mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Asynchronous C++ sample
This commit is contained in:
parent
c3b0a68a2b
commit
63bb97cc19
@ -5,6 +5,11 @@
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
#ifdef CV_CXX11
|
||||
#include <thread>
|
||||
#include <queue>
|
||||
#endif
|
||||
|
||||
#include "common.hpp"
|
||||
|
||||
std::string keys =
|
||||
@ -26,8 +31,9 @@ std::string keys =
|
||||
"0: CPU target (by default), "
|
||||
"1: OpenCL, "
|
||||
"2: OpenCL fp16 (half-float precision), "
|
||||
"3: VPU }";
|
||||
|
||||
"3: VPU }"
|
||||
"{ async | 0 | Number of asynchronous forwards at the same time. "
|
||||
"Choose 0 for synchronous mode }";
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
@ -35,13 +41,66 @@ using namespace dnn;
|
||||
float confThreshold, nmsThreshold;
|
||||
std::vector<std::string> classes;
|
||||
|
||||
inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale,
|
||||
const Scalar& mean, bool swapRB);
|
||||
|
||||
void postprocess(Mat& frame, const std::vector<Mat>& out, Net& net);
|
||||
|
||||
void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);
|
||||
|
||||
void callback(int pos, void* userdata);
|
||||
|
||||
std::vector<String> getOutputsNames(const Net& net);
|
||||
#ifdef CV_CXX11
|
||||
template <typename T>
|
||||
class QueueFPS : public std::queue<T>
|
||||
{
|
||||
public:
|
||||
QueueFPS() : counter(0) {}
|
||||
|
||||
void push(const T& entry)
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
std::queue<T>::push(entry);
|
||||
counter += 1;
|
||||
if (counter == 1)
|
||||
{
|
||||
// Start counting from a second frame (warmup).
|
||||
tm.reset();
|
||||
tm.start();
|
||||
}
|
||||
}
|
||||
|
||||
T get()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
T entry = this->front();
|
||||
this->pop();
|
||||
return entry;
|
||||
}
|
||||
|
||||
float getFPS()
|
||||
{
|
||||
tm.stop();
|
||||
double fps = counter / tm.getTimeSec();
|
||||
tm.start();
|
||||
return static_cast<float>(fps);
|
||||
}
|
||||
|
||||
void clear()
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
while (!this->empty())
|
||||
this->pop();
|
||||
}
|
||||
|
||||
unsigned int counter;
|
||||
|
||||
private:
|
||||
TickMeter tm;
|
||||
std::mutex mutex;
|
||||
};
|
||||
#endif // CV_CXX11
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
@ -67,6 +126,7 @@ int main(int argc, char** argv)
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
size_t async = parser.get<int>("async");
|
||||
CV_Assert(parser.has("model"));
|
||||
std::string modelPath = findFile(parser.get<String>("model"));
|
||||
std::string configPath = findFile(parser.get<String>("config"));
|
||||
@ -104,6 +164,108 @@ int main(int argc, char** argv)
|
||||
else
|
||||
cap.open(parser.get<int>("device"));
|
||||
|
||||
#ifdef CV_CXX11
|
||||
bool process = true;
|
||||
|
||||
// Frames capturing thread
|
||||
QueueFPS<Mat> framesQueue;
|
||||
std::thread framesThread([&](){
|
||||
Mat frame;
|
||||
while (process)
|
||||
{
|
||||
cap >> frame;
|
||||
if (!frame.empty())
|
||||
framesQueue.push(frame.clone());
|
||||
else
|
||||
break;
|
||||
}
|
||||
});
|
||||
|
||||
// Frames processing thread
|
||||
QueueFPS<Mat> processedFramesQueue;
|
||||
QueueFPS<std::vector<Mat> > predictionsQueue;
|
||||
std::thread processingThread([&](){
|
||||
std::queue<std::future<Mat> > futureOutputs;
|
||||
Mat blob;
|
||||
while (process)
|
||||
{
|
||||
// Get a next frame
|
||||
Mat frame;
|
||||
{
|
||||
if (!framesQueue.empty())
|
||||
{
|
||||
frame = framesQueue.get();
|
||||
if (async)
|
||||
{
|
||||
if (futureOutputs.size() == async)
|
||||
frame = Mat();
|
||||
}
|
||||
else
|
||||
framesQueue.clear(); // Skip the rest of frames
|
||||
}
|
||||
}
|
||||
|
||||
