mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Make rescaling flexible and add median filtering
Previously the pyramid was done with a rescaling factor of 2 (implied by the use of pyrDown). This often leads to inferior results compared to a scale step of e.g. 0.8 (a factor of 2 is obviously faster). This commit makes the scale step configurable and uses a resonable default value. The other change in this commit is that median filtering is added. This is not described in this paper but it is done in the author's implementation. (See e.g. "Secrets of optical flow estimation and their principles", Sun et al., CVPR 2010) This serves as periodic outlier removal during optimization, leading to smoother flow fields while preserving motion edges. This includes splitting the optimization loop into two loops.
This commit is contained in:
parent
7ac0d86992
commit
6062601c4d
@ -95,8 +95,11 @@ protected:
|
||||
int nscales;
|
||||
int warps;
|
||||
double epsilon;
|
||||
int iterations;
|
||||
int innerIterations;
|
||||
int outerIterations;
|
||||
bool useInitialFlow;
|
||||
double scaleStep;
|
||||
int medianFiltering;
|
||||
|
||||
private:
|
||||
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);
|
||||
@ -144,8 +147,11 @@ OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
|
||||
nscales = 5;
|
||||
warps = 5;
|
||||
epsilon = 0.01;
|
||||
iterations = 300;
|
||||
innerIterations = 30;
|
||||
outerIterations = 10;
|
||||
useInitialFlow = false;
|
||||
medianFiltering = 5;
|
||||
scaleStep = 0.8;
|
||||
}
|
||||
|
||||
void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray _flow)
|
||||
@ -209,8 +215,8 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
||||
// create the scales
|
||||
for (int s = 1; s < nscales; ++s)
|
||||
{
|
||||
pyrDown(I0s[s - 1], I0s[s]);
|
||||
pyrDown(I1s[s - 1], I1s[s]);
|
||||
resize(I0s[s-1], I0s[s], Size(), scaleStep, scaleStep);
|
||||
resize(I1s[s-1], I1s[s], Size(), scaleStep, scaleStep);
|
||||
|
||||
if (I0s[s].cols < 16 || I0s[s].rows < 16)
|
||||
{
|
||||
@ -220,11 +226,11 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
||||
|
||||
if (useInitialFlow)
|
||||
{
|
||||
pyrDown(u1s[s - 1], u1s[s]);
|
||||
pyrDown(u2s[s - 1], u2s[s]);
|
||||
resize(u1s[s-1], u1s[s], Size(), scaleStep, scaleStep);
|
||||
resize(u2s[s-1], u2s[s], Size(), scaleStep, scaleStep);
|
||||
|
||||
multiply(u1s[s], Scalar::all(0.5), u1s[s]);
|
||||
multiply(u2s[s], Scalar::all(0.5), u2s[s]);
|
||||
multiply(u1s[s], Scalar::all(scaleStep), u1s[s]);
|
||||
multiply(u2s[s], Scalar::all(scaleStep), u2s[s]);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -256,8 +262,8 @@ void OpticalFlowDual_TVL1::calc(InputArray _I0, InputArray _I1, InputOutputArray
|
||||
resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
|
||||
|
||||
// scale the optical flow with the appropriate zoom factor
|
||||
multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]);
|
||||
multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]);
|
||||
multiply(u1s[s - 1], Scalar::all(1/scaleStep), u1s[s - 1]);
|
||||
multiply(u2s[s - 1], Scalar::all(1/scaleStep), u2s[s - 1]);
|
||||
}
|
||||
|
||||
Mat uxy[] = {u1s[0], u2s[0]};
|
||||
@ -853,24 +859,31 @@ void OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>
|
||||
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);
|
||||
|
||||
float error = std::numeric_limits<float>::max();
|
||||
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
|
||||
for (int n_outer = 0; error > scaledEpsilon && n_outer < outerIterations; ++n_outer)
|
||||
{
|
||||
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
||||
estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t);
|
||||
if (medianFiltering > 1) {
|
||||
cv::medianBlur(u1, u1, medianFiltering);
|
||||
cv::medianBlur(u2, u2, medianFiltering);
|
||||
}
|
||||
for (int n_inner = 0; error > scaledEpsilon && n_inner < innerIterations; ++n_inner)
|
||||
{
|
||||
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
||||
estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t);
|
||||
|
||||
// compute the divergence of the dual variable (p1, p2)
|
||||
divergence(p11, p12, div_p1);
|
||||
divergence(p21, p22, div_p2);
|
||||
// compute the divergence of the dual variable (p1, p2)
|
||||
divergence(p11, p12, div_p1);
|
||||
divergence(p21, p22, div_p2);
|
||||
|
||||
// estimate the values of the optical flow (u1, u2)
|
||||
error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta));
|
||||
// estimate the values of the optical flow (u1, u2)
|
||||
error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta));
|
||||
|
||||
// compute the gradient of the optical flow (Du1, Du2)
|
||||
forwardGradient(u1, u1x, u1y);
|
||||
forwardGradient(u2, u2x, u2y);
|
||||
// compute the gradient of the optical flow (Du1, Du2)
|
||||
forwardGradient(u1, u1x, u1y);
|
||||
forwardGradient(u2, u2x, u2y);
|
||||
|
||||
// estimate the values of the dual variable (p1, p2)
|
||||
estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut);
|
||||
// estimate the values of the dual variable (p1, p2)
|
||||
estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -923,10 +936,16 @@ CV_INIT_ALGORITHM(OpticalFlowDual_TVL1, "DenseOpticalFlow.DualTVL1",
|
||||
"Number of scales used to create the pyramid of images");
|
||||
obj.info()->addParam(obj, "warps", obj.warps, false, 0, 0,
|
||||
"Number of warpings per scale");
|
||||
obj.info()->addParam(obj, "medianFiltering", obj.medianFiltering, false, 0, 0,
|
||||
"Median filter kernel size (1 = no filter) (3 or 5)");
|
||||
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0,
|
||||
"Step between scales (<1)");
|
||||
obj.info()->addParam(obj, "epsilon", obj.epsilon, false, 0, 0,
|
||||
"Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time");
|
||||
obj.info()->addParam(obj, "iterations", obj.iterations, false, 0, 0,
|
||||
"Stopping criterion iterations number used in the numerical scheme");
|
||||
obj.info()->addParam(obj, "innerIterations", obj.innerIterations, false, 0, 0,
|
||||
"inner iterations (between outlier filtering) used in the numerical scheme");
|
||||
obj.info()->addParam(obj, "outerIterations", obj.outerIterations, false, 0, 0,
|
||||
"outer iterations (number of inner loops) used in the numerical scheme");
|
||||
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow));
|
||||
|
||||
} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user