mirror of
https://github.com/opencv/opencv.git
synced 2024-12-01 14:59:54 +08:00
updated gpu image filtering and image processing docs
This commit is contained in:
parent
1697a89995
commit
63545d1e40
@ -87,7 +87,7 @@ while (...)
|
|||||||
filter.release();
|
filter.release();
|
||||||
\end{lstlisting}
|
\end{lstlisting}
|
||||||
|
|
||||||
\texttt{FilterEngine\_GPU} can process a rectangular sub-region of an image. By default, if \texttt{roi == Rect(0,0,-1,-1)}, \texttt{FilterEngine\_GPU} process inner region of image (\texttt{Rect(anchor.x, anchor.y, src\_size.width - ksize.width, src\_size.height - ksize.height)}), because some filters doesn't check indexies outside the image for better perfomace. Which filters supports processing the whole image and which not and image type limitations see below.
|
\texttt{FilterEngine\_GPU} can process a rectangular sub-region of an image. By default, if \texttt{roi == Rect(0,0,-1,-1)}, \texttt{FilterEngine\_GPU} process inner region of image (\texttt{Rect(anchor.x, anchor.y, src\_size.width - ksize.width, src\_size.height - ksize.height)}), because some filters doesn't check indexes outside the image for better perfomace. Which filters supports processing the whole image and which not and image type limitations see below.
|
||||||
|
|
||||||
The GPU filters doesn't support the in-place mode.
|
The GPU filters doesn't support the in-place mode.
|
||||||
|
|
||||||
@ -98,6 +98,11 @@ Create the non-separable filter engine with the specified filter.
|
|||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createFilter2D\_GPU(\par const Ptr<BaseFilter\_GPU>\& filter2D, \par int srcType, int dstType);
|
Ptr<FilterEngine\_GPU> createFilter2D\_GPU(\par const Ptr<BaseFilter\_GPU>\& filter2D, \par int srcType, int dstType);
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{filter2D} {The non separable 2D filter.}
|
||||||
|
\cvarg{srcType}{The input image type. It must be supported by \texttt{filter2D}.}
|
||||||
|
\cvarg{dstType}{The output image type. It must be supported by \texttt{filter2D}.}
|
||||||
|
\end{description}
|
||||||
Usually this function is used inside high-level functions, like \hyperref[cppfunc.gpu.createLinearFilter]{createLinearFilter\_GPU}, \hyperref[cppfunc.gpu.createBoxFilter]{createBoxFilter\_GPU}.
|
Usually this function is used inside high-level functions, like \hyperref[cppfunc.gpu.createLinearFilter]{createLinearFilter\_GPU}, \hyperref[cppfunc.gpu.createBoxFilter]{createBoxFilter\_GPU}.
|
||||||
|
|
||||||
\cvfunc{gpu::createSeparableFilter\_GPU}\label{cppfunc.gpu.createSeparableFilter}
|
\cvfunc{gpu::createSeparableFilter\_GPU}\label{cppfunc.gpu.createSeparableFilter}
|
||||||
@ -105,45 +110,89 @@ Create the separable filter engine with the specified filters.
|
|||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createSeparableFilter\_GPU(\par const Ptr<BaseRowFilter\_GPU>\& rowFilter, \par const Ptr<BaseColumnFilter\_GPU>\& columnFilter, \par int srcType, int bufType, int dstType);
|
Ptr<FilterEngine\_GPU> createSeparableFilter\_GPU(\par const Ptr<BaseRowFilter\_GPU>\& rowFilter, \par const Ptr<BaseColumnFilter\_GPU>\& columnFilter, \par int srcType, int bufType, int dstType);
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{rowFilter} {The "horizontal" 1D filter.}
|
||||||
|
\cvarg{columnFilter} {The "vertical" 1D filter.}
|
||||||
|
\cvarg{srcType}{The input image type. It must be supported by \texttt{rowFilter}.}
|
||||||
|
\cvarg{bufType}{The buffer image type. It must be supported by \texttt{rowFilter} and \texttt{columnFilter}.}
|
||||||
|
\cvarg{dstType}{The output image type. It must be supported by \texttt{columnFilter}.}
|
||||||
|
\end{description}
|
||||||
Usually this function is used inside high-level functions, like \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}.
|
Usually this function is used inside high-level functions, like \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}.
|
||||||
|
|
||||||
\cvfunc{gpu::getRowSumFilter\_GPU}\label{cppfunc.gpu.getRowSumFilter}
|
\cvfunc{gpu::getRowSumFilter\_GPU}\label{cppfunc.gpu.getRowSumFilter}
|
||||||
Create horizontal 1D box filter. Supports only \texttt{CV\_8UC1} source type and \texttt{CV\_32FC1} sum type.
|
Create horizontal 1D box filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseRowFilter\_GPU> getRowSumFilter\_GPU(int srcType, int sumType, \par int ksize, int anchor = -1);
|
Ptr<BaseRowFilter\_GPU> getRowSumFilter\_GPU(int srcType, int sumType, \par int ksize, int anchor = -1);
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The input image type. Now support only \texttt{CV\_8UC1}.}
|
||||||
|
\cvarg{sumType}{The output image type. Now support only \texttt{CV\_32FC1}.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value (-1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.
|
||||||
|
|
||||||
\cvfunc{gpu::getColumnSumFilter\_GPU}\label{cppfunc.gpu.getColumnSumFilter}
|
\cvfunc{gpu::getColumnSumFilter\_GPU}\label{cppfunc.gpu.getColumnSumFilter}
|
||||||
Create vertical 1D box filter. Supports only \texttt{CV\_8UC1} sum type and \texttt{CV\_32FC1} dst type.
|
Create vertical 1D box filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseColumnFilter\_GPU> getColumnSumFilter\_GPU(int sumType, \par int dstType, int ksize, int anchor = -1);
|
Ptr<BaseColumnFilter\_GPU> getColumnSumFilter\_GPU(int sumType, \par int dstType, int ksize, int anchor = -1);
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{sumType}{The input image type. Now support only \texttt{CV\_8UC1}.}
|
||||||
|
\cvarg{dstType}{The output image type. Now support only \texttt{CV\_32FC1}.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value (-1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.
|
||||||
|
|
||||||
\cvfunc{gpu::createBoxFilter\_GPU}\label{cppfunc.gpu.createBoxFilter}
|
\cvfunc{gpu::createBoxFilter\_GPU}\label{cppfunc.gpu.createBoxFilter}
|
||||||
Create normalized 2D box filter. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type, dst type must be the same as source type. This filter doesn't check indexies outside the image.
