mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Merge pull request #20175 from rogday:dnn_samples_cuda
add cuda and vulkan backends to dnn samples
This commit is contained in:
parent
de781b306f
commit
61359a5bd0
@ -22,12 +22,17 @@ std::string keys =
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation }"
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA },"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }";
|
||||
"3: VPU, "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }";
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
|
@ -7,9 +7,9 @@ from common import *
|
||||
|
||||
def get_args_parser(func_args):
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
|
||||
cv.dnn.DNN_BACKEND_OPENCV)
|
||||
cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
|
||||
cv.dnn.DNN_TARGET_HDDL)
|
||||
cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
@ -32,14 +32,19 @@ def get_args_parser(func_args):
|
||||
"%d: automatically (by default), "
|
||||
"%d: Halide language (http://halide-lang.org/), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation" % backends)
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA" % backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU' % targets)
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)'% targets)
|
||||
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'classification')
|
||||
|
@ -27,12 +27,17 @@ const char *keys =
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation }"
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA },"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }"
|
||||
"3: VPU, "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }"
|
||||
;
|
||||
|
||||
static
|
||||
|
@ -78,12 +78,17 @@ int main(int argc, char**argv)
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation }"
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA }"
|
||||
"{target t | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }"
|
||||
"3: VPU, "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }"
|
||||
);
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
|
@ -45,8 +45,10 @@ import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL)
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
|
||||
cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
|
||||
def preprocess(image):
|
||||
@ -162,14 +164,19 @@ if __name__ == '__main__':
|
||||
help="Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation" % backends)
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA"% backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU' % targets)
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)' % targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
if not os.path.isfile(args.model):
|
||||
|
@ -27,12 +27,17 @@ std::string keys =
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation }"
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA }"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }"
|
||||
"3: VPU, "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }"
|
||||
"{ async | 0 | Number of asynchronous forwards at the same time. "
|
||||
"Choose 0 for synchronous mode }";
|
||||
|
||||
|
@ -14,8 +14,10 @@ from tf_text_graph_common import readTextMessage
|
||||
from tf_text_graph_ssd import createSSDGraph
|
||||
from tf_text_graph_faster_rcnn import createFasterRCNNGraph
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL)
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
|
||||
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
@ -35,14 +37,19 @@ parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DE
|
||||
"%d: automatically (by default), "
|
||||
"%d: Halide language (http://halide-lang.org/), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation" % backends)
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA" % backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU' % targets)
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)' % targets)
|
||||
parser.add_argument('--async', type=int, default=0,
|
||||
dest='asyncN',
|
||||
help='Number of asynchronous forwards at the same time. '
|
||||
|
@ -37,11 +37,13 @@ const char* keys =
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA }"
|
||||
"{target t | 0 | choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }";
|
||||
|
||||
|
@ -21,6 +21,7 @@ import cv2 as cv
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT,
|
||||
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
|
||||
cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM,
|
||||
cv.dnn.DNN_BACKEND_CUDA)
|
||||
|
||||
targets = (cv.dnn.DNN_TARGET_CPU,
|
||||
@ -28,6 +29,7 @@ targets = (cv.dnn.DNN_TARGET_CPU,
|
||||
cv.dnn.DNN_TARGET_OPENCL_FP16,
|
||||
cv.dnn.DNN_TARGET_MYRIAD,
|
||||
cv.dnn.DNN_TARGET_HDDL,
|
||||
cv.dnn.DNN_TARGET_VULKAN,
|
||||
cv.dnn.DNN_TARGET_CUDA,
|
||||
cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
@ -212,7 +214,8 @@ if __name__ == '__main__':
|
||||
help="Choose one of computation backends: "
|
||||
"%d: automatically (by default), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation"
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA backend"% backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
@ -220,9 +223,10 @@ if __name__ == '__main__':
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU'
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA FP16,'
|
||||
'%d: CUDA FP16'
|
||||
% targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
|
@ -21,12 +21,17 @@ std::string keys =
|
||||
"0: automatically (by default), "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"3: OpenCV implementation }"
|
||||
"3: OpenCV implementation, "
|
||||
"4: VKCOM, "
|
||||
"5: CUDA }"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }";
|
||||
"3: VPU, "
|
||||
"4: Vulkan, "
|
||||
"6: CUDA, "
|
||||
"7: CUDA fp16 (half-float preprocess) }";
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
|
@ -5,8 +5,10 @@ import sys
|
||||
|
||||
from common import *
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL)
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
|
||||
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
|
||||
@ -22,14 +24,19 @@ parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DE
|
||||
"%d: automatically (by default), "
|
||||
"%d: Halide language (http://halide-lang.org/), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation" % backends)
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA"% backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU' % targets)
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)'% targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
add_preproc_args(args.zoo, parser, 'segmentation')
|
||||
parser = argparse.ArgumentParser(parents=[parser],
|
||||
|
@ -327,9 +327,11 @@ def main():
|
||||
""" Sample SiamRPN Tracker
|
||||
"""
|
||||
# Computation backends supported by layers
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
# Target Devices for computation
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
|
||||
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run SiamRPN++ Visual Tracker',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
@ -338,17 +340,22 @@ def main():
|
||||
parser.add_argument('--search_net', type=str, default='search_net.onnx', help='Path to part of SiamRPN++ ran on search frame.')
|
||||
parser.add_argument('--rpn_head', type=str, default='rpn_head.onnx', help='Path to RPN Head ONNX model.')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
help='Select a computation backend: '
|
||||
"%d: automatically (by default) "
|
||||
"%d: Halide"
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit)"
|
||||
"%d: OpenCV Implementation" % backends)
|
||||
help="Select a computation backend: "
|
||||
"%d: automatically (by default), "
|
||||
"%d: Halide, "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV Implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA" % backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Select a target device: '
|
||||
"%d: CPU target (by default)"
|
||||
"%d: OpenCL"
|
||||
"%d: OpenCL FP16"
|
||||
"%d: Myriad" % targets)
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL FP16, '
|
||||
'%d: Myriad, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)' % targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
if args.input_video and not os.path.isfile(args.input_video):
|
||||
|
@ -16,8 +16,10 @@ from numpy import linalg
|
||||
from common import findFile
|
||||
from human_parsing import parse_human
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL)
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV,
|
||||
cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL,
|
||||
cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run virtial try-on using CP-VTON',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
@ -33,14 +35,19 @@ parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DE
|
||||
"%d: automatically (by default), "
|
||||
"%d: Halide language (http://halide-lang.org/), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
||||
"%d: OpenCV implementation" % backends)
|
||||
"%d: OpenCV implementation, "
|
||||
"%d: VKCOM, "
|
||||
"%d: CUDA" % backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL, '
|
||||
'%d: OpenCL fp16 (half-float precision), '
|
||||
'%d: NCS2 VPU, '
|
||||
'%d: HDDL VPU' % targets)
|
||||
'%d: HDDL VPU, '
|
||||
'%d: Vulkan, '
|
||||
'%d: CUDA, '
|
||||
'%d: CUDA fp16 (half-float preprocess)'% targets)
|
||||
args, _ = parser.parse_known_args()
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user