mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 13:47:32 +08:00
added cv::reduce to T-API
This commit is contained in:
parent
07e08f7a3d
commit
63a5e39e2c
@ -2976,23 +2976,79 @@ typedef void (*ReduceFunc)( const Mat& src, Mat& dst );
|
||||
#define reduceMinC32f reduceC_<float, float, OpMin<float> >
|
||||
#define reduceMinC64f reduceC_<double,double,OpMin<double> >
|
||||
|
||||
namespace cv {
|
||||
|
||||
static bool ocl_reduce(InputArray _src, OutputArray _dst,
|
||||
int dim, int op, int op0, int stype, int dtype)
|
||||
{
|
||||
int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
|
||||
ddepth = CV_MAT_DEPTH(dtype), ddepth0 = ddepth;
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
|
||||
|
||||
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
|
||||
return false;
|
||||
|
||||
if (op == CV_REDUCE_AVG)
|
||||
{
|
||||
op = CV_REDUCE_SUM;
|
||||
if (sdepth < CV_32S && ddepth < CV_32S)
|
||||
ddepth = CV_32S;
|
||||
}
|
||||
|
||||
const char * const ops[4] = { "OCL_CV_REDUCE_SUM", "OCL_CV_REDUCE_AVG",
|
||||
"OCL_CV_REDUCE_MAX", "OCL_CV_REDUCE_MIN" };
|
||||
char cvt[40];
|
||||
ocl::Kernel k("reduce", ocl::core::reduce2_oclsrc,
|
||||
format("-D %s -D dim=%d -D cn=%d -D ddepth=%d -D srcT=%s -D dstT=%s -D convertToDT=%s%s",
|
||||
ops[op], dim, cn, ddepth, ocl::typeToStr(sdepth), ocl::typeToStr(ddepth),
|
||||
ocl::convertTypeStr(sdepth, ddepth, 1, cvt),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat src = _src.getUMat();
|
||||
Size dsize(dim == 0 ? src.cols : 1, dim == 0 ? 1 : src.rows);
|
||||
_dst.create(dsize, dtype);
|
||||
UMat dst = _dst.getUMat(), temp = dst;
|
||||
|
||||
if (op0 == CV_REDUCE_AVG && sdepth < CV_32S && ddepth0 < CV_32S)
|
||||
temp.create(dsize, CV_32SC(cn));
|
||||
|
||||
size_t globalsize = std::max(dsize.width, dsize.height);
|
||||
|
||||
k.args(ocl::KernelArg::ReadOnly(src),
|
||||
ocl::KernelArg::WriteOnlyNoSize(temp));
|
||||
if (!k.run(1, &globalsize, NULL, false))
|
||||
return false;
|
||||
|
||||
if (op0 == CV_REDUCE_AVG)
|
||||
temp.convertTo(dst, ddepth0, 1. / (dim == 0 ? src.rows : src.cols));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
CV_Assert( src.dims <= 2 );
|
||||
CV_Assert( _src.dims() <= 2 );
|
||||
int op0 = op;
|
||||
int stype = src.type(), sdepth = src.depth(), cn = src.channels();
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
||||
if( dtype < 0 )
|
||||
dtype = _dst.fixedType() ? _dst.type() : stype;
|
||||
int ddepth = CV_MAT_DEPTH(dtype);
|
||||
|
||||
_dst.create(dim == 0 ? 1 : src.rows, dim == 0 ? src.cols : 1,
|
||||
CV_MAKETYPE(dtype >= 0 ? dtype : stype, cn));
|
||||
Mat dst = _dst.getMat(), temp = dst;
|
||||
|
||||
CV_Assert( cn == CV_MAT_CN(dtype) );
|
||||
CV_Assert( op == CV_REDUCE_SUM || op == CV_REDUCE_MAX ||
|
||||
op == CV_REDUCE_MIN || op == CV_REDUCE_AVG );
|
||||
CV_Assert( src.channels() == dst.channels() );
|
||||
|
||||
if (ocl::useOpenCL() && _dst.isUMat() &&
|
||||
ocl_reduce(_src, _dst, dim, op, op0, stype, dtype))
|
||||
return;
|
||||
|
||||
Mat src = _src.getMat();
|
||||
_dst.create(dim == 0 ? 1 : src.rows, dim == 0 ? src.cols : 1, dtype);
|
||||
Mat dst = _dst.getMat(), temp = dst;
|
||||
|
||||
if( op == CV_REDUCE_AVG )
|
||||
{
|
||||
|
148
modules/core/src/opencl/reduce2.cl
Normal file
148
modules/core/src/opencl/reduce2.cl
Normal file
@ -0,0 +1,148 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors as is and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the copyright holders or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ddepth == 0
|
||||
#define MIN_VAL 0
|
||||
#define MAX_VAL 255
|
||||
#elif ddepth == 1
|
||||
#define MIN_VAL -128
|
||||
#define MAX_VAL 127
|
||||
#elif ddepth == 2
|
||||
#define MIN_VAL 0
|
||||
#define MAX_VAL 65535
|
||||
#elif ddepth == 3
|
||||
#define MIN_VAL -32768
|
||||
#define MAX_VAL 32767
|
||||
#elif ddepth == 4
|
||||
#define MIN_VAL INT_MIN
|
||||
#define MAX_VAL INT_MAX
|
||||
#elif ddepth == 5
|
||||
#define MIN_VAL (-FLT_MAX)
|
||||
#define MAX_VAL FLT_MAX
|
||||
#elif ddepth == 6
|
||||
#define MIN_VAL (-DBL_MAX)
|
||||
#define MAX_VAL DBL_MAX
|
||||
#else