|
Create normalized 2D box filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createBoxFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, \par const Point\& anchor = Point(-1,-1));
|
Ptr<FilterEngine\_GPU> createBoxFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, \par const Point\& anchor = Point(-1,-1));
|
||||||
}
|
}
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseFilter\_GPU> getBoxFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, \par Point anchor = Point(-1, -1));
|
Ptr<BaseFilter\_GPU> getBoxFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, \par Point anchor = Point(-1, -1));
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The input image type. Now support \texttt{CV\_8UC1} and \texttt{CV\_8UC4}.}
|
||||||
|
\cvarg{dstType}{The output image type. Now support only the same as source type.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{boxFilter}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::boxFilter}
|
\cvCppFunc{gpu::boxFilter}
|
||||||
Smooths the image using the normalized box filter. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type, dst type must be the same as source type.
|
Smooths the image using the normalized box filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void boxFilter(const GpuMat\& src, GpuMat\& dst, int ddepth, Size ksize, \par Point anchor = Point(-1,-1));
|
void boxFilter(const GpuMat\& src, GpuMat\& dst, int ddepth, Size ksize, \par Point anchor = Point(-1,-1));
|
||||||
}
|
}
|
||||||
See \cvCppCross{boxFilter}, \hyperref[cppfunc.gpu.createBoxFilter]{createBoxFilter\_GPU}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The input image. Now support \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.}
|
||||||
|
\cvarg{dst}{The output image type. Will have the same size and the same type as \texttt{src}.}
|
||||||
|
\cvarg{ddepth}{The output image depth. Now support only the same as source depth (\texttt{CV\_8U}) or -1 what means use source depth.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{boxFilter}, \hyperref[cppfunc.gpu.createBoxFilter]{createBoxFilter\_GPU}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::blur}
|
\cvCppFunc{gpu::blur}
|
||||||
A synonym for normalized box filter.
|
A synonym for normalized box filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void blur(const GpuMat\& src, GpuMat\& dst, Size ksize, \par Point anchor = Point(-1,-1));
|
void blur(const GpuMat\& src, GpuMat\& dst, Size ksize, \par Point anchor = Point(-1,-1));
|
||||||
}
|
}
|
||||||
See \cvCppCross{blur}, \cvCppCross{gpu::boxFilter}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The input image. Now support \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.}
|
||||||
|
\cvarg{dst}{The output image type. Will have the same size and the same type as \texttt{src}.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{blur}, \cvCppCross{gpu::boxFilter}.
|
||||||
|
|
||||||
\cvfunc{gpu::createMorphologyFilter\_GPU}\label{cppfunc.gpu.createMorphologyFilter}
|
\cvfunc{gpu::createMorphologyFilter\_GPU}\label{cppfunc.gpu.createMorphologyFilter}
|
||||||
Create 2D morphological filter. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type. This filter doesn't check indexies outside the image.
|
Create 2D morphological filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createMorphologyFilter\_GPU(int op, int type, \par const Mat\& kernel, \par const Point\& anchor = Point(-1,-1), \par int iterations = 1);
|
Ptr<FilterEngine\_GPU> createMorphologyFilter\_GPU(int op, int type, \par const Mat\& kernel, \par const Point\& anchor = Point(-1,-1), \par int iterations = 1);
|
||||||
}
|
}
|
||||||
@ -153,63 +202,127 @@ Ptr<BaseFilter\_GPU> getMorphologyFilter\_GPU(int op, int type, \par const Mat\&
|
|||||||
\begin{description}
|
\begin{description}
|
||||||
\cvarg{op} {The morphology operation id. Only \texttt{MORPH\_ERODE} and \texttt{MORPH\_DILATE} are supported.}
|
\cvarg{op} {The morphology operation id. Only \texttt{MORPH\_ERODE} and \texttt{MORPH\_DILATE} are supported.}
|
||||||
\cvarg{type}{The input/output image type. Only \texttt{CV\_8UC1} and \texttt{CV\_8UC4} are supported.}
|
\cvarg{type}{The input/output image type. Only \texttt{CV\_8UC1} and \texttt{CV\_8UC4} are supported.}
|
||||||
\cvarg{kernel}{The 2D 8-bit structuring element for the morphological operation. It must be continuous matrix.}
|
\cvarg{kernel}{The 2D 8-bit structuring element for the morphological operation.}
|
||||||
\cvarg{size}{The horizontal or vertical structuring element size for separable morphological operations}
|
\cvarg{size}{The horizontal or vertical structuring element size for separable morphological operations}
|
||||||
\cvarg{anchor}{The anchor position within the structuring element; negative values mean that the anchor is at the center}
|
\cvarg{anchor}{The anchor position within the structuring element; negative values mean that the anchor is at the center}
|
||||||
\end{description}
|
\end{description}
|
||||||
See \cvCppCross{createMorphologyFilter}.
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{createMorphologyFilter}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::erode}
|
\cvCppFunc{gpu::erode}
|
||||||
Erodes an image by using a specific structuring element. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.
|
Erodes an image by using a specific structuring element.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void erode(const GpuMat\& src, GpuMat\& dst, const Mat\& kernel, \par Point anchor = Point(-1, -1), \par int iterations = 1);
|
void erode(const GpuMat\& src, GpuMat\& dst, const Mat\& kernel, \par Point anchor = Point(-1, -1), \par int iterations = 1);
|
||||||
}
|
}
|
||||||
See \cvCppCross{erode}, \hyperref[cppfunc.gpu.createMorphologyFilter]{createMorphologyFilter\_GPU}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Only \texttt{CV\_8UC1} and \texttt{CV\_8UC4} are supported.}
|
||||||
|
\cvarg{dst}{The destination image. It will have the same size and the same type as \texttt{src}}
|
||||||
|
\cvarg{kernel}{The structuring element used for dilation. If \texttt{kernel=Mat()}, a $3\times 3$ rectangular structuring element is used.}
|
||||||
|
\cvarg{anchor}{Position of the anchor within the element. The default value $(-1, -1)$ means that the anchor is at the element center.}
|
||||||
|
\cvarg{iterations}{The number of times erosion is applied.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{erode}, \hyperref[cppfunc.gpu.createMorphologyFilter]{createMorphologyFilter\_GPU}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::dilate}
|
\cvCppFunc{gpu::dilate}
|
||||||
Dilates an image by using a specific structuring element. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.
|
Dilates an image by using a specific structuring element.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void dilate(const GpuMat\& src, GpuMat\& dst, const Mat\& kernel, \par Point anchor = Point(-1, -1), \par int iterations = 1);
|
void dilate(const GpuMat\& src, GpuMat\& dst, const Mat\& kernel, \par Point anchor = Point(-1, -1), \par int iterations = 1);
|
||||||
}
|
}
|
||||||
See \cvCppCross{dilate}, \hyperref[cppfunc.gpu.createMorphologyFilter]{createMorphologyFilter\_GPU}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.}
|
||||||
|
\cvarg{dst}{The destination image. It will have the same size and the same type as \texttt{src}}
|
||||||
|
\cvarg{kernel}{The structuring element used for dilation. If \texttt{kernel=Mat()}, a $3\times 3$ rectangular structuring element is used.}
|
||||||
|
\cvarg{anchor}{Position of the anchor within the element. The default value $(-1, -1)$ means that the anchor is at the element center.}
|
||||||
|
\cvarg{iterations}{The number of times dilation is applied.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{dilate}, \hyperref[cppfunc.gpu.createMorphologyFilter]{createMorphologyFilter\_GPU}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::morphologyEx}
|
\cvCppFunc{gpu::morphologyEx}
|
||||||
Applies an advanced morphological operation to the image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.
