rinv.getUMat(ACCESS_READ);
k.args(ocl::KernelArg::WriteOnlyNoSize(uxmap), ocl::KernelArg::WriteOnly(uymap),
ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, projector_.scale,
ocl::KernelArg::PtrReadOnly(uk_rinv), dst_tl.x, dst_tl.y, 1/projector_.scale,
rowsPerWI);
size_t globalsize[2] = { dsize.width, (dsize.height + rowsPerWI - 1) / rowsPerWI };

View File

@ -419,9 +419,11 @@ private:
static int64 timeLimitDefault;
static unsigned int iterationsLimitDefault;
unsigned int minIters;
unsigned int nIters;
unsigned int currentIter;
unsigned int runsPerIteration;
unsigned int perfValidationStage;
performance_metrics metrics;
void validateMetrics();

View File

@ -1,5 +1,16 @@
#include "precomp.hpp"
#include <map>
#include <iostream>
#include <fstream>
#if defined WIN32 || defined _WIN32 || defined WIN64 || defined _WIN64
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#endif
#ifdef HAVE_CUDA
#include "opencv2/core/cuda.hpp"
#endif
@ -35,11 +46,11 @@ static bool param_verify_sanity;
static bool param_collect_impl;
#endif
extern bool test_ipp_check;
#ifdef HAVE_CUDA
static int param_cuda_device;
#endif
#ifdef ANDROID
static int param_affinity_mask;
static bool log_power_checkpoints;
@ -59,6 +70,8 @@ static void setCurrentThreadAffinityMask(int mask)
}
#endif
static double perf_stability_criteria = 0.03; // 3%
namespace {
class PerfEnvironment: public ::testing::Environment
@ -635,6 +648,82 @@ void performance_metrics::clear()
terminationReason = TERM_UNKNOWN;
}
/*****************************************************************************************\
* Performance validation results
\*****************************************************************************************/
static bool perf_validation_enabled = false;
static std::string perf_validation_results_directory;
static std::map<std::string, float> perf_validation_results;
static std::string perf_validation_results_outfile;
static double perf_validation_criteria = 0.03; // 3 %
static double perf_validation_time_threshold_ms = 0.1;
static int perf_validation_idle_delay_ms = 3000; // 3 sec
static void loadPerfValidationResults(const std::string& fileName)
{
perf_validation_results.clear();
std::ifstream infile(fileName.c_str());
while (!infile.eof())
{
std::string name;
float value = 0;
if (!(infile >> value))
{
if (infile.eof())
break; // it is OK
std::cout << "ERROR: Can't load performance validation results from " << fileName << "!" << std::endl;
return;
}
infile.ignore(1);
if (!(std::getline(infile, name)))
{
std::cout << "ERROR: Can't load performance validation results from " << fileName << "!" << std::endl;
return;
}
if (!name.empty() && name[name.size() - 1] == '\r') // CRLF processing on Linux
name.resize(name.size() - 1);
perf_validation_results[name] = value;
}
std::cout << "Performance validation results loaded from " << fileName << " (" << perf_validation_results.size() << " entries)" << std::endl;
}
static void savePerfValidationResult(const std::string& name, float value)
{
perf_validation_results[name] = value;
}
static void savePerfValidationResults()
{
if (!perf_validation_results_outfile.empty())
{
std::ofstream outfile((perf_validation_results_directory + perf_validation_results_outfile).c_str());
std::map<std::string, float>::const_iterator i;
for (i = perf_validation_results.begin(); i != perf_validation_results.end(); ++i)
{
outfile << i->second << ';';
outfile << i->first << std::endl;
}
outfile.close();
std::cout << "Performance validation results saved (" << perf_validation_results.size() << " entries)" << std::endl;
}
}
class PerfValidationEnvironment : public ::testing::Environment
{
public:
virtual ~PerfValidationEnvironment() {}
virtual void SetUp() {}
virtual void TearDown()
{
savePerfValidationResults();
}
};
/*****************************************************************************************\
* ::perf::TestBase
@ -666,6 +755,8 @@ void TestBase::Init(const std::vector<std::string> & availableImpls,
"{ perf_list_impls |false |list available implementation variants and exit}"
"{ perf_run_cpu |false |deprecated, equivalent to --perf_impl=plain}"
"{ perf_strategy |default |specifies performance measuring strategy: default, base or simple (weak restrictions)}"
"{ perf_read_validation_results | |specifies file name with performance results from previous run}"
"{ perf_write_validation_results | |specifies file name to write performance validation results}"
#ifdef ANDROID
"{ perf_time_limit |6.0 |default time limit for a single test (in seconds)}"
"{ perf_affinity_mask |0 |set affinity mask for the main thread}"
@ -789,6 +880,26 @@ void TestBase::Init(const std::vector<std::string> & availableImpls,
}
#endif
{
const char* path = getenv("OPENCV_PERF_VALIDATION_DIR");
if (path)
perf_validation_results_directory = path;
}
std::string fileName_perf_validation_results_src = args.get<std::string>("perf_read_validation_results");