|
||||
#error "Unsupported depth"
|
||||
#endif
|
||||
|
||||
#define noconvert
|
||||
|
||||
#ifdef OCL_CV_REDUCE_SUM
|
||||
#define INIT_VALUE 0
|
||||
#define PROCESS_ELEM(acc, value) acc += value
|
||||
#elif defined(OCL_CV_REDUCE_MAX)
|
||||
#define INIT_VALUE MIN_VAL
|
||||
#define PROCESS_ELEM(acc, value) acc = value > acc ? value : acc
|
||||
#elif defined(OCL_CV_REDUCE_MIN)
|
||||
#define INIT_VALUE MAX_VAL
|
||||
#define PROCESS_ELEM(acc, value) acc = value < acc ? value : acc
|
||||
#elif defined(OCL_CV_REDUCE_AVG)
|
||||
#error "This operation should be implemented through OCL_CV_REDUCE_SUM"
|
||||
#else
|
||||
#error "No operation is specified"
|
||||
#endif
|
||||
|
||||
__kernel void reduce(__global const uchar * srcptr, int src_step, int src_offset, int rows, int cols,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset)
|
||||
{
|
||||
#if dim == 0 // reduce to a single row
|
||||
int x = get_global_id(0);
|
||||
if (x < cols)
|
||||
{
|
||||
int src_index = x * (int)sizeof(srcT) * cn + src_offset;
|
||||
__global dstT * dst = (__global dstT *)(dstptr + dst_offset) + x * cn;
|
||||
dstT tmp[cn] = { INIT_VALUE };
|
||||
|
||||
for (int y = 0; y < rows; ++y, src_index += src_step)
|
||||
{
|
||||
__global const srcT * src = (__global const srcT *)(srcptr + src_index);
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
dstT value = convertToDT(src[c]);
|
||||
PROCESS_ELEM(tmp[c], value);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
dst[c] = tmp[c];
|
||||
}
|
||||
#elif dim == 1 // reduce to a single column
|
||||
int y = get_global_id(0);
|
||||
if (y < rows)
|
||||
{
|
||||
int src_index = mad24(y, src_step, src_offset);
|
||||
int dst_index = mad24(y, dst_step, dst_offset);
|
||||
|
||||
__global const srcT * src = (__global const srcT *)(srcptr + src_index);
|
||||
__global dstT * dst = (__global dstT *)(dstptr + dst_index);
|
||||
dstT tmp[cn] = { INIT_VALUE };
|
||||
|
||||
for (int x = 0; x < cols; ++x, src += cn)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
dstT value = convertToDT(src[c]);
|
||||
PROCESS_ELEM(tmp[c], value);
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
dst[c] = tmp[c];
|
||||
}
|
||||
#else
|
||||
#error "Dims must be either 0 or 1"
|
||||
#endif
|
||||
}
|
@ -729,11 +729,12 @@ void UMat::convertTo(OutputArray _dst, int _type, double alpha, double beta) con
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
||||
if (!k.empty())
|
||||
{
|
||||
UMat src = *this;
|
||||
_dst.create( size(), _type );
|
||||
UMat dst = _dst.getUMat();
|
||||
|
||||
float alphaf = (float)alpha, betaf = (float)beta;
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(*this), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
|
||||
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn), alphaf, betaf);
|
||||
|
||||
size_t globalsize[2] = { dst.cols * cn, dst.rows };
|
||||
if (k.run(2, globalsize, NULL, false))
|
||||
|
@ -1566,6 +1566,106 @@ OCL_TEST_P(Psnr, Mat)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////// Reduce /////////////////////////////////////////////
|
||||
|
||||
PARAM_TEST_CASE(Reduce, std::pair<MatDepth, MatDepth>, Channels, int, bool)
|
||||
{
|
||||
int sdepth, ddepth, cn, dim, dtype;
|
||||
bool use_roi;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src)
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst)
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
const std::pair<MatDepth, MatDepth> p = GET_PARAM(0);
|
||||
sdepth = p.first;
|
||||
ddepth = p.second;
|
||||
cn = GET_PARAM(1);
|
||||
dim = GET_PARAM(2);
|
||||
use_roi = GET_PARAM(3);
|
||||
}
|
||||
|
||||
virtual void generateTestData()
|
||||
{
|
||||
const int stype = CV_MAKE_TYPE(sdepth, cn);
|
||||
dtype = CV_MAKE_TYPE(ddepth, cn);
|
||||
|
||||
Size roiSize = randomSize(1, MAX_VALUE);
|
||||
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, stype, -40, 40);
|
||||
|
||||
Size dstRoiSize = Size(dim == 0 ? roiSize.width : 1, dim == 0 ? 1 : roiSize.height);
|
||||
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, dstRoiSize, dstBorder, dtype, 5, 16);
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src)