|
Applies an advanced morphological operation to the image.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void morphologyEx(const GpuMat\& src, GpuMat\& dst, int op, \par const Mat\& kernel, \par Point anchor = Point(-1, -1), \par int iterations = 1);
|
void morphologyEx(const GpuMat\& src, GpuMat\& dst, int op, \par const Mat\& kernel, \par Point anchor = Point(-1, -1), \par int iterations = 1);
|
||||||
}
|
}
|
||||||
See \cvCppCross{morphologyEx}.
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.}
|
||||||
|
\cvarg{dst}{Destination image. It will have the same size and the same type as \texttt{src}}
|
||||||
|
\cvarg{op}{Type of morphological operation, one of the following:
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{MORPH\_OPEN}{opening}
|
||||||
|
\cvarg{MORPH\_CLOSE}{closing}
|
||||||
|
\cvarg{MORPH\_GRADIENT}{morphological gradient}
|
||||||
|
\cvarg{MORPH\_TOPHAT}{"top hat"}
|
||||||
|
\cvarg{MORPH\_BLACKHAT}{"black hat"}
|
||||||
|
\end{description}}
|
||||||
|
\cvarg{kernel}{Structuring element.}
|
||||||
|
\cvarg{anchor}{Position of the anchor within the element. The default value Point(-1, -1) means that the anchor is at the element center.}
|
||||||
|
\cvarg{iterations}{Number of times erosion and dilation are applied.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{morphologyEx}.
|
||||||
|
|
||||||
\cvfunc{gpu::createLinearFilter\_GPU}\label{cppfunc.gpu.createLinearFilter}
|
\cvfunc{gpu::createLinearFilter\_GPU}\label{cppfunc.gpu.createLinearFilter}
|
||||||
Create the non-separable linear filter. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type. This filter doesn't check indexies outside the image.
|
Create the non-separable linear filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createLinearFilter\_GPU(int srcType, int dstType, \par const Mat\& kernel, \par const Point\& anchor = Point(-1,-1));
|
Ptr<FilterEngine\_GPU> createLinearFilter\_GPU(int srcType, int dstType, \par const Mat\& kernel, \par const Point\& anchor = Point(-1,-1));
|
||||||
}
|
}
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseFilter\_GPU> getLinearFilter\_GPU(int srcType, int dstType, \par const Mat\& kernel, const Size\& ksize, \par Point anchor = Point(-1, -1));
|
Ptr<BaseFilter\_GPU> getLinearFilter\_GPU(int srcType, int dstType, \par const Mat\& kernel, const Size\& ksize, \par Point anchor = Point(-1, -1));
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The input image type. Now support \texttt{CV\_8UC1} and \texttt{CV\_8UC4}.}
|
||||||
|
\cvarg{dstType}{The output image type. Now support only the same as source type.}
|
||||||
|
\cvarg{kernel}{The 2D array of filter coefficients. This filter works with integers kernels, if \texttt{kernel} has \texttt{float} or \texttt{double} type it will be used fixed point arithmetic.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value Point(-1, -1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{createLinearFilter}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::filter2D}
|
\cvCppFunc{gpu::filter2D}
|
||||||
Applies non-separable 2D linear filter to the image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.
|
Applies non-separable 2D linear filter to the image.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void filter2D(const GpuMat\& src, GpuMat\& dst, int ddepth, \par const Mat\& kernel, \par Point anchor=Point(-1,-1));
|
void filter2D(const GpuMat\& src, GpuMat\& dst, int ddepth, \par const Mat\& kernel, \par Point anchor=Point(-1,-1));
|
||||||
}
|
}
|
||||||
See \cvCppCross{filter2D}, \hyperref[cppfunc.gpu.createLinearFilter]{createLinearFilter\_GPU}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.}
|
||||||
|
\cvarg{dst}{The destination image. It will have the same size and the same number of channels as \texttt{src}}
|
||||||
|
\cvarg{ddepth}{The desired depth of the destination image. If it is negative, it will be the same as \texttt{src.depth()}. Now support only the same depth as source image.}
|
||||||
|
\cvarg{kernel}{The 2D array of filter coefficients. This filter works with integers kernels, if \texttt{kernel} has \texttt{float} or \texttt{double} type it will use fixed point arithmetic.}
|
||||||
|
\cvarg{anchor}{The anchor of the kernel that indicates the relative position of a filtered point within the kernel. The anchor should lie within the kernel. The special default value (-1,-1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{filter2D}, \hyperref[cppfunc.gpu.createLinearFilter]{createLinearFilter\_GPU}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::Laplacian}
|
\cvCppFunc{gpu::Laplacian}
|
||||||
Applies Laplacian operator to the image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type. Supports only \texttt{ksize} = 1 and \texttt{ksize} = 3.
|
Applies Laplacian operator to the image.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void Laplacian(const GpuMat\& src, GpuMat\& dst, int ddepth, \par int ksize = 1, double scale = 1);
|
void Laplacian(const GpuMat\& src, GpuMat\& dst, int ddepth, \par int ksize = 1, double scale = 1);
|
||||||
}
|
}
|
||||||
See \cvCppCross{Laplacian}, \cvCppCross{gpu::filter2D}.
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Supports \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source type.}
|
||||||
|
\cvarg{dst}{Destination image; will have the same size and the same number of channels as \texttt{src}.}
|
||||||
|
\cvarg{ddepth}{The desired depth of the destination image. Now support only tha same depth as source image.}
|
||||||
|
\cvarg{ksize}{The aperture size used to compute the second-derivative filters, see \cvCppCross{getDerivKernels}. It must be positive and odd. Now supports only \texttt{ksize} = 1 and \texttt{ksize} = 3.}
|
||||||
|
\cvarg{scale}{The optional scale factor for the computed Laplacian values (by default, no scaling is applied, see \cvCppCross{getDerivKernels}).}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.\newline
|
||||||
|
See also: \cvCppCross{Laplacian}, \cvCppCross{gpu::filter2D}.
|
||||||
|
|
||||||
\cvfunc{gpu::getLinearRowFilter\_GPU}\label{cppfunc.gpu.getLinearRowFilter}
|
\cvfunc{gpu::getLinearRowFilter\_GPU}\label{cppfunc.gpu.getLinearRowFilter}
|
||||||
Create the primitive row filter with the specified kernel.
