mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 11:40:44 +08:00
fixed traincascade (#554)
This commit is contained in:
parent
07e68eb0bb
commit
62cb71092c
@ -139,7 +139,7 @@ bool CvCascadeBoostParams::scanAttr( const String prmName, const String val)
|
||||
{
|
||||
weight_trim_rate = (float) atof( val.c_str() );
|
||||
}
|
||||
else if( !prmName.compare( "-maxDepth" ) )
|
||||
else if( !prmName.compare( "-maxTreeDepth" ) )
|
||||
{
|
||||
max_depth = atoi( val.c_str() );
|
||||
}
|
||||
@ -240,9 +240,11 @@ void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluat
|
||||
if (sample_count < 65536)
|
||||
is_buf_16u = true;
|
||||
|
||||
numPrecalcVal = min( (_precalcValBufSize*1048576) / int(sizeof(float)*sample_count), var_count );
|
||||
numPrecalcIdx = min( (_precalcIdxBufSize*1048576) /
|
||||
int((is_buf_16u ? sizeof(unsigned short) : sizeof (int))*sample_count), var_count );
|
||||
numPrecalcVal = min( cvRound((double)_precalcValBufSize*1048576. / (sizeof(float)*sample_count)), var_count );
|
||||
numPrecalcIdx = min( cvRound((double)_precalcIdxBufSize*1048576. /
|
||||
((is_buf_16u ? sizeof(unsigned short) : sizeof (int))*sample_count)), var_count );
|
||||
|
||||
assert( numPrecalcIdx >= 0 && numPrecalcVal >= 0 );
|
||||
|
||||
valCache.create( numPrecalcVal, sample_count, CV_32FC1 );
|
||||
var_type = cvCreateMat( 1, var_count + 2, CV_32SC1 );
|
||||
@ -394,7 +396,7 @@ void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* o
|
||||
}
|
||||
else
|
||||
{
|
||||
for( int i = 0; i < nodeSampleCount; i++ )
|
||||
for( int i = 0; i < nodeSampleCount; i++ )
|
||||
{
|
||||
int idx = (*sortedIndices)[i];
|
||||
idx = sampleIndices[idx];
|
||||
@ -404,13 +406,26 @@ void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* o
|
||||
}
|
||||
else // vi >= numPrecalcIdx
|
||||
{
|
||||
// use sample_indices as temporary buffer for values
|
||||
vector<float> sampleValuesBuf;
|
||||
float* sampleValues = 0;
|
||||
|
||||
if( sizeof(float) == sizeof(int) )
|
||||
{
|
||||
// use sampleIndices as temporary buffer for values
|
||||
sampleValues = (float*)sampleIndices;
|
||||
}
|
||||
else
|
||||
{
|
||||
sampleValuesBuf.resize(nodeSampleCount);
|
||||
sampleValues = &sampleValuesBuf[0];
|
||||
}
|
||||
|
||||
if ( vi < numPrecalcVal )
|
||||
{
|
||||
for( int i = 0; i < nodeSampleCount; i++ )
|
||||
{
|
||||
sortedIndicesBuf[i] = i;
|
||||
((float*)sampleIndices)[i] = valCache.at<float>( vi, sampleIndices[i] );
|
||||
sampleValues[i] = valCache.at<float>( vi, sampleIndices[i] );
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -418,12 +433,12 @@ void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* o
|
||||
for( int i = 0; i < nodeSampleCount; i++ )
|
||||
{
|
||||
sortedIndicesBuf[i] = i;
|
||||
((float*)sampleIndices)[i] = (*featureEvaluator)( vi, sampleIndices[i]);
|
||||
sampleValues[i] = (*featureEvaluator)( vi, sampleIndices[i]);
|
||||
}
|
||||
}
|
||||
icvSortIntAux( sortedIndicesBuf, sample_count, (float *)sampleIndices );
|
||||
icvSortIntAux( sortedIndicesBuf, nodeSampleCount, &sampleValues[0] );
|
||||
for( int i = 0; i < nodeSampleCount; i++ )
|
||||
ordValuesBuf[i] = ((float*)sampleIndices)[sortedIndicesBuf[i]];
|
||||
ordValuesBuf[i] = (&sampleValues[0])[sortedIndicesBuf[i]];
|
||||
*sortedIndices = sortedIndicesBuf;
|
||||
}
|
||||
|
||||
@ -553,7 +568,6 @@ struct FeatureValOnlyPrecalc
|
||||
void CvCascadeBoostTrainData::precalculate()
|
||||
{
|
||||
int minNum = MIN( numPrecalcVal, numPrecalcIdx);
|
||||
CV_DbgAssert( !valCache.empty() );
|
||||
|
||||
double proctime = -TIME( 0 );
|
||||
parallel_for( BlockedRange(numPrecalcVal, numPrecalcIdx),
|
||||
|
Loading…
Reference in New Issue
Block a user