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
|
||||
}
|
||||
};
|
||||
|
||||
typedef Reduce ReduceSum;
|
||||
|
||||
OCL_TEST_P(ReduceSum, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::reduce(src_roi, dst_roi, dim, CV_REDUCE_SUM, dtype));
|
||||
OCL_ON(cv::reduce(usrc_roi, udst_roi, dim, CV_REDUCE_SUM, dtype));
|
||||
|
||||
double eps = ddepth <= CV_32S ? 1 : 5e-5;
|
||||
OCL_EXPECT_MATS_NEAR(dst, eps)
|
||||
}
|
||||
}
|
||||
|
||||
typedef Reduce ReduceMax;
|
||||
|
||||
OCL_TEST_P(ReduceMax, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::reduce(src_roi, dst_roi, dim, CV_REDUCE_MAX, dtype));
|
||||
OCL_ON(cv::reduce(usrc_roi, udst_roi, dim, CV_REDUCE_MAX, dtype));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 0)
|
||||
}
|
||||
}
|
||||
|
||||
typedef Reduce ReduceMin;
|
||||
|
||||
OCL_TEST_P(ReduceMin, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::reduce(src_roi, dst_roi, dim, CV_REDUCE_MIN, dtype));
|
||||
OCL_ON(cv::reduce(usrc_roi, udst_roi, dim, CV_REDUCE_MIN, dtype));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 0)
|
||||
}
|
||||
}
|
||||
|
||||
typedef Reduce ReduceAvg;
|
||||
|
||||
OCL_TEST_P(ReduceAvg, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::reduce(src_roi, dst_roi, dim, CV_REDUCE_AVG, dtype));
|
||||
OCL_ON(cv::reduce(usrc_roi, udst_roi, dim, CV_REDUCE_AVG, dtype));
|
||||
|
||||
double eps = ddepth <= CV_32S ? 1 : 5e-6;
|
||||
OCL_EXPECT_MATS_NEAR(dst, eps)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////// Instantiation /////////////////////////////////////////
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Lut, Combine(::testing::Values(CV_8U, CV_8S), OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool(), Bool()));
|
||||
@ -1607,6 +1707,42 @@ OCL_INSTANTIATE_TEST_CASE_P(Arithm, ScaleAdd, Combine(OCL_ALL_DEPTHS, OCL_ALL_CH
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, PatchNaNs, Combine(OCL_ALL_CHANNELS, Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Psnr, Combine(::testing::Values((MatDepth)CV_8U), OCL_ALL_CHANNELS, Bool()));
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, ReduceSum, Combine(testing::Values(std::make_pair<MatDepth, MatDepth>(CV_8U, CV_32S),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_8U, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_8U, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16S, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16S, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_64F, CV_64F)),
|
||||
OCL_ALL_CHANNELS, testing::Values(0, 1), Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, ReduceAvg, Combine(testing::Values(std::make_pair<MatDepth, MatDepth>(CV_8U, CV_32S),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_8U, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_8U, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16S, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16S, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_64F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_64F, CV_64F)),
|
||||
OCL_ALL_CHANNELS, testing::Values(0, 1), Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, ReduceMax, Combine(testing::Values(std::make_pair<MatDepth, MatDepth>(CV_8U, CV_8U),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_16U),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16S, CV_16S),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_64F, CV_64F)),
|
||||
OCL_ALL_CHANNELS, testing::Values(0, 1), Bool()));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Arithm, ReduceMin, Combine(testing::Values(std::make_pair<MatDepth, MatDepth>(CV_8U, CV_8U),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16U, CV_16U),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_16S, CV_16S),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_32F, CV_32F),
|
||||
std::make_pair<MatDepth, MatDepth>(CV_64F, CV_64F)),
|
||||
OCL_ALL_CHANNELS, testing::Values(0, 1), Bool()));
|
||||
|
||||
|
||||
} } // namespace cvtest::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
Loading…
Reference in New Issue
Block a user