|
Create the primitive row filter with the specified kernel.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseRowFilter\_GPU> getLinearRowFilter\_GPU(int srcType, \par int bufType, const Mat\& rowKernel, int anchor = -1, \par int borderType = BORDER\_CONSTANT);
|
Ptr<BaseRowFilter\_GPU> getLinearRowFilter\_GPU(int srcType, \par int bufType, const Mat\& rowKernel, int anchor = -1, \par int borderType = BORDER\_CONSTANT);
|
||||||
}
|
}
|
||||||
Supports only \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_16SC1}, \texttt{CV\_16SC2}, \texttt{CV\_32SC1}, \texttt{CV\_32FC1} source type. There are two version of algorithm: NPP and OpenCV. NPP calls when \texttt{srcType == CV\_8UC1} or \texttt{srcType == CV\_8UC4} and \texttt{bufType == srcType}, otherwise calls OpenCV version. NPP supports only \texttt{BORDER\_CONSTANT} border type and doesn't check indexies outside image. OpenCV version supports only \texttt{CV\_32F} as buffer depth and \texttt{BORDER\_REFLECT101}, \texttt{BORDER\_REPLICATE} and \texttt{BORDER\_CONSTANT} border types and checks indexies outside image.
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The source array type. Supports only \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_16SC1}, \texttt{CV\_16SC2}, \texttt{CV\_32SC1}, \texttt{CV\_32FC1} source type.}
|
||||||
|
\cvarg{bufType}{The inermediate buffer type; must have as many channels as \texttt{srcType}.}
|
||||||
|
\cvarg{rowKernel}{The coefficients for filtering each row.}
|
||||||
|
\cvarg{anchor}{The anchor position within the kernel; negative values mean that anchor is positioned at the aperture center.}
|
||||||
|
\cvarg{borderType}{The pixel extrapolation methods; see \cvCppCross{borderInterpolate}. About limitation see below.}
|
||||||
|
\end{description}
|
||||||
|
There are two version of algorithm: NPP and OpenCV. NPP calls when \texttt{srcType == CV\_8UC1} or \texttt{srcType == CV\_8UC4} and \texttt{bufType == srcType}, otherwise calls OpenCV version. NPP supports only \texttt{BORDER\_CONSTANT} border type and doesn't check indexes outside image. OpenCV version supports only \texttt{CV\_32F} as buffer depth and \texttt{BORDER\_REFLECT101}, \texttt{BORDER\_REPLICATE} and \texttt{BORDER\_CONSTANT} border types and checks indexes outside image.\newline
|
||||||
See also: \hyperref[cppfunc.gpu.getLinearColumnFilter]{getLinearColumnFilter\_GPU}, \cvCppCross{createSeparableLinearFilter}.
|
See also: \hyperref[cppfunc.gpu.getLinearColumnFilter]{getLinearColumnFilter\_GPU}, \cvCppCross{createSeparableLinearFilter}.
|
||||||
|
|
||||||
\cvfunc{gpu::getLinearColumnFilter\_GPU}\label{cppfunc.gpu.getLinearColumnFilter}
|
\cvfunc{gpu::getLinearColumnFilter\_GPU}\label{cppfunc.gpu.getLinearColumnFilter}
|
||||||
@ -217,8 +330,14 @@ Create the primitive column filter with the specified kernel.
|
|||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseColumnFilter\_GPU> getLinearColumnFilter\_GPU(int bufType, \par int dstType, const Mat\& columnKernel, int anchor = -1, \par int borderType = BORDER\_CONSTANT);
|
Ptr<BaseColumnFilter\_GPU> getLinearColumnFilter\_GPU(int bufType, \par int dstType, const Mat\& columnKernel, int anchor = -1, \par int borderType = BORDER\_CONSTANT);
|
||||||
}
|
}
|
||||||
Supports only \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_16SC1}, \texttt{CV\_16SC2}, \texttt{CV\_32SC1}, \texttt{CV\_32FC1} dst type. There are two version of algorithm: NPP and OpenCV. NPP calls when \texttt{dstType == CV\_8UC1} or \texttt{dstType == CV\_8UC4} and \texttt{bufType == dstType}, otherwise calls OpenCV version. NPP supports only \texttt{BORDER\_CONSTANT} border type and doesn't check indexies outside image. OpenCV version supports only \texttt{CV\_32F} as buffer depth and \texttt{BORDER\_REFLECT101}, \texttt{BORDER\_REPLICATE} and \texttt{BORDER\_CONSTANT} border types and checks indexies outside image.
|
\begin{description}
|
||||||
|
\cvarg{bufType}{The inermediate buffer type; must have as many channels as \texttt{dstType}.}
|
||||||
|
\cvarg{dstType}{The destination array type. Supports only \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_16SC1}, \texttt{CV\_16SC2}, \texttt{CV\_32SC1}, \texttt{CV\_32FC1} source type.}
|
||||||
|
\cvarg{columnKernel}{The coefficients for filtering each column.}
|
||||||
|
\cvarg{anchor}{The anchor position within the kernel; negative values mean that anchor is positioned at the aperture center.}
|
||||||
|
\cvarg{borderType}{The pixel extrapolation methods; see \cvCppCross{borderInterpolate}. About limitation see below.}
|
||||||
|
\end{description}
|
||||||
|
There are two version of algorithm: NPP and OpenCV. NPP calls when \texttt{dstType == CV\_8UC1} or \texttt{dstType == CV\_8UC4} and \texttt{bufType == dstType}, otherwise calls OpenCV version. NPP supports only \texttt{BORDER\_CONSTANT} border type and doesn't check indexes outside image. OpenCV version supports only \texttt{CV\_32F} as buffer depth and \texttt{BORDER\_REFLECT101}, \texttt{BORDER\_REPLICATE} and \texttt{BORDER\_CONSTANT} border types and checks indexes outside image.\newline
|
||||||
See also: \hyperref[cppfunc.gpu.getLinearRowFilter]{getLinearRowFilter\_GPU}, \cvCppCross{createSeparableLinearFilter}.
|
See also: \hyperref[cppfunc.gpu.getLinearRowFilter]{getLinearRowFilter\_GPU}, \cvCppCross{createSeparableLinearFilter}.
|
||||||
|
|
||||||
\cvfunc{gpu::createSeparableLinearFilter\_GPU}\label{cppfunc.gpu.createSeparableLinearFilter}
|
\cvfunc{gpu::createSeparableLinearFilter\_GPU}\label{cppfunc.gpu.createSeparableLinearFilter}
|
||||||
@ -226,58 +345,129 @@ Create the separable linear filter engine.
|
|||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createSeparableLinearFilter\_GPU(int srcType, \par int dstType, const Mat\& rowKernel, const Mat\& columnKernel, \par const Point\& anchor = Point(-1,-1), \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
Ptr<FilterEngine\_GPU> createSeparableLinearFilter\_GPU(int srcType, \par int dstType, const Mat\& rowKernel, const Mat\& columnKernel, \par const Point\& anchor = Point(-1,-1), \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.getLinearRowFilter]{getLinearRowFilter\_GPU}, \hyperref[cppfunc.gpu.getLinearColumnFilter]{getLinearColumnFilter\_GPU}, \cvCppCross{createSeparableLinearFilter}.