// Process the frame
|
||||
if (!frame.empty())
|
||||
{
|
||||
preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB);
|
||||
processedFramesQueue.push(frame);
|
||||
|
||||
if (async)
|
||||
{
|
||||
futureOutputs.push(net.forwardAsync());
|
||||
}
|
||||
else
|
||||
{
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, outNames);
|
||||
predictionsQueue.push(outs);
|
||||
}
|
||||
}
|
||||
|
||||
while (!futureOutputs.empty() &&
|
||||
futureOutputs.front().wait_for(std::chrono::seconds(0)) == std::future_status::ready)
|
||||
{
|
||||
Mat out = futureOutputs.front().get();
|
||||
predictionsQueue.push({out});
|
||||
futureOutputs.pop();
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// Postprocessing and rendering loop
|
||||
while (waitKey(1) < 0)
|
||||
{
|
||||
if (predictionsQueue.empty())
|
||||
continue;
|
||||
|
||||
std::vector<Mat> outs = predictionsQueue.get();
|
||||
Mat frame = processedFramesQueue.get();
|
||||
|
||||
postprocess(frame, outs, net);
|
||||
|
||||
if (predictionsQueue.counter > 1)
|
||||
{
|
||||
std::string label = format("Camera: %.2f FPS", framesQueue.getFPS());
|
||||
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
|
||||
label = format("Network: %.2f FPS", predictionsQueue.getFPS());
|
||||
putText(frame, label, Point(0, 30), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
|
||||
label = format("Skipped frames: %d", framesQueue.counter - predictionsQueue.counter);
|
||||
putText(frame, label, Point(0, 45), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
}
|
||||
imshow(kWinName, frame);
|
||||
}
|
||||
|
||||
process = false;
|
||||
framesThread.join();
|
||||
processingThread.join();
|
||||
|
||||
#else // CV_CXX11
|
||||
if (async)
|
||||
CV_Error(Error::StsNotImplemented, "Asynchronous forward is supported only with Inference Engine backend.");
|
||||
|
||||
// Process frames.
|
||||
Mat frame, blob;
|
||||
while (waitKey(1) < 0)
|
||||
@ -115,19 +277,8 @@ int main(int argc, char** argv)
|
||||
break;
|
||||
}
|
||||
|
||||
// Create a 4D blob from a frame.
|
||||
Size inpSize(inpWidth > 0 ? inpWidth : frame.cols,
|
||||
inpHeight > 0 ? inpHeight : frame.rows);
|
||||
blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false);
|
||||
preprocess(frame, net, Size(inpWidth, inpHeight), scale, mean, swapRB);
|
||||
|
||||
// Run a model.
|
||||
net.setInput(blob);
|
||||
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
||||
{
|
||||
resize(frame, frame, inpSize);
|
||||
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
|
||||
net.setInput(imInfo, "im_info");
|
||||
}
|
||||
std::vector<Mat> outs;
|
||||
net.forward(outs, outNames);
|
||||
|
||||
@ -142,9 +293,29 @@ int main(int argc, char** argv)
|
||||
|
||||
imshow(kWinName, frame);
|
||||
}
|
||||
#endif // CV_CXX11
|
||||
return 0;
|
||||
}
|
||||
|
||||
inline void preprocess(const Mat& frame, Net& net, Size inpSize, float scale,
|
||||
const Scalar& mean, bool swapRB)
|
||||
{
|
||||
static Mat blob;
|
||||
// Create a 4D blob from a frame.
|
||||
if (inpSize.width <= 0) inpSize.width = frame.cols;
|
||||
if (inpSize.height <= 0) inpSize.height = frame.rows;
|
||||
blobFromImage(frame, blob, 1.0, inpSize, Scalar(), swapRB, false, CV_8U);
|
||||
|
||||
// Run a model.
|
||||
net.setInput(blob, "", scale, mean);
|
||||
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
||||
{
|
||||
resize(frame, frame, inpSize);
|
||||
Mat imInfo = (Mat_<float>(1, 3) << inpSize.height, inpSize.width, 1.6f);
|
||||
net.setInput(imInfo, "im_info");
|
||||
}
|
||||
}
|
||||
|
||||
void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
|
||||
{
|
||||
static std::vector<int> outLayers = net.getUnconnectedOutLayers();
|
||||
|
Loading…
Reference in New Issue
Block a user