if (!fileName_perf_validation_results_src.empty())
{
perf_validation_enabled = true;
loadPerfValidationResults(perf_validation_results_directory + fileName_perf_validation_results_src);
}
perf_validation_results_outfile = args.get<std::string>("perf_write_validation_results");
if (!perf_validation_results_outfile.empty())
{
perf_validation_enabled = true;
::testing::AddGlobalTestEnvironment(new PerfValidationEnvironment());
}
if (!args.check())
{
args.printErrors();
@ -878,7 +989,9 @@ TestBase::TestBase(): testStrategy(PERF_STRATEGY_DEFAULT), declare(this)
{
lastTime = totalTime = timeLimit = 0;
nIters = currentIter = runsPerIteration = 0;
minIters = param_min_samples;
verified = false;
perfValidationStage = 0;
}
#ifdef _MSC_VER
# pragma warning(pop)
@ -1004,7 +1117,7 @@ bool TestBase::next()
has_next = false;
break;
}
if (currentIter < param_min_samples)
if (currentIter < minIters)
{
has_next = true;
break;
@ -1012,14 +1125,96 @@ bool TestBase::next()
calcMetrics();
double criteria = 0.03; // 3%
if (fabs(metrics.mean) > 1e-6)
has_next = metrics.stddev > criteria * fabs(metrics.mean);
has_next = metrics.stddev > perf_stability_criteria * fabs(metrics.mean);
else
has_next = true;
}
} while (false);
if (perf_validation_enabled && !has_next)
{
calcMetrics();
double median_ms = metrics.median * 1000.0f / metrics.frequency;
const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info();
std::string name = (test_info == 0) ? "" :
std::string(test_info->test_case_name()) + "--" + test_info->name();
if (!perf_validation_results.empty() && !name.empty())
{
std::map<std::string, float>::iterator i = perf_validation_results.find(name);
bool isSame = false;
bool found = false;
bool grow = false;
if (i != perf_validation_results.end())
{
found = true;
double prev_result = i->second;
grow = median_ms > prev_result;
isSame = fabs(median_ms - prev_result) <= perf_validation_criteria * fabs(median_ms);
if (!isSame)
{
if (perfValidationStage == 0)
{
printf("Performance is changed (samples = %d, median):\n %.2f ms (current)\n %.2f ms (previous)\n", (int)times.size(), median_ms, prev_result);
}
}
}
else
{
if (perfValidationStage == 0)
printf("New performance result is detected\n");
}
if (!isSame)
{
if (perfValidationStage < 2)
{
if (perfValidationStage == 0 && currentIter <= minIters * 3 && currentIter < nIters)
{
unsigned int new_minIters = std::max(minIters * 5, currentIter * 3);
printf("Increase minIters from %u to %u\n", minIters, new_minIters);
minIters = new_minIters;
has_next = true;
perfValidationStage++;
}
else if (found && currentIter >= nIters &&
median_ms > perf_validation_time_threshold_ms &&
(grow || metrics.stddev > perf_stability_criteria * fabs(metrics.mean)))
{
printf("Performance is unstable, it may be a result of overheat problems\n");
printf("Idle delay for %d ms... \n", perf_validation_idle_delay_ms);
#if defined WIN32 || defined _WIN32 || defined WIN64 || defined _WIN64
Sleep(perf_validation_idle_delay_ms);
#else
usleep(perf_validation_idle_delay_ms * 1000);
#endif
has_next = true;
minIters = std::min(minIters * 5, nIters);
// reset collected samples
currentIter = 0;
times.clear();
metrics.clear();
perfValidationStage += 2;
}
if (!has_next)
{
printf("Assume that current result is valid\n");
}
}
else
{
printf("Re-measured performance result: %.2f ms\n", median_ms);
}
}
}
if (!has_next && !name.empty())
{
savePerfValidationResult(name, (float)median_ms);
}
}
#ifdef ANDROID
if (log_power_checkpoints)
{
@ -1223,9 +1418,10 @@ void TestBase::validateMetrics()
else if (getCurrentPerformanceStrategy() == PERF_STRATEGY_SIMPLE)
{
double mean = metrics.mean * 1000.0f / metrics.frequency;
double median = metrics.median * 1000.0f / metrics.frequency;
double stddev = metrics.stddev * 1000.0f / metrics.frequency;
double percents = stddev / mean * 100.f;
printf("[ PERFSTAT ] (samples = %d, mean = %.2f, stddev = %.2f (%.1f%%))\n", (int)metrics.samples, mean, stddev, percents);
printf("[ PERFSTAT ] (samples = %d, mean = %.2f, median = %.2f, stddev = %.2f (%.1f%%))\n", (int)metrics.samples, mean, median, stddev, percents);
}
else
{

View File

@ -213,7 +213,7 @@ void App::run()
// Perform HOG classification
hogWorkBegin();
hog.detectMultiScale(img.getMat(ACCESS_READ), found, hit_threshold, win_stride,
hog.detectMultiScale(img, found, hit_threshold, win_stride,
Size(0, 0), scale, gr_threshold);
hogWorkEnd();
@ -225,7 +225,7 @@ void App::run()
rectangle(img_to_show, r.tl(), r.br(), Scalar(0, 255, 0), 3);
}
putText(img_to_show, "Mode: CPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, ocl::useOpenCL() ? "Mode: OpenCL" : "Mode: CPU", Point(5, 25), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "FPS (HOG only): " + hogWorkFps(), Point(5, 65), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
putText(img_to_show, "FPS (total): " + workFps(), Point(5, 105), FONT_HERSHEY_SIMPLEX, 1., Scalar(255, 100, 0), 2);
imshow("opencv_hog", img_to_show);