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The source array type. Supports \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_16SC1}, \texttt{CV\_16SC2}, \texttt{CV\_32SC1}, \texttt{CV\_32FC1} source type.}
|
||||||
|
\cvarg{dstType}{The destination array type. Supports \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_16SC1}, \texttt{CV\_16SC2}, \texttt{CV\_32SC1}, \texttt{CV\_32FC1} source type.}
|
||||||
|
\cvarg{rowKernel}{The coefficients for filtering each row.}
|
||||||
|
\cvarg{columnKernel}{The coefficients for filtering each column.}
|
||||||
|
\cvarg{anchor}{The anchor position within the kernel; negative values mean that anchor is positioned at the aperture center.}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{The pixel extrapolation methods in the horizontal and the vertical directions; see \cvCppCross{borderInterpolate}. About limitation see \hyperref[cppfunc.gpu.getLinearRowFilter]{getLinearRowFilter\_GPU}, \hyperref[cppfunc.gpu.getLinearColumnFilter]{getLinearColumnFilter\_GPU}, \cvCppCross{createSeparableLinearFilter}.}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
\cvCppFunc{gpu::sepFilter2D}
|
\cvCppFunc{gpu::sepFilter2D}
|
||||||
Applies separable 2D linear filter to the image.
|
Applies separable 2D linear filter to the image.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void sepFilter2D(const GpuMat\& src, GpuMat\& dst, int ddepth, \par const Mat\& kernelX, const Mat\& kernelY, \par Point anchor = Point(-1,-1), \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
void sepFilter2D(const GpuMat\& src, GpuMat\& dst, int ddepth, \par const Mat\& kernelX, const Mat\& kernelY, \par Point anchor = Point(-1,-1), \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{sepFilter2D}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image.}
|
||||||
|
\cvarg{dst}{The destination image; will have the same size and the same number of channels as \texttt{src}.}
|
||||||
|
\cvarg{ddepth}{The destination image depth.}
|
||||||
|
\cvarg{kernelX}{The coefficients for filtering each row.}
|
||||||
|
\cvarg{kernelY}{The coefficients for filtering each column.}
|
||||||
|
\cvarg{anchor}{The anchor position within the kernel; The default value $(-1, 1)$ means that the anchor is at the kernel center.}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{The pixel extrapolation method; see \cvCppCross{borderInterpolate}.}
|
||||||
|
\end{description}
|
||||||
|
See also: \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{sepFilter2D}.
|
||||||
|
|
||||||
\cvfunc{gpu::createDerivFilter\_GPU}\label{cppfunc.gpu.createDerivFilter}
|
\cvfunc{gpu::createDerivFilter\_GPU}\label{cppfunc.gpu.createDerivFilter}
|
||||||
Create filter engine for the generalized Sobel operator.
|
Create filter engine for the generalized Sobel operator.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createDerivFilter\_GPU(int srcType, int dstType, \par int dx, int dy, int ksize, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
Ptr<FilterEngine\_GPU> createDerivFilter\_GPU(int srcType, int dstType, \par int dx, int dy, int ksize, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{createDerivFilter}.
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The source image type.}
|
||||||
|
\cvarg{dstType}{The destination image type; must have as many channels as \texttt{srcType}.}
|
||||||
|
\cvarg{dx}{The derivative order in respect with x.}
|
||||||
|
\cvarg{dy}{The derivative order in respect with y.}
|
||||||
|
\cvarg{ksize}{The aperture size; see \cvCppCross{getDerivKernels}.}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{Which border type to use; see \cvCppCross{borderInterpolate}.}
|
||||||
|
\end{description}
|
||||||
|
See also: \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{createDerivFilter}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::Sobel}
|
\cvCppFunc{gpu::Sobel}
|
||||||
Applies generalized Sobel operator to the image.
|
Applies generalized Sobel operator to the image.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void Sobel(const GpuMat\& src, GpuMat\& dst, int ddepth, int dx, int dy, \par int ksize = 3, double scale = 1, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
void Sobel(const GpuMat\& src, GpuMat\& dst, int ddepth, int dx, int dy, \par int ksize = 3, double scale = 1, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{Sobel}.
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The source image.}
|
||||||
|
\cvarg{dstType}{The destination image. Will have the same size and number of channels as source image.}
|
||||||
|
\cvarg{ddepth}{The destination image depth.}
|
||||||
|
\cvarg{dx}{The derivative order in respect with x.}
|
||||||
|
\cvarg{dy}{The derivative order in respect with y.}
|
||||||
|
\cvarg{ksize}{Size of the extended Sobel kernel, must be 1, 3, 5 or 7.}
|
||||||
|
\cvarg{scale}{The optional scale factor for the computed derivative values (by default, no scaling is applied, see \cvCppCross{getDerivKernels}).}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{Which border type to use; see \cvCppCross{borderInterpolate}.}
|
||||||
|
\end{description}
|
||||||
|
See also: \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{Sobel}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::Scharr}
|
\cvCppFunc{gpu::Scharr}
|
||||||
Calculates the first x- or y- image derivative using Scharr operator.
|
Calculates the first x- or y- image derivative using Scharr operator.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void Scharr(const GpuMat\& src, GpuMat\& dst, int ddepth, \par int dx, int dy, double scale = 1, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
void Scharr(const GpuMat\& src, GpuMat\& dst, int ddepth, \par int dx, int dy, double scale = 1, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{Scharr}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image.}
|
||||||
|
\cvarg{dst}{The destination image; will have the same size and the same number of channels as \texttt{src}.}
|
||||||
|
\cvarg{ddepth}{The destination image depth.}
|
||||||
|
\cvarg{xorder}{Order of the derivative x.}
|
||||||
|
\cvarg{yorder}{Order of the derivative y.}
|
||||||
|
\cvarg{scale}{The optional scale factor for the computed derivative values (by default, no scaling is applied, see \cvCppCross{getDerivKernels}).}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{The pixel extrapolation method, see \cvCppCross{borderInterpolate}}
|
||||||
|
\end{description}
|
||||||
|
See also: \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{Scharr}.
|
||||||
|
|
||||||
\cvfunc{gpu::createGaussianFilter\_GPU}\label{cppfunc.gpu.createGaussianFilter}
|
\cvfunc{gpu::createGaussianFilter\_GPU}\label{cppfunc.gpu.createGaussianFilter}
|
||||||
Create the Gaussian filter engine.
|
Create the Gaussian filter engine.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<FilterEngine\_GPU> createGaussianFilter\_GPU(int type, Size ksize, \par double sigma1, double sigma2 = 0, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
Ptr<FilterEngine\_GPU> createGaussianFilter\_GPU(int type, Size ksize, \par double sigmaX, double sigmaY = 0, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{createGaussianFilter}.
|
\begin{description}
|
||||||
|
\cvarg{type}{The source and the destination image type.}
|
||||||
|
\cvarg{ksize}{The aperture size; see \cvCppCross{getGaussianKernel}.}
|
||||||
|
\cvarg{sigmaX}{The Gaussian sigma in the horizontal direction; see \cvCppCross{getGaussianKernel}.}
|
||||||
|
\cvarg{sigmaY}{The Gaussian sigma in the vertical direction; if 0, then $\texttt{sigmaY}\leftarrow\texttt{sigmaX}$.}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{Which border type to use; see \cvCppCross{borderInterpolate}}
|
||||||
|
\end{description}
|
||||||
|
See also: \hyperref[cppfunc.gpu.createSeparableLinearFilter]{createSeparableLinearFilter\_GPU}, \cvCppCross{createGaussianFilter}.
|
||||||
|
|
||||||
\cvCppFunc{gpu::GaussianBlur}
|
\cvCppFunc{gpu::GaussianBlur}
|
||||||
Smooths the image using Gaussian filter.
|
Smooths the image using Gaussian filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
void GaussianBlur(const GpuMat\& src, GpuMat\& dst, Size ksize, \par double sigma1, double sigma2 = 0, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
void GaussianBlur(const GpuMat\& src, GpuMat\& dst, Size ksize, \par double sigmaX, double sigmaY = 0, \par int rowBorderType = BORDER\_DEFAULT, \par int columnBorderType = -1);
|
||||||
}
|
}
|
||||||
See \hyperref[cppfunc.gpu.createGaussianFilter]{createGaussianFilter\_GPU}, \cvCppCross{GaussianBlur}.
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image.}
|
||||||
|
\cvarg{dst}{The destination image; will have the same size and the same type as \texttt{src}.}
|
||||||
|
\cvarg{ksize}{The Gaussian kernel size; \texttt{ksize.width} and \texttt{ksize.height} can differ, but they both must be positive and odd. Or, they can be zero's, then they are computed from \texttt{sigma*}.}
|
||||||
|
\cvarg{sigmaX, sigmaY}{The Gaussian kernel standard deviations in X and Y direction. If \texttt{sigmaY} is zero, it is set to be equal to \texttt{sigmaX}. If they are both zeros, they are computed from \texttt{ksize.width} and \texttt{ksize.height}, respectively, see \cvCppCross{getGaussianKernel}. To fully control the result regardless of possible future modification of all this semantics, it is recommended to specify all of \texttt{ksize}, \texttt{sigmaX} and \texttt{sigmaY}.}
|
||||||
|
\cvarg{rowBorderType, columnBorderType}{The pixel extrapolation method; see \cvCppCross{borderInterpolate}.}
|
||||||
|
\end{description}
|
||||||
|
See also: \hyperref[cppfunc.gpu.createGaussianFilter]{createGaussianFilter\_GPU}, \cvCppCross{GaussianBlur}.
|
||||||
|
|
||||||
\cvfunc{gpu::getMaxFilter\_GPU}\label{cppfunc.gpu.getMaxFilter}
|
\cvfunc{gpu::getMaxFilter\_GPU}\label{cppfunc.gpu.getMaxFilter}
|
||||||
Create maximum filter. Supports only \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source and dst type.
|
Create maximum filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseFilter\_GPU> getMaxFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, Point anchor = Point(-1,-1));
|
Ptr<BaseFilter\_GPU> getMaxFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, Point anchor = Point(-1,-1));
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The input image type. Now support only \texttt{CV\_8UC1} and \texttt{CV\_8UC4}.}
|
||||||
|
\cvarg{dstType}{The output image type. Now support only the same type as source.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value (-1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.
|
||||||
|
|
||||||
\cvfunc{gpu::getMinFilter\_GPU}\label{cppfunc.gpu.getMinFilter}
|
\cvfunc{gpu::getMinFilter\_GPU}\label{cppfunc.gpu.getMinFilter}
|
||||||
Create minimum filter. Supports only \texttt{CV\_8UC1} and \texttt{CV\_8UC4} source and dst type.
|
Create minimum filter.
|
||||||
\cvdefCpp{
|
\cvdefCpp{
|
||||||
Ptr<BaseFilter\_GPU> getMinFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, Point anchor = Point(-1,-1));
|
Ptr<BaseFilter\_GPU> getMinFilter\_GPU(int srcType, int dstType, \par const Size\& ksize, Point anchor = Point(-1,-1));
|
||||||
}
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{srcType}{The input image type. Now support only \texttt{CV\_8UC1} and \texttt{CV\_8UC4}.}
|
||||||
|
\cvarg{dstType}{The output image type. Now support only the same type as source.}
|
||||||
|
\cvarg{ksize}{The kernel size.}
|
||||||
|
\cvarg{anchor}{The anchor point. The default value (-1) means that the anchor is at the kernel center.}
|
||||||
|
\end{description}
|
||||||
|
This filter doesn't check indexes outside the image, so it can process only inner area.
|
||||||
|
@ -260,3 +260,210 @@ Following methods are supported for 32F images for now:
|
|||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
See also: \cvCppCross{matchTemplate}.
|
See also: \cvCppCross{matchTemplate}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::remap}
|
||||||
|
Applies a generic geometrical transformation to an image.
|
||||||
|
\cvdefCpp{
|
||||||
|
void remap(const GpuMat\& src, GpuMat\& dst, \par const GpuMat\& xmap, const GpuMat\& ymap);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Only \texttt{CV\_8UC1} and \texttt{CV\_8UC3} source types are supported.}
|
||||||
|
\cvarg{dst}{Destination image. It will have the same size as \texttt{xmap} and the same type as \texttt{src}.}
|
||||||
|
\cvarg{xmap}{The x values. Only \texttt{CV\_32FC1} type are supported.}
|
||||||
|
\cvarg{ymap}{The y values. Only \texttt{CV\_32FC1} type are supported.}
|
||||||
|
\end{description}
|
||||||
|
The function remap transforms the source image using the specified map:
|
||||||
|
\[
|
||||||
|
\texttt{dst}(x,y) = \texttt{src}(xmap(x,y), ymap(x,y))
|
||||||
|
\]
|
||||||
|
Where values of pixels with non-integer coordinates are computed using bilinear interpolation.\newline
|
||||||
|
See also: \cvCppCross{remap}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::drawColorDisp}
|
||||||
|
Does coloring of disparity image.
|
||||||
|
\cvdefCpp{
|
||||||
|
void drawColorDisp(const GpuMat\& src\_disp, GpuMat\& dst\_disp, int ndisp);
|
||||||
|
}
|
||||||
|
\cvdefCpp{
|
||||||
|
void drawColorDisp(const GpuMat\& src\_disp, GpuMat\& dst\_disp, int ndisp, \par const Stream\& stream);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src\_disp}{Source disparity image. Supports \texttt{CV\_8UC1} and \texttt{CV\_16SC1} types.}
|
||||||
|
\cvarg{dst\_disp}{Output disparity image. Will have the same size as \texttt{src\_disp} and \texttt{CV\_8UC4} type in \texttt{BGRA} format (alpha = 255).}
|
||||||
|
\cvarg{ndisp}{Number of disparities.}
|
||||||
|
\cvarg{stream}{Stream fo async version.}
|
||||||
|
\end{description}
|
||||||
|
This function converts $[0..ndisp)$ interval to $[0..240, 1, 1]$ in \texttt{HSV} color space, than convert \texttt{HSV} color space to \texttt{RGB}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::reprojectImageTo3D}
|
||||||
|
Reprojects disparity image to 3D space.
|
||||||
|
\cvdefCpp{
|
||||||
|
void reprojectImageTo3D(const GpuMat\& disp, GpuMat\& xyzw, \par const Mat\& Q);
|
||||||
|
}
|
||||||
|
\cvdefCpp{
|
||||||
|
void reprojectImageTo3D(const GpuMat\& disp, GpuMat\& xyzw, \par const Mat\& Q, const Stream\& stream);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{disp}{The input single-channel 8-bit unsigned ot 16-bit signed integer disparity image.}
|
||||||
|
\cvarg{xyzw}{The output 4-channel floating-point image of the same size as \texttt{disp}. Each element of \texttt{xyzw(x,y)} will contain the 3D coordinates \texttt{(x,y,z,1)} of the point \texttt{(x,y)}, computed from the disparity map.}
|
||||||
|
\cvarg{Q}{The $4 \times 4$ perspective transformation matrix that can be obtained with \cvCross{StereoRectify}{stereoRectify}.}
|
||||||
|
\cvarg{stream}{Stream fo async version.}
|
||||||
|
\end{description}
|
||||||
|
See also: \cvCppCross{reprojectImageTo3D}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::cvtColor}
|
||||||
|
Converts image from one color space to another.
|
||||||
|
\cvdefCpp{
|
||||||
|
void cvtColor(const GpuMat\& src, GpuMat\& dst, int code, int dcn = 0);
|
||||||
|
}
|
||||||
|
\cvdefCpp{
|
||||||
|
void cvtColor(const GpuMat\& src, GpuMat\& dst, int code, int dcn, \par const Stream\& stream);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image, 8-bit unsigned, 16-bit unsigned (\texttt{CV\_16UC...}) or single-precision floating-point.}
|
||||||
|
\cvarg{dst}{The destination image; will have the same size and the same depth as \texttt{src}.}
|
||||||
|
\cvarg{code}{The color space conversion code.}
|
||||||
|
\cvarg{dcn}{The number of channels in the destination image; if the parameter is 0, the number of the channels will be derived automatically from \texttt{src} and the \texttt{code}.}
|
||||||
|
\cvarg{stream}{Stream fo async version.}
|
||||||
|
\end{description}
|
||||||
|
3-channels color spaces (like \texttt{HSV}, \texttt{XYZ}, etc) can be stored to 4-channels image for better perfomance.\newline
|
||||||
|
See also: \cvCppCross{cvtColor}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::threshold}
|
||||||
|
Applies a fixed-level threshold to each array element.
|
||||||
|
\cvdefCpp{
|
||||||
|
double threshold(const GpuMat\& src, GpuMat\& dst, double thresh);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{Source array. Supports only \texttt{CV\_32FC1} type.}
|
||||||
|
\cvarg{dst}{Destination array; will have the same size and the same type as \texttt{src}.}
|
||||||
|
\cvarg{thresh}{Threshold value.}
|
||||||
|
\end{description}
|
||||||
|
Does only \texttt{THRESH\_TRUNC} threshold.\newline
|
||||||
|
See also: \cvCppCross{threshold}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::resize}
|
||||||
|
Resizes the image.
|
||||||
|
\cvdefCpp{
|
||||||
|
void resize(const GpuMat\& src, GpuMat\& dst, Size dsize, \par double fx=0, double fy=0, \par int interpolation = INTER\_LINEAR);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Supports \texttt{CV\_8UC1}, \texttt{CV\_8UC4} types.}
|
||||||
|
\cvarg{dst}{Destination image. It will have size \texttt{dsize} (when it is non-zero) or the size computed from \texttt{src.size()} and \texttt{fx} and \texttt{fy}. The type of \texttt{dst} will be the same as of \texttt{src}.}
|
||||||
|
\cvarg{dsize}{The destination image size. If it is zero, then it is computed as: \[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\] Either \texttt{dsize} or both \texttt{fx} or \texttt{fy} must be non-zero.}
|
||||||
|
\cvarg{fx}{The scale factor along the horizontal axis. When 0, it is computed as \[\texttt{(double)dsize.width/src.cols}\]}
|
||||||
|
\cvarg{fy}{The scale factor along the vertical axis. When 0, it is computed as \[\texttt{(double)dsize.height/src.rows}\]}
|
||||||
|
\cvarg{interpolation}{The interpolation method. Supports only \texttt{INTER\_NEAREST} and \texttt{INTER\_LINEAR}.}
|
||||||
|
\end{description}
|
||||||
|
See also: \cvCppCross{resize}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::warpAffine}
|
||||||
|
Applies an affine transformation to an image.
|
||||||
|
\cvdefCpp{
|
||||||
|
void warpAffine(const GpuMat\& src, GpuMat\& dst, const Mat\& M, \par Size dsize, int flags = INTER\_LINEAR);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Supports 8-bit unsigned, 16-bit unsigned, 32-bit signed amd 32-bit floating one, three and four channels images.}
|
||||||
|
\cvarg{dst}{Destination image; will have size \texttt{dsize} and the same type as \texttt{src}.}
|
||||||
|
\cvarg{M}{$2\times 3$ transformation matrix.}
|
||||||
|
\cvarg{dsize}{Size of the destination image.}
|
||||||
|
\cvarg{flags}{A combination of interpolation methods, see \cvCppCross{resize}, and the optional flag \texttt{WARP\_INVERSE\_MAP} that means that \texttt{M} is the inverse transformation ($\texttt{dst}\rightarrow\texttt{src}$). Supports only \texttt{INTER\_NEAREST}, \texttt{INTER\_LINEAR} and \texttt{INTER\_CUBIC} interpolation methods.}
|
||||||
|
\end{description}
|
||||||
|
See also: \cvCppCross{warpAffine}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::warpPerspective}
|
||||||
|
Applies a perspective transformation to an image.
|
||||||
|
\cvdefCpp{
|
||||||
|
void warpPerspective(const GpuMat\& src, GpuMat\& dst, const Mat\& M, \par Size dsize, int flags = INTER\_LINEAR);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Supports 8-bit unsigned, 16-bit unsigned, 32-bit signed amd 32-bit floating one, three and four channels images.}
|
||||||
|
\cvarg{dst}{Destination image; will have size \texttt{dsize} and the same type as \texttt{src}.}
|
||||||
|
\cvarg{M}{$2\times 3$ transformation matrix.}
|
||||||
|
\cvarg{dsize}{Size of the destination image.}
|
||||||
|
\cvarg{flags}{A combination of interpolation methods, see \cvCppCross{resize}, and the optional flag \texttt{WARP\_INVERSE\_MAP} that means that \texttt{M} is the inverse transformation ($\texttt{dst}\rightarrow\texttt{src}$). Supports only \texttt{INTER\_NEAREST}, \texttt{INTER\_LINEAR} and \texttt{INTER\_CUBIC} interpolation methods.}
|
||||||
|
\end{description}
|
||||||
|
See also: \cvCppCross{warpPerspective}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::rotate}
|
||||||
|
Rotates an image around the origin (0,0) and then shifts it.
|
||||||
|
\cvdefCpp{
|
||||||
|
void rotate(const GpuMat\& src, GpuMat\& dst, Size dsize, \par double angle, double xShift = 0, double yShift = 0, \par int interpolation = INTER\_LINEAR);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{Source image. Supports \texttt{CV\_8UC1}, \texttt{CV\_8UC4} types.}
|
||||||
|
\cvarg{dst}{Destination image; will have size \texttt{dsize} and the same type as \texttt{src}.}
|
||||||
|
\cvarg{dsize}{Size of the destination image.}
|
||||||
|
\cvarg{angle}{The angle of rotation in degrees.}
|
||||||
|
\cvarg{xShift}{Shift along horizontal axis.}
|
||||||
|
\cvarg{yShift}{Shift along vertical axis.}
|
||||||
|
\cvarg{interpolation}{The interpolation method. Supports only \texttt{INTER\_NEAREST}, \texttt{INTER\_LINEAR} and \texttt{INTER\_CUBIC}.}
|
||||||
|
\end{description}
|
||||||
|
See also: \cvCppCross{gpu::warpAffine}.
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::copyMakeBorder}
|
||||||
|
Copies 2D array to a larger destination array and pads borders with user-specifiable constant.
|
||||||
|
\cvdefCpp{
|
||||||
|
void copyMakeBorder(const GpuMat\& src, GpuMat\& dst, \par int top, int bottom, int left, int right, \par const Scalar\& value = Scalar());
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Supports \texttt{CV\_8UC1}, \texttt{CV\_8UC4}, \texttt{CV\_32SC1} and \texttt{CV\_32FC1} types.}
|
||||||
|
\cvarg{dst}{The destination image; will have the same type as \texttt{src} and the size \texttt{Size(src.cols+left+right, src.rows+top+bottom)}.}
|
||||||
|
\cvarg{top, bottom, left, right}{Specify how much pixels in each direction from the source image rectangle one needs to extrapolate, e.g. \texttt{top=1, bottom=1, left=1, right=1} mean that 1 pixel-wide border needs to be built.}
|
||||||
|
\cvarg{value}{The border value.}
|
||||||
|
\end{description}
|
||||||
|
See also: \cvCppCross{copyMakeBorder}
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::rectStdDev}
|
||||||
|
Computes the standard deviation of integral images.
|
||||||
|
\cvdefCpp{
|
||||||
|
void rectStdDev(const GpuMat\& src, const GpuMat\& sqr, GpuMat\& dst, \par const Rect\& rect);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Supports only \texttt{CV\_32SC1} type.}
|
||||||
|
\cvarg{sqr}{The squared source image. Supports only \texttt{CV\_32FC1} type.}
|
||||||
|
\cvarg{dst}{The destination image; will have the same type and the same size as \texttt{src}.}
|
||||||
|
\cvarg{rect}{Rectangular window.}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::evenLevels}
|
||||||
|
Compute levels with even distribution.
|
||||||
|
\cvdefCpp{
|
||||||
|
void evenLevels(GpuMat\& levels, int nLevels, \par int lowerLevel, int upperLevel);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{levels}{The destination array. \texttt{levels} will have 1 row and \texttt{nLevels} cols and \texttt{CV\_32SC1} type.}
|
||||||
|
\cvarg{nLevels}{The number of levels being computed. \texttt{nLevels} must be at least 2}
|
||||||
|
\cvarg{lowerLevel}{Lower boundary value of the lowest level.}
|
||||||
|
\cvarg{upperLevel}{Upper boundary value of the greatest level.}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::histEven}
|
||||||
|
Calculates histogram with evenly distributed bins.
|
||||||
|
\cvdefCpp{
|
||||||
|
void histEven(const GpuMat\& src, GpuMat\& hist, \par int histSize, int lowerLevel, int upperLevel);
|
||||||
|
}
|
||||||
|
\cvdefCpp{
|
||||||
|
void histEven(const GpuMat\& src, GpuMat hist[4], \par int histSize[4], int lowerLevel[4], int upperLevel[4]);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Supports 8-bit unsigned, 16-bit unsigned and 16-bit one or four channel images. For four channels image all channels are processed separately.}
|
||||||
|
\cvarg{hist}{Destination histogram. Will have one row, \texttt{histSize} cols and \texttt{CV\_32S} type.}
|
||||||
|
\cvarg{histSize}{Size of histogram.}
|
||||||
|
\cvarg{lowerLevel}{Lower boundary of lowest level bin.}
|
||||||
|
\cvarg{upperLevel}{Upper boundary of highest level bin.}
|
||||||
|
\end{description}
|
||||||
|
|
||||||
|
\cvCppFunc{gpu::histRange}
|
||||||
|
Calculates histogram with bins determined by levels array.
|
||||||
|
\cvdefCpp{
|
||||||
|
void histRange(const GpuMat\& src, GpuMat\& hist, const GpuMat\& levels);
|
||||||
|
}
|
||||||
|
\cvdefCpp{
|
||||||
|
void histRange(const GpuMat\& src, GpuMat hist[4], \par const GpuMat levels[4]);
|
||||||
|
}
|
||||||
|
\begin{description}
|
||||||
|
\cvarg{src}{The source image. Supports 8-bit unsigned, 16-bit unsigned and 16-bit one or four channel images. For four channels image all channels are processed separately.}
|
||||||
|
\cvarg{hist}{Destination histogram. Will have one row, \texttt{(levels.cols-1)} cols and \texttt{CV\_32SC1} type.}
|
||||||
|
\cvarg{levels}{Number of levels in histogram.}
|
||||||
|
\end{description}
|
||||||
|
Loading…
Reference in New Issue
Block a user